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ABSTRACT

This paperinvegigatesthe propagation of surface waves in a non homogenedilise-reinforcedelastic media
with voids The general surface wave speed is derived to stndyeffects of voids on surface waves in non
homogeneous fibre-reinforced elastic solid and uksed its particular cases for Stoneley, Love aagldigh
waves. The results obtained in this investigatiom more general in the sense that some earlietighdd results
are obtained from our result as special cases. Algoneglecting non homogeneity and the reinforcledtie
parameters, the results reduce to well known igotronedium.
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INTRODUCTION

There are many types of surface waves [1-6] butowly focus on Stoneley, Love and Rayleigh waves. In
earthquake the movement is due to the surface wawese are also used for detecting cracks and d#fects in
materials. Lord Rayleigh [3] was the first to oh&esuch kind of waves in 1885. That's why we calte@ayleigh
waves. Sengupta and Nath [7] investigated surfageew in fibre-reinforced anisotropic elastic melia their
decomposition of displacement vector was not cothet’s why some errors are found in their invgestiions [8].

The idea of continuous self-reinforcement at eveoint of an elastic solid was introduced by Betfi¢d]. The

superiority of fibre-reinforced composite materialger other structural materials attracted manyanstto study
different type of problems in this field. Fibremm&rced composite structures are used due to litnimveight and
high strength. Two important components namely cetiecand steel of a reinforced medium are bounethey as a
single unit so that there can be no relative disgateent between them i.e. they act together asgiesamisotropic
unit. The artificial structures on the surface lué earth are excited during an earthquake, whizh gge to violent
vibrations in some cases [10, 11]. Engineers aolitects are in search of such reinforced elastitenals for the
structures that resist the oscillatory vibratioheTpropagation of waves depends upon the groundtioh and the
physical properties of the structure material. Kaka al. [12-16] discussed surface wave propagaiiomon

homogeneous media.

In classical theory of elasticity, the voids isiamportant generalization. Nunziato and Cowin [1i/A{ &Cowin and
Nunziato [18] discusse the theory in elastic medih voids. Puri and Cowin [19] studied the effeofsvoids on
plane waves in linear elastic media and it is avidbat pure shear waves remain unaffected by thsepce of
pores. Chandrasekharaiah [20] and [21] discussecftiects of voids on propagation of surface armh@lwaves
respectively.

Aim of this paper is to investigate the propagatidrsurface waves in a non homogeneous fibre-reiefb elastic
media with voids. The general surface wave speddrised to study the effect of voids on surfaceesa Particular
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cases for Stonely, Love and Rayleigh waves areussgdl. The results obtained in this investigation rmore
general in the sense that some earlier publishedltse are obtained from our result as special caBes
homogeneous medium our results are well agreeneefibte-reinforced materials. It is also observédttthe
corresponding classical results follow from thisalgsis, in homogeneous media, by neglecting retefr
parameters. Results for homogeneous media candopeeld from this investigation.

2.Formulation of the Problem:

Medium is consisting of two non-homogeneous anigatr fibre-reinforced semi-infinite elastic solicedia M, and
M, with different elastic and reinforcement param&tdthe non-homogeneity of the material is dependimghe
space variable. It is assumed that non-homogerwityvs or decays slowly. Its rate of growth or dedsy
proportional to its value at that point i.e.

j—/] OA; whereA is an elastic parameter. This implies
%

a_

dx,

where m is a constant, which is positive for nombgeneity growth and negative for decay.
Above equation implies

A=A,em

For m=0, A=A, , Thus form= 0, the medium is homogeneous.

The two media are perfectly welded in contact plame interface. Let us take orthogonal Cartesias 0X1X;X3
with the origin at0.0X, is pointing vertically upwards into the meditM  X,£0). Each of the mediM  X,> 0)

and M3 (X,< 0) separated aX,=0. Both media are rotating about an axis.

It is assumed that the waves travel in the posiivection of theX1 -axis and at any instant, alltigtes have equal
displacements in any direction parallel @X;. In view of that assumptions, the propagation eives will be
independent o, .
In the presence of voids, the general equuation fidsre-reinforced linearly elastic anisotropicdigew.r.t. a
direction @ EH@,a2,33¢s as under [7, 11] .
T; :Agkka_ij +21u|'£ij +a(a qn‘skmdij +£kkaiaj)+ 2(u, — )(a%fkj + 3 &)

+ lg(ak A€ i aj) + ﬂdijgoi
Where, % are components of stress and strain tensafjis= (U ; +U,)-and A, L are elastic parameters.

@ € and P = #C gre reinforced anisotropic elastic parametéits, are the displacement vectors components.
In the absence of body forces, the field equatioag be taken as follows:

T :Agkko_ij + 2/ & +a(a qngkmo_ij +£kkaiaj)+ 2(u, = My )(aagkj + 3 Q&)
+ B(acanE mdia) + $0,6,
L =pu
ag; — wy@-ap-{y; = Pk
In these equationsg is the so-called volume fraction fieldz,5,w, @ and k are new material constants

characterizing the presence of voids. Wheﬁg is the Levi-Civita tensor;; are components of stresg is the

ij
mass density andl, is the displacement vector. Comma followed by indeaws partial derivative with respect to
coordinate. Also Einstein summation convention aoepeated indexes is used.

The propagation equations of small elastic distacka are as follows.

In component form, the equation of motion in thegence of voids becomes
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T, F T, ,T 6@, = pu,
Ty1t Ty, 6@ ,= pU, (2.2)
To1F T3 ,= PU

a(¢11 +¢,22) S f(ull"' u22) = pKg

In the present problem we consider exponentiallgagi;ng non-homogeneous material. Hence densitytiela
module and elastic parameters may be taken irotteing form.

p=p,em"
A=he™ = ppe™
a=ae™ He = H €™

ﬁ = ﬁoe—mxz M = 'UE e™
We choose the fibre direction @ = (1, 0, 0).

Now using the above equations and taking all déviga w.r.t.X, zero. The equation (2.1a) becomes

(A+2a+ A4 =2t + By g+ @+ A+ [ g o0 Uy o5~ midy ( u+u 2,)+'§(¢7 TpPu, (229

similarly equations (2.1b) and (2.1c) takes théofeing form

(@+ A+ )y 3o+ Uy g+ (A + 200 ) Uy o A+ a) U MfA+20) U, 360 7 p7U,  (2.2D)
M Ug g F LU 50— M U ,= 0U, (2.2c)
a(4011+4422)—w({p—w¢—{(u11+u22):pl(qb. (2.2d)
Similarly, we can get similar relations i, with S a,A, Prand Care replaced bp', a', A"t andf3' .

3. Solution of the Problem
We seek harmonic solutions in the form

Uz, Uz, Uz G, @ Q0 G QO3 G, Gexpth YR esctOl
Thus equations (2.2a, b) of motion becomes

[ 14D =yt D+ a?{ &= (A + 20+ 4, - 20, + B | U+
o[ (a+A+p)D -y |0, + ioép=0 (3.1a)
[(A+20)D? ~m(d + 20 )0+ ?{ o~ 1} |
+ia)[(a+/1 +,uL)D—m(a+)I)]01+EDqB=O. (3.1b)
MU g1+ [ U o= MUy Uy 5= 0 Uy (3.1¢)

{a(D2 - ) - @ +iagw+ oFcpr) - &( i + Dil,) =0

(3.1d)
d
Where, D =—
dx,
Similarly we can get similar relations M1with & @ #rand €are replaced byo', @', U andS' .
Thus coupled equations (3.1a,b,d) becomes
(7,D? =i, D- w’h ,+ W’ pC?) U + klh ,D- i ) U+ ép=0,
240

Pelagia Research Library



Aftab Khan et al Adv. Appl. Sci. Res., 2015, 6(7):238-246

(n,D? =mh, D= eh,+a’pc?) W+ i ,D- (k=1 ) U+ & p=0,
{a(D2 —af) -y +ian:w+w202,0/(} ¢—&(iady +DU,) =0,

and uncoupled equation (3.1c) becomes

{h5D2 ‘mhsD—af(hl—PCZ)} 0,=0

where

hlz/uu h22(0’+/] + U),
hy=(A+20+4u-2u+p),
h,=(A+2u) and f, = U,
The uncoupled equation has the following solution,
U, = ( Ee™: + E e‘”Z“’XZ) g,
where/},and /), are roots of the equatio}}*z|5/72 —mhyy - a)z(hl— pcz) =0.

1 4(hl—pc2)
—_ — T e — A
., > m+\/“i+ e

For positive real root/],, it is necessary thaD < 4pc? < h5m2+ 4n, and in the homogeneous medium

0 < pc? < h, otherwise transverse component does not existo&endedness

u, = E€™ exp{ i % —ct)},

Above set of coupled equations can be written as
(h,D? =M, D~ A) Y+ ol ,D— it ) U+ tEp=0
(h4D2 -mi,D- A) U+ (7 ,D- (7 ,— 7)) U+ & =0
(D? - A)g~&(ied, + DO,) = 0 (32)
where
A = w’h, -’ pc?
A ='h, -’ pc?
_- —-— 2
&:af+w° wa:ma W'’ pK

From above set of equations, we have
(,D?-mh,D-A)  iXh,D-nh) 0
ieh,D -m(n,-h,)) (h4D2—I‘Wl4D— A) $D (U Up)=0

“iwE -¢D (D*-A,)
This implies R
(D°+C,D°-C,D*- C,D°+ C,D*+ G;D- G)(4, b,9) =0
where
m#n
C = A (h,—-h
= ()
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C,= h1]7114(h4A1+h1(A2+h4A3—52)—w2h22— mh i o)

C3=%{h2(£2—Az—h4A3)—h4A&—h2(h h )+t g A

o L [(AAFIAAY AA- @ A)-E(AF 20" i m}
M |~@ (mag)(mh, - )

C5=fr24(hl+h2)h4

Co= o (AAA- @ AL - nifn (h,=1)

For homogeneous medium, m = 0, this impligs ©;= Cs= 0 andC, , C, andCs must be positive for real positive
roots. If there are also no voids then the abowmagagn is easy to solve.

Let @, i=1,2,...6 be six positive real roots, then solatiy normal mode method has the following form

6

A — X

0,=> M,e """,
o (3.33)
6

~ [29,¢

6,=> M, o,
£ (3.3b)
6

~ - 0%

(D—nZ:l:MZn e ", (3.3¢)

where M o M1n and |\/|2n, are some parameters dependingcoand @. By using Egs. (3.2a-c) into Egs. (3.2),
we get the following relations,

Mln = HlnMn
M2n = Hann
where

(A (- )al)+min,—ah)
" hlar?"'(hzwz_AJ)an"'nﬁzas"' m:‘-)(hz_hj),

2 _
H, =— %A n=12,34,5,6.
Ea,Hy, i)

Hence we obtain the expressions of the displaceomnponents function and stresses as follows

u = 26: M, € 7 exp{ ia( % - ct)},
n=1
6
U, => HyM, e ™ exp{iw(x - @)},
n=1
u, = E€™ exp{ i % —ct)},
6
@=>"H, M, e ™ expliow(x - ci}.
n=1

Also it is found that

6
T, = hy(-a, +icH M e exp{ia(x, - cb)
n=1
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T, zzﬁl{iw(hz—hl) —7 @ H +EH M e explica(x,—ct)}

n=1
T, = —10WER ;€™ exp| ix(x, — ct)} .
Similar expressions can be obtained for second umeaid present them with dashes as follows

6 L
=3 My, e M ep{in(x - ),
n=1

6 '
=D Hi M e M expl iw(x - cb}
n=1
u; = Fe” expl i % = cf},
¢ = 26: H, M/ g an%e explic(x - ct)} .
n=1

Also it is found that

6 '
1, = > By (—al +icH M e” M expf (x, - @)},
n=1

6 1
o — H 1 T o 1 g 1 T anX .
Ty = {iei',—n') = gH + EH M e " exp{ia(x,~ cb)}
n=1
Ty =—1'@F h &7 exp{ia(x,~ct)}.
In order to determine the secular equations, we tiaw following boundary conditions.

4. Boundary conditions
I. The displacement components and their rate of ahangt. x, , between the mediums are continuous, i.e.

u = Ui, u,= U'z! U= L’E! Q= ¢ u,= u'1,21 u,, = u'2,2v U, = u'3,2 and @, = (42 on X, =0, for allx

andt.
Stress and their deritive w.n$ are continuous, i.e.

I — — o o o o ]
Do =T Ty =T, Tg =T 0, T3 = Tipp Topp =T pp 0 Tpg =T p3,8l80T1 ,=Ty;,, [13,=T5;and

Ty, =T550n X, =0, for all X andt
Boundary conditions implies the following equations

SM, =Y M;

n=1 n=1

6 6
:E: I"IlnM n :::E: Fiinhﬂ ;
n=1 n=1

E=F

6 6

Z H 2n M n = ;nM 'n
n=1 n=1

6 6

2 @M, =D aM|
n=1 n=1

6 6
Z‘,a’nHlnNI n ZZ:GI'nH],.nNI 'n
n=1 n=1
mE =nF

6 6
zanHZnMn :zanHZnMn
n=1 n=1
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6 6

Z hl(_an-l-iaj_lln)Mn:z h'l(_a'r1+ic‘j-|'1n)v| 'n’

n=1 n=1

6 6
DieAn, —n) = aH,+EH M =D (it =1 ) -0 gH ', +EH M
n=1 n=1

high,E = h’sql F,

6 6
> ha,(-a,+icH M, => nal (-a +HiadH M,

n=1 n=1

6

6
2 an{iedh, ~hy) ~haHy, +EH M =D a fian’-H) —H g+ EH M,
n=1

n=1

hfl E=1yg]°F,

26: an{(iah3—an(h2—h])H1n}Mn:ZG: af, (iah'y—al, 1',-m)H' J M,
Y {icth, =)~ (.~ 2 JaH M = @ fi o= )= (1 = 2 JarH M

éaH, M =fa H,M',

n2n
From above set of equations, the four equationta@ungE andF implies thatt = F = 0. From remaining twelve
equations, for non-trivial solution we have

det(a )= 0, i=j=12,..,1: (4.1)
Where

&, =1 &=L ;8,= Hy; 8, 6=~ Hy;
8y, = Hyp; a3p+6:_H'2p

8, =0, &,,="0),
s, =a,Hy,; a5p+6:_a'pH'lp'
8, =a,H,,; a6p+6:_a'pH'1p’

p=12,..6;

a,, :hl(—ap+inlp) , p=12,...,6;

a,, =1y (-, +iwH}) , 4=7.6,...,12.

), ={iw(h2—hl)—h4alep+fanH Zn} , p=12,...,6;
8y, = (i~ 1) -n @ HY +Ea H ) q=7.6,...,12.
8y, =a{(iwh,—a(h,~h)H,}, p=,2,..6

8y, = aif (iah'y—al( i~ H)HY Y}, q=7.8,...,12.

8y = @ { i, =)= (h =20 Ja,H ), p=12,...6
8y, = @ { i, 1) = (W' ;=20 Ja,H '} q=7.8,...,12
a,, =¢a,H,,, p=12,..6

8,y = —¢a,Hy, 9=1,2,...,6

5. Particular cases

5.1Stoneley waves
Equation (4.1) is the secular equation for Stomeyes [4].
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5.2:- Love waves

To investigate the rotational effects on Love waires fibre reinforced viscoelastic media of higloeder, we
replace medium Mby an infinitely extended horizontal plate of faithickness d and bounded by two horizontal
plane surfaces,x 0 and x = d. Medium M is semi infinite as in the generase.

The boundary conditions of Love wave are as follows

The displacement componeud{and 7,, between the mediums are continuous, i.e.
U;=U, and T7,;=T,0nX,=0

I,,=0 on X, =d, for ali, andt,

where

U, = Egh%% é‘*’(XfCt)

Ué =F é]l’mz éw(xl—ct) + F élflwxz 'é}(xl—ct),

This implies

E-E-F=0,

M E + i E = 1 F =0,

e E - e F =0.

For non trivial solution implies

1 -1 -1
hgn g7 —R413|=0,
O ew/h'd —_ e_wnid

This gives the wave velocity of Love waves propagain a fiber-reinforced medium. It is interestitgynote that

voids and non-homogeneity does not affect the tgloé Love waves.

5.3 Rayleigh waves
Rayleigh wave is a special case of the above gksartace wave. In this case we consider a modearavtthe

medium M, is replaced by vacuum. Since the boundaxy =0 is adjacent to vacuum. It is free from surface
traction. So the stress boundary condition in ¢thise may be expressed as

r,=0,1,=0,1,,=0,7,,,=0, alsor,, ,=0 and 7, , =0on X, =0, for all X, andt

Thus above set of equations reduces to

6
> ny(-a,+iaH M, =0,
n=1

g{ia’(hz—hl)—hanm}Mn:O,

26: na,(-a,+icH M =0,

=}

ian{ia)(hz—hl)—h4anHln—EanH M =0,

=}

26; a{(iach,—a(h,-n)H,)-éaH,}M =0,
ian{iw(hz—hl)—(h4—2h5)anH]n—fanH M, =0,

n=1
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For non trival solution

det(Emn): 0, n=1,2,..,.6 (5.2)
where

Eln = hl(_an + iaj—'ln) !

E2n :{ Ia(hz _hl) _h4anH ln}

E3n :hlan(_an+ia)|_|1n)

E4n :an{idhz_hl) _hﬂnHln_ganH Zr}

E5n :an{(iwhg_an(hz_hj) Hln_qranH Zn}

B, = an{ iw(hz _hl) _(h4_2h s)anH h _Q(anH 21}
Equation (5.1) is the secular equation for Raylevave.

DISCUSSION AND CONCLUSION

Very few researchers did work in that field becaoseomplicated nature of the governing equatiohthe fibre-
reinforced anisotropic with voids. The method usethis study provides a quite successful in aeplvith such
problems. This method gives exact solutions in the-reinforced anisotropic elastic media withoamhy
assumption. Special cases only for Stonely, LoveRayleigh waves were considered.

It is observed that in the case of homogeneousnétidut voids only one mode propagate in the medawtin the
case of non-homogeneous without voids two modé.drishe case of homogeneous with voids, threeanaxkist.
In non-homogeneous with voids maximum six modesprapagate and it is depend upon the nature ofriabte
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