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Introduction
Gold is an important material (resistant to most acids, used 
in infrared shielding, colored-glass production, gold leafing, 
and tooth restoration as well as a good conductor of heat and 
electricity due to that it was attracted a great attention) and an 
outstanding landmark in cluster science. Small clusters often 
will have a different physical and chemical properties than their 
bulk ones. Particularly, small particles of gold differ from the 
bulk as they contain edge atoms that have low coordination and 
can adopt binding geometries which lead to a more reactive 
electronic structure [1,2].

The study of nanostructured materials exhibiting novel properties 
is one of the most fascinating fields of current research. Small 
nanomaterials are of particular interest because of intriguing 
characteristics [3-6]. Nanoparticles with smaller dimensions may 
exhibit different properties in comparison with bulk material. 
The nanoparticles possess unique physico-chemical, optical and 
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biological properties which can be manipulated suitably for 
desired applications [7]. Particulary, gold chemistry plays a very 
important role in nanoelectronics and bionanosciences [8].

In the present work, we apply a parameterized density 
functional tight-binding method combined with an numerical 
differentiation-finite difference method on gold clusters with 
from 3 to 20 atoms. We have extracted the normal modes of 
vibration and the respective frequencies of the clusters, classified 
according to their symmetry group. However, we only study on 
the behaviour of the vibrational spectrum which are existed in 
small neutral gold clusters at low-temperatures. In addition, we 
provide computational evidence of the existence of the novel 
properties of the interatomic interaction energy of the atoms 
within the clusters.

Theoretical and Computational 
Procedure
The DFTB [9–11] is based on the density functional theory of 
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Molecular Vibrations
In this section, we are going to introduce the mathematical 
formalism on which the developed method is based. We will see 
that, treating the problem within the so called normal-mode-
harmonic oscillator (NMHO) approximation [16], the introduction 
of the Hessian matrix and its diagonalization ultimately leads 
to the eigenfrequencies of the system and its eigenvectors, 
describing the harmonic motion of the clusters atoms [17].

Small vibrations in classical mechanics
Let us consider a stable structure consisting of N atoms. Let xα; 
yα and zα be the coordinates of the ath atom of the structure 
and aα;bα and cα the values of the equilibrium positions of the αth 
atom. Displacements from the equilibrium positions can then be 
expressed by Δxα = (xα-aα); Δyα = (yα-bα); Δzα = (zα-cα). In the above 
notation, the classical kinetic energy T of the structure is given by

1 1 1 2 1 1 3 1 1 4 1 2,..., , ,q m x q m y q m z q m x= ∆ = ∆ = ∆ = ∆

 	 (7)

It is customary to express the coordinates Δx1,…, ΔzN by a new 
set of so called mass weighted coordinates q1,..,q3N, defined as 
follows

1 1 1 2 1 1 3 1 1 4 1 2,..., , ,q m x q m y q m z q m x= ∆ = ∆ = ∆ = ∆
 	

							       (8)

In terms of the time derivatives of these coordinates, the kinetic 
energy is

0

0 1,2,...,3i
i

Ef i N
q

 ∂
= = = ∂ 

 					                     (9)

NMHO approximation and re-optimization
We start out with structures that have been optimized [13]. That 
means that we have found the lowest total energy and that the 
forces on the atoms are vanishing. We may then write the total 
energy in a Taylor series around the optimized structure, so the 
total energy depends on the positions of the atoms relative to each 
other and therefore depends on the q’s. For small displacements, 
the total energy E may be approximated as a Taylor series in q, 
within the actual normal-mode-harmonic-oscillator (NMHO) 
approximation, the cubic and higher order terms are neglected 
in the Taylor series, where the coefficients fi and fij are given by

0

0 1,2,...,3i
i

Ef i N
q

 ∂
= = = ∂ 

 			                 (10)

0 1,2,...3
j j

d T V j N
dT q q

∂ ∂
+ = =

∂ ∂

 			                    (11)

This procedure implies a few customary consequences on which 
the popularity of the NMHO-model is based. First of all, since 
the energy has become quadratic, the vibrational motion we 
get solving Newton’s equations of motion will be harmonic. The 
further formulation of the problem leads to the Hessian matrix of 
the system, which allows us a simple analysis of the vibrational 
motion of the observed system.

In the chosen notation [^], Newton’s equation of motion can be 

Hohenberg and Kohn in the formulation of Kohn and Sham. In 
addition, the Kohn-Sham orbitals Ψi(r) of the system of interest 
are expanded in terms of atom-centered basis functions { (r)}mφ

( ) (r)im
m

i Cγ φΨ =∑ ,         m = j                                                      (1)

While so far the variational parameters have been the realspace 
grid representations of the pseudo wave functions, it will now be 
the set of coefficients cim. Index m describes the atom, where φm 
is centered and it is angular as well as radially dependant. The 
φm is determined by self-consistent DFT calculations on isolated 
atoms using large Slater-type basis sets. 

In calculating the orbital energies, we need the Hamilton matrix 
elements and the overlap matrix elements. The above formula 
gives the secular equations

mnH | | , |m n mn m nH Sφ φ φ φ
∧

= 〈 〉 = 〈 〉
                                                                   (2)

Here, cim’s are expansion coefficients, Ɛi is for the single-particle 
energies (or where Ɛi are the Kohn-Sham eigenvalues of the 
neutral), and the matrix elements of Hamiltonian Hmn and the 
overlap matrix elements Smn are defined as

mnH | | , |m n mn m nH Sφ φ φ φ
∧

= 〈 〉 = 〈 〉                                               (3)

They depend on the atomic positions and on a well-guessed 
density ρ(r). By solving the Kohn-Sham equations in an effective 
one particle potential, the Hamiltonian H

∧
 is defined as

i(r) (r), (r)i i effH H T Vψ εψ
∧ ∧ ∧

= = +                                                  (4)

To calculate the Hamiltonian matrix, the effective potential 
Veff has to be approximated. Here, T

∧
 being the kinetic-energy 

operator 
eff (r)= (| r Rj |)o

j
j

V V −∑ and Veff (r) being the effective Kohn-Sham 

potential, which is approximated as a simple superposition of the 
potentials of the neutral atoms,

eff j(r)= (| r R |)o
j

j
V V −∑                                                                     (5)

o
jV  is the Kohn-Sham potential of a neutral atom, rj = r-Rj is an 

atomic position, and Rj being the coordinates of the j-th atom. 
The short-range interactions can be approximated by simple pair 
potentials, and the total energy of the compound of interest 
relative to that of the isolated atoms is then written as,

' j j'
'

1 (| R R |),
2j

j
j

occ

tot i jm jj
i j mj j j

occ occ

B i jm
i j m

E Uε ε

ε ε ε

≠

− + −

≡ −

∑ ∑∑ ∑

∑ ∑∑

�
              (6)

Here, the majority of the binding energy ( Bε ) is contained in the 
difference between the single-particle energies Ɛi of the system 
of interest and the single-particle energies 

' j j'(| R R |)jjU −
of the isolated 

atoms (atom index j, orbital index mj), ' j j'(| R R |)jjU −  is determined 
as the difference between Bε and SCF

Bε  for diatomic molecules 
(with SCF

Bε  being the total energy from parameter-free density-
functional calculations). In the present study, only the 5d and 6s 
electrons of the gold atoms are explicitly included, whereas the 
rest are treated within a frozen-core approximation [9,11,12].
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cast in the form

0 1,2,...3
j j

d T V j N
dT q q

∂ ∂
+ = =

∂ ∂  		               	                  (12)

we get, the equation determining the motion of the coordinates
3

1
0

N

j ij i
i

q f q
=

+ =∑  					                   (13)

This is a set 3N simultaneous second-order linear differential 
equations. A possible solution is qi = aiexp(iωt) and derivation 
with respect to time yields to 2

j iq qω= − and can be written as
3

2

1
0

N

ij i i ij
i

f q qω δ
=

⇔ − =∑  				                  (14)

3
2

1
0

N

ij i i ij
i

f q qω δ
=

⇔ − =∑
 			                                    (15)

here, δij is called the Kronecker delta. 
3

2

1
( ) 0

N

ij i ij i
i

f q qω δ
=

⇔ − =∑
 			                                (16)

3
2

1
( ) a exp (i t) 0

N

ij i ij i
i

f q ω δ ω
=

⇔ − =∑  		                 (17)

Dividing by 3Na∈ℜ leads to a set of 3N algebraic equations: 
Introducing matrix notation, we get

3Na∈ℜ  				                                     (18)

where 
3Na∈ℜ is the Hessian matrix containing the 

second partial derivatives of the total energy of the system with 
respect to the structure (mass-weighted) coordinates of the 
nuclei. E being the total energy of the molecule/cluster, i.e. the 
single point energy. I is the identity operation in, 3Na∈ℜ is a 
column vector containing the amplitudes ai and the ω∈ℜ are the 
frequencies.

Equation (18) has non-vanishing solutions only, if

          2det(H I) 0ω− =  				                 (19)

Hence, the frequencies are obtained by consulting the roots of 
the characteristic polynomial, i.e., the frequencies are obtained 
by finding the eigenvalues of the Hessian matrix H.

In the case of a structure situated at a minimum on the 
energy surface the Hessian matrix should be symmetric-
positivesemidefinite and therefore hermitian. It can be shown 
that the eigenvectors of an hermitian matrix 

3Nℜ
constitute an orthonormal basis (onb) of 3Nℜ  [20]. The 
representation of the Hessian matrix in this basis is diagonal 
and the diagonal elements are the sought eigenfrequencies 
{ | 1,...,3 }i i Nω = .

Moreover, the corresponding eigenvectors 23 3

0
1 , 10 0

2 2 2 ...
N N

i j
i i ji i j

V VV V qi q q
q q q= =

  ∂ ∂
= + + +    ∂ ∂ ∂   

∑ ∑
of H are 

the directions of the harmonic motions of the molecule. They 
constitute the so-called normal modes. To fully specify any 
N-atomic structure or its vibrational motion, only ((3N-5) for 
linear and (3N-6) for non-linear) basis-vectors are needed. The 
five/six remaining basis vectors span Kernel of the Hessian, i.e., 
they determine the absolute position and orientation of the 
molecule in the inertial system. Thus, there are only ((3N-5) for 

linear and (3N-6) for non-linear) linearly independent vibrations, 
the molecule can undergo. From the construction of H, it follows 
that the molecules motions along the normal modes are harmonic 
oscillations. Moreover, since we are in a linear approximation, 
every possible harmonic motion of the molecule can be written 
as a linear combination of the normal modes.

Matrix Diagonalization
The finding of the frequencies of the normal modes of the 
clusters involves an eigenvalue problem which can be solved by 
diagonalization of the symmetric positive semidefinite Hessian 
matrix of the system. So, in the present study, two different 
numerical diagonalization methods have been applied. The 
first method bases on Jacobi-transformations of the symmetric 
Hessian. The second method relies on the Househoulder-reduction 
of the symmetric Hessian to a tridiagonal form and subsequent 
application of a QL-algorithm which yields the eigenvalues and 
vectors. Both methods are standard procedures and a complete 
and comprehensive description is given in the Numerical Recipes, 
both methods were implemented in the main-program unit 
without any modifications with respect to the subroutine-codes 
presented  [21]. Within the numerical error, both methods yield 
the same results.

The normal mode harmonic oscillator (NMHO) 
approximation
Please note, that from now on, for convenience, the total energy 
E of equation 6 has the meaning as a potential energy surface 
V. The potential energy depends on the positions of the atoms 
relative to each other and therefore depends on the q’s. For small 
displacements, the potential energy V may be approximated as a 
Taylor series in q.  

Now, we express the potential energy as a Taylor series.
23 3

0
1 , 10 0

2 2 2 ...
N N

i j
i i ji i j

V VV V qi q q
q q q= =

  ∂ ∂
= + + +    ∂ ∂ ∂   

∑ ∑  	                 (20)

2

0 0

0, ,i ij ij ji
i i j

V Vf F with F F
S S S

  ∂ ∂
= = = =    ∂ ∂ ∂   

 		                (21)

and with
2

0 0

0, ,i ij ij ji
i i j

V Vf F with F F
S S S

  ∂ ∂
= = = =    ∂ ∂ ∂   

              (22)

S-nuclei Co-ordinates of an optimized structure.

Structure of the Gold Atomic Clusters
Initially, a study on the structural and electronic properties of 
the global minimum gold cluster structures was obtained by 
combination of a genetic algorithm together with DFTB energy 
calculations. Dong and Springborg study explicitly includes the 
electronic degrees of freedom. This feature turned out to be 
crucial since the electronic properties of the gold clusters seem 
to play an important role in the determination of their structure. 
When including orbital interactions, packing effects as well as 
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Numerical Differentiation: Finite 
Difference Method
For the purpose of the present study, a very high accuracy of the 
optimum structures is required. In a first approach, we attempted 
to re-optimize the structures using the same steepest-descent 
method which has already been used for the first optimization 
[13]. The vibrational properties are treated within the normal-
mode harmonic oscillator model [16]. Therefore, we needed 
to find a suitable scheme to set up the Hessian matrix of the 
system. Since we were using density-functional tight binding 
energy calculations, we do not have an analytical expression for 
the energy. Thus, we have to rely on numerical differentiation. 
Subsequently, we had to test the results in order to find suitable 
sets of differentiation parameters, i.e., suitable combinations of 
differentiation step-size and order of the polynomial. In order to 
get clusters which are somewhat closer to the actual minimum on 
the potential energy surface, we turned to a new strategy. This 
new strategy relies on the properties of the Hessian eigenvectors. 
Based on the assumption, that in the proximity to a minimum, the 
curvature of the potential energy surface does only change very 
little, we developed a method which could actually cope with the 
high numerical accuracy of the local structure optimization. 

Briefly, this method is described as follows: The Hessian matrix 
is represented in an orthonormal basis consisting of the six 
eigenvectors of the Hessian matrix which span its kernel and of (3N-
6) arbitrarily chosen mutually orthonormal basis vectors, which 
are orthogonal to the kernel-eigenvectors. When represented in 
this basis, the Hessian should be partially diagonal. The diagonal 
part is now cut away and the remaining Hessian is diagonalized 
to reveal the eigenfrequencies of the clusters normal modes. 
Through the obtained eigenfrequencies, it is possible to set up 
the vibrational partition function of the examined systems, which 
gives access to the sought thermodynamic properties.

The Hessian matrix is the matrix of second derivatives of the 
energy with respect to geometry which is quite sensitive to its 
geometry. Energy second derivatives are evaluated numerically. 
Themmass-weighted Hessian matrix is obtained by numerical 
differentiation of the analytical first derivatives, calculated at 
geometries obtained by incrementing in turn each of the 3N 
nuclear coordinates by a small amount ds with respect to the 
equilibrium geometry. The introduction of the Hessian matrix and 
its diagonalization ultimately leads to the eigen-frequencies of 
the system and its eigenvectors, describing the harmonic motion 
of the clusters atoms. In order to obtain the matrix elements Hij of 
the Hessian matrix which are needed if one wishes to investigate 
the clusters thermodynamic properties and one should obtain 
the derivatives of potential energy surface (PES). 

Cutting off the kernel
The Hessian matrix H is symmetric by Schwarz’ theorem. The 
Kernel of H consists of all vectors which describe pure translational 
and rotational motion of the center of mass of the molecule, 
leaving its internal structure untouched. This is the eigenspace 
of H which is associated to the eigenvalue 0. As we have 5 for 

directional interactions determine the cluster structure. Packing 
effects lead to high symmetry structures and to the so-called 
magic numbers. Including orbital interactions in the calculations 
leads to a partial suppression of the magic-numbers and to 
low-symmetry structures. In most other metals, packing effects 
are predominant. On the other hand, the structures of most 
covalent molecules are determined by orbital interactions. For 
gold clusters, both seem to be important. Springborg and Dong 
suggest, that it is exactly this competition between packing 
effects and directional interactions which leads to low-symmetry 
clusters. 

In their study, Dong and Springborg found the transition from 
planar to three-dimensional structures for too small cluster 
sizes N. This could eventually be explained by the use of the 
parametrized DFTB method. However, low-symmetry structures 
have been found in other, more accurate studies on selected 
cluster-sizes, too. The comparison of their results with results from 
spherical-jellium-model calculations revealed some important 
differences. The stability-function, which gives information about 
particularly stable and unstable structures has much lower odd-
even amplitudes compared to the stability function obtained 
within the jellium-calculations. This can be attributed to the 
lower symmetry. The structures do not resemble to fragments of 
crystalline gold-phases. Nevertheless, some regular patterns are 
found, e.g. the clusters with size up to 20 atoms are built up of 
atomic shells [13-15].

. W. l. o. g., V0 can be set to zero. And since the qi are the distances 
from the equilibrium positions, the potential energy must have a 
minimum at

{qi = 0 | i = 1,2,.., 3N},      				                  (23)

and we get
3

, 1
2

N

ij i j
i j

V f q q
=

= ∑
 		                   (24)

within the actual normal-mode-harmonic-oscillator (NMHO) 
approximation, the cubic and higher order terms are neglected in 
the above series, such that the energy expression (20) becomes

3

, 1
2

N

ij i j
i j

V f q q
=

= ∑  					                   (25)

where the coefficients fi j are given by

2

0

ij ji
i j

V f f
q q

 ∂
=  ∂ ∂ 

 			                   (26)

This procedure implies a few customary consequences on which 
the popularity of the NMHO-model is based. First of all, since 
the potential has become quadratic, the vibrational motion we 
get solving Newton’s equations of motion will be harmonic. The 
further formulation of the problem leads to the Hessian matrix of 
the system, which allows us a simple analysis of the vibrational 
motion of the observed system.
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linear 6 for non-linear degrees of freedom corresponding to 
such translations and rotations, dim(Ker(H)) = 5/6. We denote 
the five/six Hessian eigenvectors associated to the Kernel k(1),…, 
,k(5/6) 3N∈ℜ . The remaining (3N-5)/(3N-6) Hessian eigenvectors 
denoted by n(1),..,n(3N-6)/(3N-5) 3N∈ℜ , form a basis of the (3N-5)/
(3N-6) dimensional configuration space, in which the molecular 
structure may be described uniquely without any reference to 
the position or orientation of the molecule relative to an inertial 
system. 

In our new method, we apply the Gram-Schmidt theorem, to 
set up an orthonormal basis for 3Nℜ . The basis of the Kernel 
consisting of the five/six hessian eigenvectors k(1),…,k(5-6) can 
easily be found, they are the orthonormalized translations 
and rotations of the structure. Now, we simply use k(1),…,k(5-6) 

as the first five/six basis vectors for an orthonormal basis of 
3Nℜ denoted C. The remaining (3N- 5)/(3N- 6) basis vectors 

of C are the arbitrarily chosen mutually orthonormal vectors (i) ( )| 0jk c〈 〉 = , which have to satisfy (i) ( )| 0jk c〈 〉 = for 
any possible combination of i and j.

By construction, the basis vectors c(1),…,c(3N-5)/(3N-6) of basis C form a 
basis of the (3N-5)/(3N-6) dimensional configuration space which 
is the subspace of 

3N∈ℜ  without translations and rotations. 
Consequently, the Hessian H, which is of rank (H) = (3N-5)/(3N-6) 
can be fully represented in the configuration space, the normal 
modes n do not contain any components of the basis k(1),…, ,k(5/6)  
of the kernel of the Hessian. Thus, the normal modes 

n 3N∈ℜ , satisfying the condition ( )3 3N NU M∈ ℜ ×ℜ can be 
expanded in the basis c(1),…,c(3N-5)/(3N-6) of the configuration space 
and they ωill still be orthonormal. 

Now, let us represent H in the basis C. Let ( )3 3N NU M∈ ℜ ×ℜ
be the matrix consisting of the column vectors of C, i.e.,

Since U is a unitary transformation, the complex-conjugate of U is 
equal to its inverse, i.e., U* =U-1 and thus the sought representation 
H’ of H in the new basis C is found by calculating U*HU = H’

Since the first five/six vectors basis k(1),…, ,k(5/6) of the basis C are 
the eigenvectors corresponding to translation and rotation, the 
first five/six lines and columns of the representation H’ of H in this 
basis should be diagonal and the eigenvalues which are the H' ’s 
diagonal elements should be equal to 0.

Diagonalization of the non-diagonal submatrix H’’ Ɛ 

M(ℜ(3N-5) (3N-6)/(3N-6) which is the representation of the 
Hessian in the basis c(1),…,c(3N-5)/(3N-6)  of the configuration space, 

yields its eigenvectors, i.e., the (3N-5)/(3N-6) normal modes 
The diagonal 

elements are the sought eigenvalues, the eigenfrequencies 
of the normal modes which are needed for the calculation of 
thermodynamic properties.

First, we set up an orthonormal basis which allows to separate 
3Nℜ  into its (3N-5)/(3N-6)-dimensional configuration subspace 

and the complementary five/six dimensional subspace which 
makes reference to absolute position and orientation of the 
molecule. The latter is not needed for the description of the 
molecule’s structure and the normal modes. Second, we represent 
the Hessian in this basis and cut away the part belonging to the 
five/six-dimensional complementary space, before the new 
Hessian  
Finally is diagonalized to reveal its eigenvalues and vectors.

For quite all systems, results obtained in both ways, with the 
above method and without it were compared. The results are 
very close to each other. The numerically optimized structures 
are almost exact and/or the Hessian matrix changes very little 
around the minimum and the numerical error can be ignored, 
using an appropriate method. Applying the new method in our 
further calculations, we were able to find positive semi definite 
Hessian matrices H’’ for all structures.

Calculation of numerical force constants (fcs) 
and vibrational frequency
A re-optimized structure of the force constants (FCs) could 
be extracted from the already optimized structure [13] as the 
following, the force(s) expressions were obtained by derivation 
of the energy expression (or) from the expression of energy, the 
forces can be easily calculated by derivation. Here, the Force(s) Fj 
that act on the j-th atom of the system can be calculated applying 
the Hellmann-Feynman theorem [22,23], so the forces are given 
as

tot
j j tot

j

EF E
R

∂
= −∇ = −

∂  				                  (28)

These are all identical to 0 (within numerical accuracy) for the 
optimized structure [13]. Interatomic forces can easily be derived 
from an exact calculation of the gradients of the total energy at 
the considered atoms site, finally, the forces acting on an atom at 
Rj are obtained as follows:

2

j i( F ) ( F )tot tot

i j i j i j

E E
R R R R R Rβ α

α β α β α β

 ∂ ∂∂ ∂ ∂
= = − = − 

∂ ∂ ∂ ∂ ∂ ∂  
          (29)

In our case, we have calculated as the numerical first-order 
derivatives of the forces instead of the numerical-second-order 
derivatives of the total energy. In principle there is no difference, 
but numerically the approach of using the forces is more accurate 
and, moreover, it requires much less calculation. However, to 
extract the force constants (FCs) in a atomic cluster directly, 
rather than indirectly through the agency of energy, a finite 
difference formula has been introduced as following.

We obtained our results by using the following formula,
2

j i( F ) ( F )tot tot

i j i j i j

E E
R R R R R Rβ α

α β α β α β

 ∂ ∂∂ ∂ ∂
= = − = − 

∂ ∂ ∂ ∂ ∂ ∂  
 	                (30)

ℜ
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2

j j
1 ( F ) ( F )
2

tot

i j i j

E
R R R Rβ α

α β α β

 ∂ ∂ ∂
= − = − 

∂ ∂ ∂ ∂  
                     (31)

So for convenience eqn. (30 and 31) can be written as,
2

, , ( )
2 2

ds ds
i i ds dstot

i i
i j

F FE FFF FF F F
R R

α β
α β

α β

− +
− + −∂  = ∆ = = −   ∂ ∂    

       (32)

21 1
2 2

tot

i j

E F
M R R M dsα β

∂ ∆ =  ∂ ∂  
 			                     (33)

for homonuclear case, M represents the atomic mass,
21 1

2 2
tot

i j

E F
M R R M dsα β

∂ ∆ =  ∂ ∂  
                                                        (34)

When the forces on atoms are known, the FCs can be used to 
compute relaxations and relaxation energies. In total we end 
up ωith (3N×3N) values 

2

i j

E
R Rα β

∂
∂ ∂

. The complete list of these 

force constants (FCs) is called the Hessian Hij, which is a (3N×3N) 
matrix. Here, i is the component of (x, y or z) of the force on 
the j’th atom, so we get 3N. ΔF is the average difference of the 
two first derivatives of the force constants (FCs) and ds is a small 
displacement within the nuclear coordinates. We found that a 
PES over which the gradients extend for a small displacements 
ds = ±[0.01] a.u. of equilibrium coordinate value of cluster, which 
is a reasonable value and allowed to discriminate between 
the translational, rotational motion (Zeroeigenvalues) and the 
vibrational motion [ iω  are vibrational frequencies [(low(min), 
high(max))] (Non-Zero-eigenvalues) of the atoms (or molecules) 
of the Hessian eigenvalues.

The vibrational partition function

The vibrational partition function is calculated by normal mode 
analysis. The partition function yields all equilibrium thermal 
properties of the clusters and harmonic approximation was used 
in the calculation of the vibrational contribution to the cluster 
partition function. Reducing dimensionality can bring entirely 
new properties for the thermodynamics of vibrational states for 
nanoclusters. The one-dimensional vibrational partition function 
zvib expressed by a sum over all possible vibrational states of the 
system,

/

1
, 1/i BE k Tvib

B
i

z e k Tβ
∞

−

=

= =∑  			                   (35)

kB is Boltzmann’s constant, T is the absolute temperature 
and Ei is the energy corresponding to the vibrational state 
i. Each vibrational state of the system consisting of (3N-5)/
(3N-6) harmonic oscillators which are by construction linearly 
independent. 

The partition function of a cluster is evaluated in the same way 
one would evaluate that of a polyatomic molecule. The energy of 
cluster or molecule is assumed to be separable [24], i.e.,

/ ( ) / ,
trans rot vib elec

i Bk T
B

i
z e e k Tε ε ε ε ε− − + + += =∑ ∑         (36)

Rigorously, this assumption cannot be valid for the different 

terms ωill influence each other. For example, eqn. (35) implies 
that the curvature of the potential energy surface of the 
electronically excited molecule is the same as for the molecule 
in its electronic ground state. This is a necessary condition for 
the vibrational frequencies and therefore for the vibrational 
energy to be independent from the electronic state of the 
molecule. Also, if the energy surfaces of the ground state and 
an electronically excited state come close together (avoided 
crossing), the separability of the electronic and vibrational 
modes may be a poor approximation (breakdown of the Born-
Oppenheimer approximation). Similarly, rotational excitation 
will have an impact on the bond length of "floppy" (soft bending 
potential) molecules and subsequently on the vibrational levels 
[24].

However, it can be shown that, for sufficiently low temperatures, 
the coupling effects are small and can be neglected, because 
the molecule is not likely to be in a highly excited state, where 
coupling becomes important. As long as the vibrations can be 
treated within the harmonic-oscillator-normal-mode model, the 
anharmonicity of the potential can be neglected and the average 
bond lengths won’t increase with vibrational excitation. 

Under the assumptions implied by eqn. (35), we can re-write the 
molecular partition function in a factorized form,

/ ( ) / ,
trans rot vib elec

i Bk T
B

i
z e e k Tε ε ε ε ε− − + + += =∑ ∑       (37)

where the sum has to be performed over all combinations of 
vibrational, rotational, translational and electronic states

( )

, , ,
/ ,

trans rot vib elec
i j k l

B
i j k l

z e k Tε ε ε ε− + + += =∑ ∑     (38)

But the above result is just the product of partition functions 
which only take into account a single mode of excitation, i.e.,

. .trans rot vibz z z z≈          (39)

This result shows that in the case of negligible coupling of the 
different excitations it is possible to approximate the partition 
function as a product of translational, rotational, vibrational and 
electronic partition functions.

The individual contributions	
In the present work, we focus on the size and temperature 
dependence of the vibrational part of the heat capacity. It was 
demonstrated, that the approximations introduced by the 
harmonicoscillator-normal-mode model, which imply that the 
different vibrational modes can be treated independently from 
each other, lead to a factorization of the vibrational partition 
function itself. This work does not answer the question, whether 
the electrons are irrelevant for the thermodynamic quantities 
or not. Most often, the electronic excitation energies are much 
larger than KT and we are going to neglect the electronic partition 
function. We still need to find expressions for the translational, 
the rotational and the vibrational partition functions, so as to get 
access to the partition function and subsequently to the heat 
capacity we seek. According to the above and to eqn. (38), as an 
enabling the cluster partition function to be written as a product
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In this expression the upper index denotes the individual 
harmonic oscillator and the lower index specifies the quantum 
state it is in. For our understanding, we can write

,1 ,(3 N 6),2
1 1 1

,1 ,(3 N 6),2
2 1 1

,1 ,(3 N 6),2
2 1 1

[ ... ]

[ ... ]

[ ... ]

vib vibvib

vib vibvib

vib vibvib

vibZ e

e

e

ε ε ε

ε ε ε

ε ε ε

−

−

−

+ + +−

+ + +−

+ + +−

=

+

+

   			                (46)

And again, rearranging the terms in the above equation yields 
a factorized vibrational partition function, i.e., a product of the 
(3N-6) partition functions each of which describes one individual 
harmonic oscillator,iω     		                  (47)

Recalling the energy states of the harmonic oscillator iω
    			                 (48)

we are now in the position to give a concrete expression for the 
vibrational partition function. Given iω , the angular frequency 
of the i-th harmonic oscillator, the partition function describing 
it is

1(n ), 2

0 0

n
ivib i

n n
z e e

βωε β
∞ ∞ − +−

= =

= =∑ ∑
      		                   (49)

where we introduced the inverse temperature ß=1/kT. 
Rearranging (48) leads us to

2
, 2

( )
0 1

i
i

i

i

nvib i

n

ez e e
e

βω
βω

βω
βω

 −   ∞  −  − 
−

=

= =
−∑







 	                                (50)

1
, 2sinh , .

2
vib i i i

i
B

z
k T

α ωα
−

  = =    


      	                               (51)

The contributions of translation and rotation depend only on the 
mass and moment of inertia of the molecule, and they are thus 
easy to calculate using the simple models of the particle in a box 
and the rigid rotator, respectively. In contrast, the vibrational 
contributions are, in general, difficult to evaluate, and thus are 
the prime issue of this work. The individual terms in the product 
are evaluated from standard statistical mechanical formulas 
(using the harmonic approximation) to evaluate the vibrational 
component zvib.

Combining the above result with (46), we finally see, that

. .trans rot vibz z z z≈       	        			                  (40)

In the literature, approximate formulae for the translational and 
the rotational part of the partition function are derived [25]. The 
translational part ztrans is related to center of mass translation 
and can approximatively be treated within the ideal-gas model. 
An approximate formula for the rotational part zrot is found by 
application of the concepts of a rigid rotator on the cluster’s 
structure. 

However, based on the equipartition theorem in classical 
statistical thermodynamics, we know that in the case of the 
classical limit, the internal energy of a system will distribute itself 
evenly among its quadratic degrees of freedom if not only the 
lowest corresponding energy levels are significantly populated, 
but also the higher ones. The population of the quantum states 
of a given degree of freedom is temperature dependent. The 
closer the energies of the different quantum states lie together, 
the more probable it is to find a molecule in an excited state and 
the lower will be the temperature for which the classical limit 
is reached and the results of the equipartition theorem can 
be applied. It can easily be shown that the energy differences 
between the rotational and the translational states of a typical 
system are small compared to kT [26]. The equipartition theorem 
states, that each degree of freedom receives an average energy 
of 1/2kT. Since translation and rotation (of a nonlinear molecule) 
correspond to six degrees of freedom, the contribution to the 
internal energy is 3kT. 

In the present application, the translational and the rotational 
contributions are treated according to the theorem described 
above and only the vibrational partition function will be 
considered rigorously. In the case of the classical limit, the 
rotational and translational parts of the partition function do 
not depend on the cluster structure. Since the (3N-6) oscillators 
are by construction linearly independent, the vibrational energy 
can be expressed as a sum of the vibrational energies of each 
independent mode, i.e.,

,1 ,2 ,(3N 6) ,

1
...

NVM
vib vib vib vib vib i

i
ε ε ε ε ε−

=

= + + + = ∑                      (41)

NVM being the number of normal vibrational modes of the 
cluster. The vibrational partition function Zvib expressed by a sum 
over all possible vibrational states of the system,

,1 ,2 ,3 ,(3N 6)
1 1 1 1 1...

vib vib vib vibE ε ε ε ε −= + + +
     				                    (42)

Ei is the energy corresponding to the vibrational state i. Each 
vibrational state of the system consisting of (3N-6) harmonic 
oscillators is defined by a distinct set {nj | j = 1,2,…,(3N-6)} of (3N-
6) vibrational quantum numbers,

,1 ,2 ,3 ,(3N 6)
1 1 1 1 1...

vib vib vib vibE ε ε ε ε −= + + +  		                (43)

,1 ,2 ,3 ,(3N 6)
2 2 1 1 1...

vib vib vib vibE ε ε ε ε −= + + +  		                (44)

,1 ,2 ,3 ,(3N 6)
3 2 1 1 1...

vib vib vib vibE ε ε ε ε −= + + +  		                 (45)

Normal Vibrational
Modes (NVM=3) Vibrational frequency (ωi) in cm-1

1 19.21
2 87.47
3 246.21

Table 1 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au3 at V=0.
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1

1
2sinh

2

NVM
vib i

i
z α

−

=

  = ∏     
     			                  (52)

NVM is the number of normal vibrational modes of the cluster. 
The above calculations were used to examine the helmholtz free 
energy of formation of the clusters as a function of temperature.

Results and Discussion
In this article, we present only about the symmetric structure 
of the gold atomic neutral clusters (Au3-20) and its vibrational 
spectrum. The predicted spectrum ranges were found to be in 
a range of 0.55 to 370.72 cm-1. By using a parameterized tight-
binding density-functional method combined with numerical 
finite difference method we have confirmed the global total 
energy-minimum structures for gold clusters containing up to 
20 atoms. The calculated vibrational frequency ranges were 
tabulated (Tables 1-18). 

How Reliable is Our Model? An 
example: The vibrational spectrum (ωi) 
of Au3
Interestingly, we have observed some double and triple state 
degeneracy at V=0. Particulary, Au6,8 clusters are unique 
among the other clusters, due to their double and triable state 
degeneracy nature. Moreover, some double state degeneracies 
are existed on these Au7,12-14,17-20 clusters and the remaining 
clusters are having only a single state degeneracy due to their 
local arrangements and the interaction of the energy. Thus as 
a different molecule with atomic packing could be similar to 
that of bulk gold but with very different properties that is with 

respect to the electron density between the different concentric 
layers. However, non-degenerate modes, because of their higher 
symmetry, are easier to visualize at the spectrum. Moreover, the 
lower nondegenerate mode displaces atoms only at the edges, 
not at the vertices or face centers. However, non-degenerate 
modes, because of their higher symmetry, are easier to visualize 
at the spectrum. Interestingly, the lower non-degenerate mode 
displaces atoms only at the edges, not at the vertices or face 
centers. Since different symmetry gives rise to a large number of 
degenerate modes, but only some distinct modes frequencies are 
expected for the rest of the clusters. Furthermore, normal modes 
of vibration are having both infrared and Raman-active, and the 
remains are optically silent (which Will have some experimental 
difficulties). 

Nevertheless, all interactions may be accompanied by electron 
transfer and the interactions onto the vertex, edge, or inner 
gold atoms. Density Functional calculations predict that Au3-

20 possesses a different geometry structures which were then 
verified through the Gabedit package [25] (Tolerance for principal 
axis classification: 0.00500 in angstrom (Å) and Precision for 
atom position: 0.09399 in angstrom (Å)). In addition to that the 
predicted minima of the global structure optimization of Au3 to 
Au20 were plotted in Figures 1-6 by increasing cluster size and 
energy at T = 0 K. Overall, cluster size, spectrum ranges and 
the symmetry of gold clusters from N=3 to 20 atoms are also 
mentioned at the Table 19.

Gregory A. Bishea and Michael D. Morse1 worked on the 
spectrum of Au3, for example; they found the totally symmetric 
breathing mode in the excited electronic state had a frequency 
of 182:9cm-1. We should expect the totally symmetric breathing 
mode in the ground state will have a somewhat higher 

Figure 1 VDOS of re-optimized gold cluster Au3 at T = 0. X-axis: atomic units; Y-axis: Degree of Degeneracy. The X-axis in terms of 
wavenumbers: 19.21 to 246.21 cm-1 (1 a.u =27.211396 eV = 219474.6305 cm-1).
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Normal Vibrational Modes 
(NVM=15) Vibrational frequency (ωi) in cm -1

1 20.48
2 20.48
3 40.78
4 55.50
5 55.50
6 58.63
7 58.63
8 106.38
9 106.38

10 109.62

Table 5 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au7 at V=0.

Normal Vibrational Modes 
(NVM=18) Vibrational frequency (ωi) in cm-1

1 4.66
2 4.67
3 24.52
4 24.53
5 24.53
6 64.97
7 67.92
8 67.92
9 67.92

10 102.72
11 102.72
12 102.72
13 131.45
14 131.45
15 198.97
16 215.07
17 215.08
18 215.08

Table 6 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au8 at V=0.

Normal Vibrational Modes 
(NVM=9) Vibrational frequency (ωi) in cm -1

1 0.55
2 2.50
3 43.25
4 47.70
5 81.82
6 132.74
7 196.33
8 224.53
9 276.83

Table 3 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au5 at V=0.

Normal Vibrational Modes 
(NVM=12) Vibrational frequency (ωi) in cm -1

1 2.44
2 2.44
3 2.44
4 38.59
5 38.59
6 58.51
7 58.51
8 118.06
9 164.08

10 178.30
11 282.99
12 282.99

Table 4 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au6 at V=0.

Table 2 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au4 at V=0.

Normal Vibrational Modes 
(NVM=6) Vibrational frequency (ωi) in cm -1

1 9.83
2 31.63
3 55.20
4 98.00
5 147.12
6 165.46

Normal Vibrational Modes 
(NVM=15) Vibrational frequency (ωi) in cm -1

11 142.05
12 142.05
13 214.62
14 214.62
15 235.19

Table 7 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au9 at V=0.

Normal Vibrational Modes 
(NVM=21) Vibrational frequency (ωi) in cm -1

1 2.76
2 8.29
3 10.32
4 43.42
5 48.78
6 59.99
7 64.54
8 73.24
9 92.68

10 99.40
11 102.32
12 119.75
13 133.50
14 137.53
15 168.78
16 171.32
17 173.67
18 181.97
19 204.40
20 220.93
21 313.24
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Normal Vibrational Modes 
(NVM=33) Vibrational frequency (ωi) in cm-1

1 11.45
2 13.66
3 14.02
4 20.81
5 25.53
6 26.48
7 28.30
8 32.12
9 32.79

10 34.11

Table 11 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au13 at V=0.

Normal Vibrational Modes 
(NVM=30) Vibrational frequency (ωi) in cm-1

1 1.01
2 12.39
3 15.81
4 19.28
5 25.17
6 25.55
7 29.87
8 31.54
9 33.80

10 39.88
11 42.25
12 54.20
13 67.07
14 82.31
15 83.87
16 100.68
17 104.66
18 117.65
19 127.19
20 138.92
21 149.36
22 153.11
23 172.50
24 182.26
25 187.53
26 205.84
27 233.56
28 245.60
29 264.76
30 325.89

Table 10 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au12 at V=0.

Normal Vibrational Modes 
(NVM=24) Vibrational frequency (ωi) in cm-1

1 34.18
2 35.73
3 40.94
4 42.96
5 47.34
6 53.51
7 54.63
8 56.61
9 73.12

10 117.24
11 119.14
12 131.30
13 135.27
14 137.72
15 141.02
16 158.26
17 162.84
18 197.30
19 201.95
20 208.66
21 211.00
22 219.66
23 225.22
24 341.88

Table 8 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au10 at V=0.

Table 9 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au11 at V=0.

Normal Vibrational Modes 
(NVM=27) Vibrational frequency (ωi) in cm-1

1 7.32
2 13.99
3 23.32
4 25.54
5 26.82
6 31.14
7 38.99
8 40.47
9 47.89

10 50.70
11 58.37
12 77.10
13 89.59
14 99.44
15 105.82
16 116.72
17 139.15
18 140.83
19 155.00
20 167.69
21 183.43
22 205.44
23 216.68

Normal Vibrational Modes 
(NVM=27) Vibrational frequency (ωi) in cm-1

24 225.77
25 263.82
26 272.52
27 291.85
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Normal Vibrational Modes 
(NVM=39) Vibrational frequency (ωi) in cm-1

1 7.49
2 12.27
3 17.09
4 22.53
5 23.59
6 31.08
7 34.10
8 42.30
9 47.22

10 48.84
11 60.25
12 67.56
13 69.45
14 73.36
15 74.69
16 80.68
17 90.49
18 92.83
19 96.03
20 102.70
21 106.87
22 112.73
23 119.17
24 136.82
25 137.60
26 148.91
27 151.87
28 162.23
29 168.74
30 177.56
31 190.79
32 200.30
33 202.73
34 207.81
35 218.03
36 231.37
37 238.11
38 282.44
39 285.36

Table 13 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au15 at V=0.

Normal Vibrational Modes 
(NVM=33) Vibrational frequency (ωi) in cm-1

11 37.69
12 41.07
13 53.72
14 56.30
15 65.49
16 69.53
17 84.35
18 94.00
19 100.49
20 117.37
21 128.98
22 134.62
23 145.48
24 147.39
25 172.04
26 185.62
27 200.02
28 210.07
29 214.17
30 225.57
31 242.58
32 263.26
33 334.70

Normal Vibrational Modes 
(NVM=36) Vibrational frequency (ωi) in cm-1

1 17.02
2 18.86
3 19.53
4 19.75
5 24.31
6 25.34
7 27.18
8 34.04
9 34.53

10 38.67
11 42.79
12 43.21
13 44.63
14 58.46
15 58.89
16 69.39
17 70.86
18 84.22
19 84.87
20 92.74
21 109.70
22 113.59
23 130.96
24 132.76
25 147.38

Table 12 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au14 at V=0.

26 152.90
27 167.18
28 176.74
29 181.82
30 182.93
31 186.81
32 198.47
33 203.39
34 215.87
35 225.76
36 240.20
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Normal Vibrational Modes 
(NVM=48) Vibrational frequency (ωi) in cm-1

1 8.07
2 8.72
3 10.91
4 11.44
5 18.62
6 19.51

Table 16 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au18 at V=0.

Normal Vibrational Modes 
(NVM=42) Vibrational frequency (ωi) in cm-1

1 17.13
2 21.26
3 22.19
4 30.59
5 31.41
6 36.50
7 40.37
8 43.02
9 46.15

10 49.37
11 56.35
12 57.66
13 58.24
14 66.67
15 75.28
16 77.28
17 83.12
18 85.97
19 89.07
20 99.59
21 110.56
22 116.51
23 120.99
24 131.27
25 142.26
26 155.39
27 155.74
28 180.46
29 183.10
30 185.17
31 190.34
32 192.71
33 204.67
34 215.89
35 219.11
36 233.45
37 252.64
38 261.57
39 269.35
40 272.28
41 285.58
42 295.76

Table 14 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au16 at V=0.

Normal Vibrational Modes 
(NVM=45)

Vibrational frequency (ωi) in 
cm-1

6 18.47
7 20.67
8 21.59
9 24.78

10 26.02
11 26.95
12 31.39
13 32.96
14 38.97
15 45.72
16 50.75
17 58.65
18 59.62
19 62.98
20 65.27
21 77.50
22 78.84
23 84.16
24 88.40
25 99.36
26 104.69
27 112.87
28 119.00
29 132.83
30 148.10
31 155.52
32 159.12
33 168.13
34 181.59
35 183.53
36 187.54
37 194.25
38 201.80
39 214.28
40 221.91
41 228.40
42 232.36
43 259.35
44 262.10
45 302.78

Table 15 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au17 at V=0.

Normal Vibrational Modes 
(NVM=45)

Vibrational frequency (ωi) in 
cm-1

1 9.57
2 10.23
3 11.81
4 12.98
5 16.73



13© Under License of Creative Commons Attribution 3.0 License         

Vol.2 No.1:4
2017Archives in Chemical Research 

ISSN 2572-4657

Normal Vibrational Modes 
(NVM=48) Vibrational frequency (ωi) in cm-1

7 21.91
8 22.69
9 24.18

10 25.68
11 29.03
12 29.49
13 33.01
14 34.44
15 43.77
16 45.21
17 47.98
18 49.64
19 50.56
20 51.67
21 53.09
22 54.76
23 71.03
24 92.08
25 97.28
26 98.78
27 104.19
28 110.32
29 114.81
30 126.82
31 133.16
32 137.37
33 141.75
34 142.98
35 156.32
36 161.96
37 166.18
38 179.03
39 180.81
40 184.77
41 194.95
42 200.60
43 201.99
44 207.14
45 216.20
46 219.78
47 226.16
48 232.46

Normal Vibrational Modes 
(NVM=51) Vibrational frequency (ωi) in cm -1

4 12.34
5 13.38
6 16.33
7 17.71
8 19.64
9 21.80

10 23.16
11 24.55
12 26.88
13 27.88
14 30.38
15 33.34
16 35.09
17 39.16
18 40.95
19 43.72
20 48.42
21 50.95
22 59.77
23 65.39
24 70.89
25 73.07
26 79.22
27 87.85
28 92.93
29 95.07
30 113.00
31 116.27
32 124.88
33 131.43
34 137.07
35 144.15
36 152.87
37 158.47
38 165.28
39 175.50
40 177.26
41 188.13
42 193.74
43 205.81
44 208.33
45 213.70
46 229.36
47 238.39
48 256.60
49 284.77
50 294.91
51 319.18

Table 17 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au19 at V=0.

Normal Vibrational Modes 
(NVM=51) Vibrational frequency (ωi) in cm -1

1 10.08
2 10.56
3 11.65
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Figure 2 Predicted minima of the global structure 
optimization of Au3 (C2v), Au4 (D2h) and Au5 
(C2v) (from top to bottom) by increasing 
cluster size and energy at V=0 K.

Figure 3 Predicted minima of the global structure 
optimization of Au6 (D3h), Au7 (D5h) and Au8 
(Td) (from top to bottom) by increasing 
cluster size and energy at V=0 K.

Table 18 Calculated vibrational frequency (ωi) of the re-optimized gold 
cluster, Au20 at V=0.

Normal Vibrational Modes (NVM=54) Vibrational frequency (ωi) in cm-1

1 3.99
2 11.21
3 13.66
4 16.56
5 18.27
6 19.12
7 19.57
8 22.74
9 25.62

10 26.45
11 27.70
12 29.32
13 32.06
14 34.14
15 38.18
16 39.70
17 44.58
18 48.75
19 49.61
20 51.26
21 61.33
22 63.22
23 68.05
24 69.00
25 73.78
26 84.34
27 85.68
28 89.10
29 94.14
30 95.75
31 102.16
32 103.33
33 122.9
34 130.44
35 136.72
36 140.64
37 148.64
38 155.61
39 160.73
40 165.07
41 172.09
42 177.76
43 186.66
44 195.13
45 203.18
46 209.21
47 213.65
48 222.34
49 227.54
50 247.44
51 253.04
52 267.51
53 276.35
54 370.72

Cluster Size (N)   Spectrum Range (T=0 K) in cm-1
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Figure 6 Predicted minima of the global structure 
optimization of Au15 (C1), Au16 (Cs) and Au17 
(C1) (from top to bottom) by increasing 
cluster size and energy at V=0 K.

Figure 7 Predicted minima of the global structure 
optimization of Au18 (D1),Au19 (C1) and Au20 
(C1) (from top to bottom) by increasing 
cluster size and energy at V=0 K.	

Figure 4 Predicted minima of the global structure 
optimization of Au9 (Cs), Au10 (S8) and Au11 
(C1) (from top to bottom) by increasing 
cluster size and energy at V=0 K.

Figure 5 Predicted minima of the global structure 
optimization of Au12 (C1), Au13 (C1) and Au14 
(Cs) (from top to bottom) by increasing 
cluster size and energy at V=0 K.
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frequency,perhaps around 200-250 cm-1. The gold trimer, Au3, 
has 3 normal modes, two of which may be degenerate, depending 
on the symmetry. Moreover, some modes may be silent in one 
or another experiment. We calculated the normal modes based 
on the structure given in2. However, after re-optimization the 
vibrational frequencies were found in the region between 19.21 
and 246.21cm-1 (see Table 1). 

The VDOS shown in Figure 7 displays the calculated vibrational 
frequencies, plotted as Gaussian functions with a full width at 
half-maximum (FWHM) of 3 cm-1. So we assume that the ground 
state of Au3 must have either C2v or Cs geometry by considering 
the various possible ways that we can arrange the three atoms 
in Au3, as the Jahn-Teller distortion will drive it away from the 
equilateral D3h configuration3-5. If it is C2v then there will be three 

Table 19 Size and Symmetry of gold clusters from N=3 to 20 atoms.

Cluster 
Size (N)   

 Spectrum Range 
(T=0 K) in cm-1

Symmetry (Theoretical 
(Gabedit package))25

Symmetry 
(Theoretical) 13

Au3 19.21 - 246.21 C2v D2

Au4 09.83 - 165.46 D2h D2h

Au5 00.55 - 276.83 C2v C2v

Au6 02.44 - 282.99 D3h D3h

Au7 20.48 - 235.19 D5h D5h

Au8 04.66 - 215.08 Td Td

Au9 02.76 - 313.24 Cs D2v

Au10 34.18 - 341.88 S8 D2

Au11 07.32 - 291.85 C1 Cl

Au12 01.01 - 325.89 C1 Cl

Au13 11.45 - 334.70 C1 Cs

Au14 17.02 - 240.20 Cs Cs

Au15 07.49 - 285.36 C1 Cl

Au16 17.13 - 295.76 Cs Cs

Au17 09.57 - 302.78 C1 Cl

Au18 08.07 - 232.46 D1 C2

Au19 10.08 - 319.18 C1 Cl

Au20 03.99 - 370.72 C1 Cl

distinct vibrational frequencies, two of which belong to the A1 
irreducible representation and one of which belongs to the B2 
irreducible representation. If it is Cs there will again be three 
distinct vibrational frequencies, all three belonging to the A0 
irreducible representation. In any case, the point group D2 is not 
possible for Au3.

Conclusion
We have extracted vibrational frequency of the re-optimized 
gold atomic clusters (Auω) at temperature V=0 K by using DFTB 
method. The present calculations of the frequency spectrum 
is a predictions to be confirmed when the experimental data 
become available. The Hessian matrix, calculated to obtain the 
normal modes of of vibration in this work, can be much useful in 
MD simulations which can find a dependency of the gold-atomic-
clusterassisted catalytic process on temperature. We have 
observed vibrational properties of the clusters in order to explore 
the interaction between stability and the structure of clusters. 
Our new approach is worthy of further investigation and would 
pave a way in realizing numerical values which would allow for 
an experimental vibrational spectrum, which would prove crucial 
in development of nanoelectronic devices. Nevertheless, our 
work gives a possible cause for the size and structure effect of Au 
atomic clusters.

Dedication
Dedicated to Professor Prasanta Kumar Panigrahi, IISER, Kolkata, 
India, Professor Michael Springborg, University of Saarland, 
Germany, on the occasion of their 60th birthday, and Professor 
Kwang Soo Kim, UNIST, S. Korea, on the occasion of his 67th 
birthday.

Acknowledgements
A part of this work was supported by the German Research 
Council (DFG) through project Sp 439/23-1. We gratefully 
acknowledge their very generous support.

References
1	 Lemire C, Meyer R, Shaikhutdinov S, Freund HJ (2004) Do Quantum 

Size Effects Control CO Adsorption on Gold Nanoparticles? Angew 
Chem Int Ed 43: 118-121. 

2	 Mills G, Gordon MS, Metiu H (2003) Oxygen adsorption on Au clusters 
and a rough Au (111) surface: The role of surface flatness,electron 
confinement, excess electrons, and band gap. J Chem Phys 118: 
4198.

3	 Smit RHM (2001) Common Origin for Surface Reconstruction and the 
Formation of Chains of Metal Atoms. Phys Rev Lett 87: 266102.

4	 Rodrigues V, Bettini J, Silva PC, Ugarte D (2003) Evidence for 
Spontaneous Spin-Polarized Transport in Magnetic Nanowires. Phys 
Rev Lett 91: 096801.

5	 Choi YC, Lee HM, Kim WY, Kwon SK, Nautiyal T, et al. (2007) How Can 
We Make Stable Linear Monoatomic Chains? Gold-Cesium Binary 
Subnanowires as an Example of a Charge-Transfer-Driven Approach 
to Alloying. Phys Rev Lett 98: 076101.

6	 Wales DJ (2003) Energy Landscapes with Applications to Clusters, 
Biomolecules and Glasses. Cambridge University, England.

7	 Feynman R (1991) There’s plenty of room at the bottom, Science 
254: 1300-1301.

8	 Pyykkö P (1997) Strong Closed-Shell Interactions in Inorganic 
Chemistry. Chem Rev 97: 597-636.

9	 Porezag D, Frauenheim TH, Köhler TH, Seifert G, Kaschner R (1995) 
Construction of tight-binding-like potentials on the basis of density-
functional theory: Application to carbon. Phys Rev B 51: 12947.

10	 Seifert G, Schmidt R (1992) Molecular mechanics and trajectory 
calculations: the application of an LCAO-LDA scheme for simulations 
of cluster-cluster collisions, New J Chem 16: 1145.

11	 Seifert G, Porezag D, Frauenheim TH (1996) Calculations of 
molecules, clusters and solids with a simplified LCAO-DFTLDA 
scheme. Int J Quantum Chem 58: 185.

12	 Seifert G (2007) Tight-Binding Density Functional Theory: An 



17© Under License of Creative Commons Attribution 3.0 License         

Vol.2 No.1:4
2017Archives in Chemical Research 

ISSN 2572-4657

Approximate Kohn-Sham DFT Scheme. J Phys Chem A 111: 5609-
5613.

13	 Dong Y, Springborg M (2007) Global structure optimization study on 
Au2-20. Eur Phys J D 43: 15-18.

14	 Xiao L, Wang L (2004) From planar to three-dimensional structural 
transition in gold clusters and the spinâ˘A ¸Sorbit coupling effect. 
Chem Phys Lett 392: 452-455. 

15	 Furche F, Ahlrichs R, Weis P, Jacob C, Gilb S, et al. (2002) The structures 
of small gold cluster anions as determined by a combination of ion 
mobility measurements and density functional calculations. J Chem 
Phys 117: 6982.

16	 Bowman JM (1986) The self-consistent-field approach to polyatomic 
vibrations. Accounts Chem Res 19: 202-208.

17	 Wilson EB, Decius DC, Paul C (1995) Cross Molecular Vibrations, 
The Theory of Infrared and Raman Vibrational Spectra, Dover 
Publications Inc, New York.

18	 Goldstein H (1980) Classical Mechanics (2nd edn), Addisonwesley: 
USA.

19	 Goldstein H, Poole CP, Safko JL (2001) Classical Mechanics, (3rd edn), 
Addison-wesley: USA.

20	 Fischer G (1997) Lineare Algebra, Vieweg und Sohn: Hesse.

21	 Teukolsky SA, Vetterling WT, Flannery BP (1994) Numerical Recipes 
in Fortran, Cambridge University Press, USA.

22	 Hellmann J (1937) Einführung in die Quantenchemie, Deuticke, 
Leipzig: Germany.

23	 Feynman RP (1939) Forces in molecules. Phys Rev 56. 

24	 Jensen F (1999) Introduction to Computational Chemistry, John 
Wiley and Sons: USA. 

25	 Baletto F, Ferrando R (2005) Structural properties of nanoclusters: 
Energetic, thermodynamic and kinetic effects. Rev Mod Phys 77: 
371-421.

26	 McQuarry DA (1973) Statistical Thermodynamics. Harper and Row, 
London, UK.

27	 Llouche AR (2011) Gabedit- A graphical user interface for 
computational chemistry softwares. J Comput Chem 32: 174-182. 

28	 Bishea GA, Morse MD (1991) Resonant twophoton ionization 
spectroscopy of jet-cooled Au3. J Chem Phys 95.

29	 Jahn HA, Teller E (1937) Stability of Polyatomic Molecules in 
Degenerate Electronic States. I. Orbital Degeneracy. Proc R Soc 
London 161: 220.

30	 Senn P (1992) A Simple Quantum Mechanical Model That Illustrates 
the Jahn-Teller Effect. J Chem Educ 69: 819.

31	 O’Brien MCM, Chancey CC (1993) The Jahn-Teller effect: An 
introduction and current review. Am J Phys 61: 688.


