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ABSTRACT 
 
We present an analytical approach to study electromagnetic wave propagation through a 
dielectric thin film medium. We used theoretical solution of the scalar wave equation to analyze 
and assess the influence of dielectric function and refraction index on the propagating wave. 
Non-vectorial aspects of the propagating wave through the thin film resulting from the film 
orientation were considered and the computed field value, ψ propagating through the thin film 
with variation of the propagation distance was analyzed within the ultraviolet, visible and near 
of electromagnetic wave and the absorption of the propagated wave by the thin film manifested 
on the wave profile. The influence of the refractive index and the characteristic impedance 
offered by the thin film medium on the propagating wave was assessed 
 
Keywords: electromagnetic wave, propagation, dielectric perturbation, refractive index, thin 
film, characteristic impedance, scalar wave equation, propagation distance, Relative amplitude, 
profile, wavelength. 
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INTRODUCTION 
 
Many methods have been employed in studying and computing beam or field propagation in a 
medium with variation of small refractive index [2] and [1][3] some researchers had employed 
beam propagation method based on diagonalization of the Hermetician operator that generates 
the solution of the Helmholtz equation in media with real refractive indices[4][15] while some 
had used 2x2 propagation matrix formalism for finding the obliquely propagated electromagnetic 
fields in layered inhomogeneous un-axial structure[5] 
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Recently, we have looked at the propagation of electromagnetic field through a conducting 
surface [6] and we observed the behaviour of such a material. The effect of variation of 
refractive index of FeS2 had also been carried out [3]. The dielectric constants were obtained 
from a computation using pseudo-dielectric function in conjunction with experimentally 
measured extinction co-efficient [14] and the refractive indices of the film and the thickness of 
the film which was assumed to range from 0.1µm to 0.7µm [100nm to 500nm] based on the 
experimentally measured value, at the wavelength, 450µm have been studied [12][15]. This work 
is based on a method of using theoretical wave equation in conjunction with the 
dielectric/refractive index of the deposited thin film medium which is considered perturbation to 
the medium an treated as such was used analytically to study the wave behavior and profile as it 
propagates through thin film was analyzed in order to assess its influence propagating waves. 
 
II Analytical solution of wave equation 
 

 
 
 

 
 

 

  
    
 
 
 
 
 
 
    

Fig.1; Plane wave impinging up on a dielectric perturbed thin film medium in which the reference medium, 
εεεεref corresponds to the fundamental level, whereas perturbed medium, εεεεp. describes the barrier. 

 
            ∀2ψ(z)+ω2εoµoεp(z)ψ(z) = 0                      (1) 
                           εp(r)=εref+!εp(r)                            (2)   
 
If the theoretical time dependent waveform of equation (1) is solved as shown in this work, we 
obtain the expression for a plane wave propagating normally on the surface of the material in the 
direction of z inside the dielectric film material as in equation [3] where ( )p zε�  describes the 

perturbed term as considered in our model.  
 
The assumption here can be fulfilled easily where both reference medium and the perturbation 
depends on the problem we are investigating. For example, if one is studying an optical fiber in 
vacuum, the reference medium is the vacuum and the perturbation describes the fiber. For a ridge 
wedge, wave guide the reference medium is the substrate and the perturbation is the ridge, in our 
own case in this work, the reference medium is air and the perturbing medium is thin film 
deposited on glass slide.  
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 Ψ�z� � Ψ��z�����z 	 
��       [3] 
From equation (3.1),  
 
Let   �
 � ����

���� � �����

����∆���z�.         
 �
 � ����� � �∆���z��� 
� 
������� 
�               [4] 

 � � �    ���� �  ∆���z��� 
� ����  �
! � ��"���� 
� #       

 �
   � ������ � �∆���z��� 
�           [5]  
 
Expanding the expression up to 2 terms, we have 

 �
  � �  ���� � �

 �∆��#         [6] 

 
Where ∆���Z� gives rise to exponential damping for all frequencies of field radiation of which 
its damping effect will be analyzed for various radiation wavelength ranging from optical to near 
infra-red  
The 
 relative amplitude  

 Ψ�%�
Ψ&�%� � exp '	 (


 ∆���z�) z �*+������� 	 
��     [7] 

 
Decomposing equation [17] into real and complex parts, we have the following  

( )
( )o

z

z

ψ
ψ

 ='�*+ 	 (

 ∆���z�) z cos�����, 	 
�   Real Part  [8] 

( )
( )o

z

z

ψ
ψ

 ='�*+ 	 (

 ∆���z�) z sin refk zε 	
�    Complex part            [9] 

 
With propagation distance, zµm and field at normal incident; ∆���,� � 0.5,  
� � 0.45�1, � � 0.70�1, � � 0.90�1  
 For non-absorbing case  ∆���,� � 0.5  
For limited absorbing case  ∆���,� � 3.5     
� � 0.25�1, � � 0.8�1, � � 1.20�1  
For strong absorbing case∆���,� �  10.5  
� � 0.25�1, � � 0.80�1 , � � 1.20�1  
 
 
Analytical solution of the propagating wave with step-index 
 
               ∀2ψ + K2n2 (z) ψ = 0                      [10]      
 
where ψ represents the scalar field, n(z) the refractive index and K the wave number in vacuum. 
In equation 3.7, the refractive index n2 is split into an unperturbed part no

2 and a perturbed part 
!n2; this expression is given as   
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n2z(=) no

2 + !n2(z)    [11]  
Thus  ∀2

ψ + k2no
2 (z) =ρ(z)    [12] 

 
where ρ (z) is considered the source function. The refractive index is n 2o +!n2 (z) and the 

refractive index 2
on (z) is chosen in such a way that the wave equation 

 

∀2
ψ+k2 2

on (z) ψ = 0     [13]  

together with the radiation at infinity, can be solved.  
 
This equation [13] which has a parallel relation to equation [1], but written in terms of refractive 
index is an important approximation, though it restricts the use of the beam propagation method 
in analyzing the structures of matters for which only the forward propagating wave is considered. 
However, this excludes the use of the method in cases where the refractive index changes 
abruptly as a function of z or in which reflections add to equation. The propagation of the field 
ψ1 is given by the term describing the propagation in an unperturbed medium and the correction 
term-representing the influence of ∆n2 (z)   (Ugwu et al, 2007). 
 
As the beam is propagated through a thin film showing a large step in refractive index of an 
imperfectly homogeneous thin film, this condition presents the enabling provisions for the use of 
a constant refractive index no of the thin film. One then chooses arbitrarily two different 
refractive indices n1 and n2 at the two sides of the step so that 
 
 ∆εp                          εref 

 
 
               
 
 
 
 
 
 
Fig 3: Refractive index profile showing a step 
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with 
( ) ( )

1
( )

o

o

n z n z
for all z

n z

− >>  

The refractive index distribution of the thin film was assumed to obey the Fermi distribution that 
is an extensively good technique for calculating the mode index using the well known WKB 

n 

n
n

z 
Fig.2 Geometry used in the model depicting dielectric 
and refractive index medium for which we seek the 
analysis from the wave equation in equation [1] which 
has reference homogeneous medium, εεεεref , and a 
perturbed medium where the film is deposited ����p(z) 
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approximation (Miyazowa et al, 1975). The calculation is adjusted for the best fit to the value 
according to 

  

1

( ) exp[ ] 1o

z d
n z n n

a

−− = + ∆ −  
    [15]    

 
Small change in the refractive index over the film thickness is as written below 

2

exp( )

exp[ ] 1

z d
ndn z a

dz z d

a

−∆
=

− −  

      [16] 

 
Equation [16] represents the Fermi distribution. where n(z) is the refractive index at  a depth z 
below the thin surface, on is the refractive index of the surface ,∆n is the step change in the film 

thickness, z is average film thickness and “a” is the measure of the sharpness of the transition 
region (Ugwu et al, 2005). 
 
When we use a set or discrete modes, different sets of ψ can be obtained by the application of the 
periodic extension of the field. To obtain a square wave function for no(z) as in fig.3: no has to be 
considered periodic. We were primarily interested in the field guided at the interface z = z1. The 
field radiated away from the interface was assumed not to influence the field in the adjacent 
region because of the presence of suitable absorber at z = z – z1. The correction operator ∂ 
contains the perturbation term ∆n2 and as we considered it to be periodic function without any 
constant part as in equation [11]. The phase variation of the correction term is in such way so as 
to provide a coupling between the two waves. 
 
The Green’s function as obtained in the equation [12] satisfies [1] 
 

2 2

1 12 2
( ) ( , ) ( ) ( )n y G x y x x y y

x y
δ δ ∂ ∂+ + ∆ = − − ∂ ∂ 

                          [17] 

 
at the source point and satisfies (Ugwu et al, 2007) the impedance boundary condition. 
 

0o

G
G B

n

∂+ =
∂

      [18] 

where          s
o

o

iR
B

Rκ
= − s 

and  

1

2

o
o

R
µ
ε
 

=  
 

 

 is the free space characteristic impedance, and n∂ ∂ is the normal derivative. The impedance Rs 
offered to the propagating wave by the thin film is given by  
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0

2

1
1

R
R

n n
 = −  

        [20]                 

                     

where n is the average refractive index of the film (Wait, 1998; Bass et al, 1979) қ is the wave-
number of the wave in the thin film where қo is the wave number of the wave in the free space. 
For every given wave with a wavelength say λ propagating through the film with the appropriate 
refractive index n, the impedance R of the film can be computed using equation [19] when қ   
equals  қo we have equation [20] 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.4 Graph of relative amplitude Ref(z) against propagation distance x 1010− m for  real  part when

0.5pε =�  and λλλλ=0.45μμμμm 

 
 
 
 
 
 
  
 
 
 
 
 
 

Fig.5: Graph of relative amplitude Ref (z) against propagation distance, z x 1010− m for complex part when 

3.5pε =�  and λλλλ=0.25μμμμm 
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Fig.6; Graph of relative amplitude Imf (z) against propagation distance, z x 1010− m for complex part when 

10.5pε =�  and λλλλ=1.2μμμμm 

 
 
 

 
Fig.7: Graph of relative amplitude Imf(z) against propagation distance ,z x 1010− m for  complex  part when 

10.5pε =�  and λλλλ=0.25μμμμm 
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Fig.8: Graph of relative amplitude Imf(z) against propagation distance, z x 1010− m for  complex  part when 

10.5pε =�  and λλλλ=0.70μμμμm 
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Fig.9: Graph of relative amplitude Ref(z) against propagation distance, z x 1010− m for  complex  part when 

10.5pε =�
  

and λλλλ=1.20μμμμm 

  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.10: Graph of relative amplitude Ref (z) against propagation distance, zμμμμm for real part when 0.5pε =�  

and λλλλ=0.90μμμμm 
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Fig.11: Graph of Impedance against Refractive  
Index for k0 = k                                                                    Fig.12: Graph of change in Refractive Index  
                                                                                                       vs propagation distance 
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Fig.12:  Graph of change in Refractive Index as  

a function of a propagation distance                       Fig.13: Graph of Impedance vs 
                                                                                     wavelength when the refractive index  
                                                                                                                   constant  
  

RESULTS AND DISCUSSION 
 

In accordance with our model, in fig.1, the relative amplitude profiles that characterized the 
propagating behavior of the wave were depicted in fig.4 to fig.10 for both real and complex 
parts. From the graphs the character of the profile depended on the magnitude of the dielectric 
perturbation Δεp. The profile when Δεp is 0.50 is different from when it is 3.50 or 10.50. In the 
first case, the oscillation of the wave profile along the propagation distance for  Δεp  =0.50 
decayed  gradually than when it is 3.50. In case when Δεp =10.50, the wave profile did not 
exhibit any sign of oscillatory behavior as shown in fig.8, fig.9 and fig.10 respectively. To some 
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extent the region of the electromagnetic wavelength used had effect as shown in fig.6 and fig. 9 
which within the infrared region. The wave impedance in relation to refractive index when k0=k 
is shown in fig.11where it is observed that the impedance increased sharply to 9.75.  The 
impedance variation with the wavelength of the wave for a constant refractive index was shown 
in fig.13where it was sown that impedance increased with the wavelength.  
  

CONCLUSION 
 

In this work we presented analytical study of wave propagation through thin film with the help of 
the theoretical solution of scalar wave equation applied to thin film medium presenting varied 
value of dielectric perturbation and refractive index. The solution was decomposed into real and 
complex parts of which the profile of the relative amplitude of the propagating wave depicted 
oscillatory characteristic in accordance with the magnitude of the dielectric perturbation. The 
contribution of the wavelength of the electromagnetic region considered to relative amplitude 
profile was taken into consideration. We studied also how variation in the refractive index of the 
thin film affected the impedance and the index profile of the film medium. 
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