Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advances in Applied Science Research, 2016, 7(4):55-65

Study of Ultrasonic Velocity of Acrylates with Decane-2-ol

*Sujata S. Patil^a and Sunil R. Mirgane^b

^aDept. of App. Sci., MSS's College of Engineering and Technology, Jalna – 431 203 (M. S.), India ^bP. G. Dept. of Chemistry, J. E. S. College, Jalna - 431 203 (M. S.), India

ABSTRACT

Thermodynamic data involving ultrasonic velocities of binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with decane-2-ol have been measured at 298.15 K and at atmospheric pressure. Experimental values of ultrasonic velocities were correlated with Jouyban-Acree model. Deviations in isentropic compressibility were calculated and have been fitted to Redlich-Kister polynomial equation. Ultrasonic velocities were also calculated theoretically using various theories such as Nomoto, Van Dael, free length theory and collision factor theory. Excess parameters like specific acoustic impendence, intermolecular free length, available volume, intrinsic pressure, molecular association and molar sound velocity were also calculated. Graphical representations of these excess derived thermodynamic parameters used to explain type and extent of intermolecular interactions.

Keywords: Free length theory, Intramolecular interactions, Jouyban Acree model, Isentropic compressibility, Specific acoustic impendence.

INTRODUCTION

Thermodynamic properties are essential in designing industrial equipments. There has been an increasing interest in the study of molecular interactions and a number of experimental techniques have been used to investigate the interactions between the components of binary liquid mixtures. The knowledge of thermodynamic properties of liquid-liquid systems is of considerable importance due to their wide range of applicability as solvent media in various physicochemical studies, in processing and product formation. Study of thermodynamic properties involves challenges of interpreting the excess quantities as a means of understanding the nature of intermolecular interactions among the mixed components. This study is a powerful means of characterizing various aspects of physicochemical behaviors of liquid mixtures and molecular interactions.

Ultrasonic velocity measurement of liquid mixtures of non electrolytes provides an excellent tool to investigate inter and intramolecular interactions between unlike and like molecules in a binary liquid mixture. The velocity of sound is very important for liquids to study molecular interactions and to elucidate internal structure of liquid mixture. The knowledge of sound velocity in liquids has been found very helpful in the study of ultra spectrometry for liquids [1], in multiphase flows [2], crystal growth from solutions [3], structural isomerization and molecular motions of liquid n-alkanes [4], sonochemical removal of nitric oxide from flue gases [5], shear impendence spectrometry [6], ultrasonic spectrometry of polystyrene latex suspensions [7]. Density and ultrasonic velocity are important basic data used in process simulation, equipment design, solution theory and molecular dynamics [8, 9].

Literature survey reveals that, molecular interactions of binary liquid mixtures of decane-2-ol with methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate have not much studied and explored over entire range of composition at 298.15 K temperature. Therefore, we have planned to study molecular interactions in present binary liquid systems.

MATERIALS AND METHODS

Chemicals used in present study were of analytical grade and supplied by S. D. Fine Chemicals Pvt., Mumbai (India) with quoted mass fraction purities: decane-2-ol (> 0.998), methyl acrylate, MA, (> 0.997), ethyl acrylate, EA, (> 0.998), butyl acrylate, BA, (> 0.995) and methyl methacrylate, MMA, (> 0.997). Prior to use, all liquids were stored over 0.4 nm molecular sieves to reduce water content. All acrylates were distilled before use.

Experimental Part

The masses were recorded on a Mettlar one pan balance, which can read up to fifth place of decimal with an accuracy of ± 0.01 mg. Care was taken to avoid evaporation and contamination during mixing. The estimated uncertainty in mole fraction was $< 1 \times 10^{-4}$. Ultrasonic velocities were measured [10] at frequency of 2 MHz by a single crystal ultrasonic interferometer (Model F-81, Mittal Enterprises, New Delhi, India). Accuracy in velocity measurements is ± 0.1 %. Temperature was controlled using a constant temperature controlled water bath (Gemini Scientific Instruments, Chennai, India) having accuracy ± 0.02 ⁰C. Ultrasonic velocities of decane-2-ol, methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate at 298.15 K were observed as 1423, 1185, 1167, 1207 and 1182 m.s⁻¹ respectively.

Computational Part

There have been a number of studies on the measurements of ultrasonic velocities and isentropic compressibilities of liquid-liquid mixtures, as the deviations from the rectilinear dependence of velocities and compressibilities on the mole fractions throw much light on the physicochemical behaviour of liquid mixtures such as molecular association and dissociation as well as the strength of interactions between the components.

Deviation in isentropic compressibility were calculated using relation,

$$\Delta \kappa_{\rm s} = \kappa_{\rm s} - \kappa_{\rm s}^{\rm id} \tag{1}$$

where κ_s is isentropic compressibility and was calculated using Laplace relation,

$$\kappa_{\rm s} = (1/\,\mathrm{u}^2\rho) \tag{2}$$

 κ_s^{id} was calculated from relation,

$$\kappa_{s}^{id} = \Sigma \phi_{i} [\kappa_{s,i} + TV_{i}^{o}(\alpha_{i}^{o2}) / C_{p,i}] - [T(\Sigma x_{i}V_{i}^{o}) (\Sigma \phi_{i} \alpha_{i}^{o})^{2} / \Sigma x_{i}C_{p,i}]$$
(3)

where ϕ_i is ideal state volume fraction of component i in mixture and is defined by,

$$\phi_{i} = x_{i} V_{i}^{\circ} / (\Sigma x_{i} V_{i}^{\circ}) \tag{4}$$

T is temperature and $\kappa_{s,i}$, V_i^o , α_i^o , and $C_{p,i}$ are isentropic compressibility, molar volume, coefficient of isobaric thermal expansion and molar heat capacity respectively, for pure component i. α_i^o is calculated from measured densities by relation,

$$\alpha = [(\rho_1 / \rho_2) - 1] / (T_2 - T_1)$$
(5)

From ultrasonic velocity different thermodynamic parameters like specific acoustic impendence (Z), intermolecular free length (L_f), available volume (V_a), intrinsic pressure (π_{int}), can be calculated, which provides better insight in understanding of molecular interactions in pure and binary liquids mixtures, which are given by relations,

 $Z = u\rho$

56

(6)

(8)

$$L_{\rm f} = K(\kappa_{\rm s})^{1/2} \tag{7}$$

 $V_a = V_m \left[1 - (u_{expt} / u_{\infty})\right]$

Where K is the temperature dependent constant whose values are 1.976×10^{-6} at 298.15 K respectively, $u_{\infty} = 1600$ m/s.

For binary liquid mixtures intrinsic pressure can be given as, $\pi_{i} = bRT (K\eta_{12}/u_{12})^{1/2} (\rho_{12}^{-2/3}/M_{12}^{-7/6})$ (9)

Where b is packing factor, K is a temperature independent constant having value of 4.28×10^9 , R is gas constant and η_{12} , μ_{12} , ρ_{12} are viscosity, ultrasonic velocity and density of mixture.

The excess functions are important to understand molecular interactions between components of liquid mixtures. Excess function Y^E represents excess of a given quantity Y of a real mixture over its value for an ideal mixture Y^{id} at same conditions of temperature, pressure and composition. It is expressed by following relation,

$$\mathbf{Y}^{\mathrm{E}} = \mathbf{Y} - \mathbf{Y}^{\mathrm{id}} \tag{10}$$

where Y denotes Z, L_{f} , Va, π_{int} and Y^E represents corresponding excess thermodynamic properties such as excess specific acoustic impedance (Z^E), excess intermolecular free length (L_{f}^{E}), excess available volume (V_{a}^{E}) and excess intrinsic pressure (π_{int}^{E}).

Molecular association (MA) and Rao's constant or molar sound velocity (R) for liquid mixtures can be calculated as,

 $M_{A} = [(u/\Sigma x_{1}u_{1})^{2}-1]$ (11) $R = (M/\rho) u^{1/3}$ (12)

Where M is average molecular weight.

All these thermodynamic parameters are represented in Table 1.

Fable 1 Ultrasonic Velocities (u), Isentropic Compressibility Deviation ($\Delta \kappa_s$), Excess specific acoustic impendence (Z^E), Excess
intermolecular free length (L_t^E), Excess available volume (V_a^E), Excess intrinsic pressure (π_{int}^E), Molecular association
(\mathbf{M}_{A}) and Rao's constant (R) for Acrylates (1) + Decane-2-ol (2)

Υ.	u	$\Delta \kappa_{s}$	Z^E	L_{f}^{E}	V_a^E	$\pi_{\rm int}{}^{\rm E}$	M_A	R		
Λ_1	$(m.s^{-1})$	(TPa ⁻¹)	(Kg.m ⁻² .s ⁻¹)	(m)	$(m^3.mol^{-1})$	(atm)				
	Methyl Acrylate (1) + Decane-2-ol (2)									
0	1423	0	0	0	0	0	0	2.169		
0.05520	1409	6.03	-5.31	0.001	0.909	-329.25	-0.001	2.100		
0.09968	1397	11.25	-9.58	0.002	1.651	-389.80	-0.003	2.044		
0.15545	1383	16.80	-14.02	0.003	2.369	-529.99	-0.004	1.975		
0.19985	1372	20.94	-17.23	0.003	2.854	-562.79	-0.005	1.921		
0.25536	1358	26.10	-21.15	0.004	3.397	-664.82	-0.006	1.852		
0.29995	1347	29.79	-23.83	0.005	3.736	-674.09	-0.007	1.797		
0.35553	1333	34.33	-27.08	0.005	4.098	-743.49	-0.008	1.729		
0.39986	1323	36.46	-28.37	0.005	4.202	-730.56	-0.007	1.676		
0.45375	1310	39.42	-30.25	0.006	4.330	-767.73	-0.008	1.610		
0.49990	1299	41.31	-31.30	0.006	4.351	-742.01	-0.008	1.554		
0.55543	1285	43.82	-32.81	0.007	4.360	-750.99	-0.009	1.487		
0.59990	1275	43.86	-32.47	0.007	4.189	-698.83	-0.008	1.434		
0.65497	1262	43.70	-31.93	0.007	3.948	-688.06	-0.008	1.368		
0.69991	1252	42.02	-30.37	0.006	3.634	-620.14	-0.007	1.315		
0.75553	1239	39.40	-28.13	0.006	3.207	-586.54	-0.007	1.248		
0.79992	1229	35.71	-25.26	0.006	2.770	-498.38	-0.006	1.196		
0.85547	1217	28.76	-20.09	0.004	2.106	-446.86	-0.004	1.131		
0.89989	1207	22.09	-15.30	0.003	1.536	-338.33	-0.003	1.078		
0.95554	1195	10.73	-7.32	0.002	0.704	-265.68	-0.001	1.013		
1	1185	0	0	0	0	0	0	0.961		

Sujata S. Patil and Sunil R. Mirgane

0	1400	0	Ethyl Ac	rylate (1) -	+ Decane-2-	ol (2)	0	0.1.00
0	1423	0	0	0	0	0	0	2.169
0.05544	1407	5.38	-3.98	0.001	0.925	-282.70	-0.003	2.110
0.09990	1395	8.8/	-0.31	0.001	1.502	-343.30	-0.005	2.063
0.13333	1269	15.10	-9.11	0.001	2.132	-403.34	-0.005	2.005
0.19960	1252	20.22	-11.17	0.001	2.001	-499.37	-0.000	1.956
0.23555	1241	20.55	-13.33	0.002	3.069	-307.01	-0.007	1.900
0.29991	1341	25.55	-19.09	0.003	3.309	-008.00	-0.008	1.800
0.33343	1320	20.80	-17.55	0.003	3.749	-054.55	-0.009	1.751
0.39998	1300	29.32	-19.71	0.003	4 022	-672 71	-0.010	1.751
0.49994	1289	31.95	-19.55	0.003	4.022	-644.45	-0.010	1.649
0.55540	1275	32.76	-19.62	0.003	3 923	-648.26	-0.009	1.592
0.59993	1263	33.88	-20.12	0.003	3 875	-601.16	-0.010	1 547
0.65550	1249	33.47	-19.54	0.003	3.644	-583.15	-0.010	1.491
0.69990	1239	31.13	-17.72	0.003	3.298	-522.80	-0.008	1.447
0.75555	1225	29.10	-16.31	0.003	2.920	-483.82	-0.007	1.391
0.79990	1214	26.48	-14.68	0.003	2.541	-406.96	-0.007	1.347
0.85546	1201	21.12	-11.43	0.002	1.937	-351.09	-0.005	1.292
0.89987	1190	16.58	-8.91	0.002	1.439	-260.48	-0.004	1.248
0.95548	1177	8.31	-4.33	0.001	0.683	-187.76	-0.002	1.194
1	1167	0	0	0	0	0	0	1.15
			Butyl Ac	rylate (1)	+ Decane-2-	ol (2)		
0	1423	0	0	0	0	0	0	2.169
0.05547	1410	2.05	-1.67	0.000	0.475	-199.02	-0.001	2.132
0.09983	1400	3.41	-2.81	0.000	0.781	-266.84	-0.002	2.103
0.15555	1387	5.40	-4.42	0.000	1.174	-367.77	-0.003	2.066
0.19982	1377	6.64	-5.36	0.000	1.418	-410.00	-0.004	2.037
0.25543	1364	8.54	-6.82	0.001	1.733	-478.99	-0.006	2.001
0.29996	1354	9.62	-7.58	0.001	1.908	-499.63	-0.006	1.972
0.35555	1342	10.40	-8.03	0.001	2.033	-542.03	-0.006	1.936
0.39981	1332	11.37	-8.68	0.001	2.151	-542.26	-0.007	1.90/
0.45546	1320	11.90	-8.92	0.001	2.199	-559.40	-0.007	1.8/1
0.49990	1200	11.00	-8.34	0.001	2.144	-345.44	-0.006	1.845
0.55552	1299	12.31	-0.55	0.001	2.117	-557.52	-0.000	1.007
0.55548	1209	12.31	-8.61	0.001	2.108	-303.30	-0.007	1.773
0.69989	1277	11.17	-7.84	0.001	1.832	-430.00	-0.007	1 715
0.75544	1257	9.57	-6.50	0.001	1.554	-385 12	-0.004	1.680
0.79991	1237	9.40	-6.36	0.001	1 4 1 8	-324.87	-0.004	1.652
0.85445	1236	7.42	-4.93	0.001	1.092	-2.62.88	-0.004	1.617
0.89988	1227	5.32	-3.47	0.000	0.776	-192.22	-0.003	1.589
0.95499	1216	2.49	-1.55	0.000	0.362	-114.33	-0.001	1.554
1	1207	0	0	0	0	0	0	1.526
			Methyl Met	hacrylate (1) + Decane	-2-ol (2)		
0	1423	0	0	0	0	0	0	2.169
0.05544	1408	5.37	-4.42	0.001	0.883	-272.85	-0.002	2.109
0.09990	1397	8.74	-7.06	0.001	1.408	-328.02	-0.003	2.061
0.15533	1383	13.04	-10.35	0.002	2.024	-444.31	-0.004	2.002
0.19980	1371	17.03	-13.43	0.002	2.538	-472.89	-0.006	1.954
0.25555	1357	20.90	-16.21	0.003	2.996	-558.51	-0.006	1.896
0.29991	1346	23.64	-18.09	0.003	3.283	-567.02	-0.007	1.849
0.35543	1332	27.02	-20.38	0.004	3.590	-622.68	-0.008	1.790
0.39998	1321	29.22	-21.76	0.004	3.752	-612.26	-0.008	1.743
0.45545	1308	30.85	-22.58	0.004	3.811	-643.63	-0.008	1.686
0.49994	1297	32.40	-23.46	0.004	3.855	-614.20	-0.008	1.639
0.55540	1284	33.01	-23.52	0.004	3./00	-021.98	-0.008	1.582
0.59993	12/3	33.09 33.01	-23.70	0.005	3.091	-5/0.51	-0.008	1.550
0.03330	1200	31.40	-22.94	0.004	3.434 3.175	-503.69	-0.008	1.4/0
0.09990	1230	20.00	-21.50	0.004	2 700	-303.04	-0.007	1.433
0.79990	1237	25.09	-17 35	0.004	2.799	-306 83	-0.000	1 3 7 0
0.85546	1214	23.71	-14 19	0.003	1 876	-347 38	-0.005	1 275
0 89987	1204	16 32	-10.70	0.002	1.368	-260 57	-0.004	1.275
0.95548	1192	7.77	-5.03	0.001	0.626	-192.67	-0.001	1.174
1	1182	0	0	0	0	0	0	1.129

Empirical Relations for Ultrasonic Velocity:-

I. Nomoto's Relation:-

The formula proposed by Nomoto [11] is based on assumption of linearity of molecular sound velocity versus mole fraction and additivity of molar volume in liquid mixture. An empirical formula for the sound velocity in liquid mixtures based on the assumption of the linearity of the molecular sound velocity,

$$\mathbf{R} = \mathbf{x}_1 \mathbf{R}_1 + \mathbf{x}_2 \mathbf{R}_2$$

(13)

Where R_1 , R_2 are molar sound velocities and x_1 , x_2 are mole fractions respectively. The molar sound velocity (R) also known as Rao's constant, is related to sound velocity (u) and density (ρ) by the relation. Hence, ultrasonic velocity (u) is given by,

$$\mathbf{u} = (\mathbf{R}/\mathbf{V})^3 = \left[(\mathbf{x}_1 \mathbf{R}_1 + \mathbf{x}_2 \mathbf{R}_2) / (\mathbf{x}_1 \mathbf{V}_1 + \mathbf{x}_2 \mathbf{V}_2) \right]^3 \tag{14}$$

II. Van Dael's Relation:-

According to Vangeel [12] assumption, adiabatic compressibility (\$\betas)\$ of mixture is,

$$\beta s_{(im)} = \phi_1 v_1 \beta s_{(1)} / v_{im} + \phi_2 v_2 \beta s_{(2)} / v_{im}$$
(15)

Where v represent volume fraction.

III. Collision Factor Theory:-

Schaffs [13, 14] on basis of CFT gave following relation for sound velocity in liquids,

 $u = u_{\infty} Srf = u_{\infty} SB/V \tag{16}$

Where $u_{\infty} = 1600$ m/s, S is collision factor and rf (rf = B/V) is space filling factor, B is actual volume of the molecule per mole and V is molar volume.

IV. Free Length Theory:-

The sound velocity in mixtures can be evaluated from Jacobson's formula [15, 16],

 $u_{mix} = K / (L_f(mix)\rho_{(mix)})^{1/2}$ (17)

Where K is a temperature dependent constant, $L_{f(mix)}$ is intermolecular free length of mixture and ρ_{mix} is density of mixture.

The calculated ultrasonic velocities using various theories along with theirs percentage error are summarized in Table 2.

 Table 2 Comparison of experimental ultrasonic velocity with various theories like NOMOTO, VAN, CFT and FLT with errors for Acrylates (1) + Decane-2-ol (2)

v		Ultras	onic Vel	ocity		% Err	ors for Ult	rasonic V	elocity
Λ_1	Expt.	NOM	VAN	CFT	FLT	NOM	VAN	CFT	FLT
_			Met	hyl Acry	$\sqrt{1}$	+ Decane	-2-ol (2)	_	-
0	1423	1423	1423	1423	1335	0	0	0	38.451
0.05520	1409	1416	1380	1413	1321	0.261	4.578	0.065	38.974 35.874
0.09908	1397	1411	1330	1405	1313	0.955	11.400	0.511	37.123
0.19985	1372	1397	1294	1386	1293	3 204	32 076	1 049	32 858
0.25536	1358	1388	1270	1375	1283	4 925	42,292	1.633	30.873
0.29995	1347	1381	1253	1367	1274	6.362	49.187	2.111	29.402
0.35553	1333	1372	1234	1355	1263	8.342	55.123	2.814	27.271
0.39986	1323	1363	1221	1346	1255	9.359	59.036	3.074	26.365
0.45375	1310	1353	1208	1335	1245	10.823	60.418	3.570	24.578
0.49990	1299	1344	1199	1325	1237	11.787	59.636	3.910	22.933
0.55543	1285	1331	1189	1312	1227	13.042	55.397	4.453	20.715
0.59990	1275	1321	1183	1302	1218	12.966	51.628	4.370	19.758
0.65497	1262	1307	1178	1288	1209	12.716	44.512	4.349	17.894
0.699991	1252	1295	1175	1277	1201	11.005	38.172	3.962	10.885
0.79992	1239	1278	1172	1202	1191	8 224	20.052	2 858	14 197
0.85547	1217	1245	1173	1233	1173	5 294	12.971	1.819	13 226
0.89989	1207	1228	1175	1220	1165	3.092	6.844	1.081	12.226
0.95554	1195	1205	1180	1201	1155	0.730	1.584	0.252	11.343
1	1185	1185	1185	1185	1146	0	0	0	10.667
			Eth	yl Acry	ate (1) -	+ Decane-2	2-ol (2)		
0	1423	1423	1423	1423	1335	0	0	0	38.451
0.05544	1407	1414	1387	1411	1323	0.264	2.073	0.076	35.349
0.09990	1395	1407	1361	1401	1315	0.726	5.974	0.192	33.233
0.15533	1380	1397	1332	1389	1304	1.586	16.990	0.409	30.481
0.19980	1308	1370	1212	1379	1295	2.445	10.889	0.020	28.597
0.25555	1333	1379	1209	1351	1265	3.089 4 779	25 969	0.543	42 008
0.35543	1326	1359	1254	1343	1266	6.179	29.100	1.629	20.523
0.39998	1314	1349	1241	1332	1258	7.268	30.472	1.949	18.317
0.45545	1300	1337	1227	1319	1248	8.089	31.463	2.122	16.229
0.49994	1289	1326	1217	1308	1240	8.462	31.306	2.168	14.733
0.55540	1275	1313	1206	1294	1230	8.761	29.567	2.231	12.682
0.59993	1263	1301	1198	1283	1222	9.142	26.586	2.435	10.628
0.65550	1249	1286	1189	1268	1212	8.748	22.719	2.350	8.772
0.69990	1239	12/3	1184	1256	1204	1.5/3	19.866	1.935	/.8//
0.73333	1223	1230	1176	1241	1195	0.400 5.240	14.795	1.701	0.128
0.79990	1214	1242	1174	1228	1177	3 301	6 4 2 8	0.876	3.86
0.89987	1190	1207	1169	1199	1170	1.972	3.238	0.557	2.882
0.95548	1177	1185	1167	1182	1161	0.494	0.690	0.156	1.911
1	1167	1167	1167	1167	1152	0	0	0	1.639
			Bu	tyl Acry	late (1) -	+ Decane-2	2-ol (2)		
0	1423	1423	1423	1423	1335	0	0	0	38.451
0.05547	1410	1413	1403	1412	1333	0.061	0.249	0.021	29.505
0.09983	1400	1406	1388	1403	1331	0.166	0.743	0.045	24.155
0.13333	1387	1390	1370	1392	1329	0.595	1.408	0.114	17.203
0.19982	1364	1377	1341	1365	1328	0.392	2.119	0.108	7 458
0.29996	1354	1369	1330	1362	1326	1.167	3.272	0.348	4.329
0.35555	1342	1358	1316	1350	1325	1.370	3.859	0.392	1.615
0.39981	1332	1349	1305	1341	1324	1.594	4.040	0.467	0.321
0.45546	1320	1337	1293	1329	1324	1.730	4.219	0.499	0.096
0.49996	1311	1328	1284	1320	1324	1.679	4.373	0.450	0.961
0.55552	1299	1316	1273	1308	1324	1.711	4.120	0.465	3.773
0.59994	1289	1306	1264	1298	1325	1.774	3.649	0.510	7.644
0.65548	1277	1294	1255	1286	1326	1.685	3.064	0.501	14.438
0.69989	1268	1283	1247	12/6	1326	1.448	2.001	0.418	21.234
0.73344	1237	1270	1239	1204	1328	0.0/0	2.125	0.289	51.827 43.501
0.79991	1247	1239	1225	1234	1329	0.549	0.841	0.178	59.79
0.89988	1227	1234	1219	1231	1334	0.305	0.448	0.091	75.611
0.95499	1216	1219	1212	1218	1337	0.070	0.102	0.022	99.013

Sujata S. Patil and Sunil R. Mirgane

1	1207	1207	1207	1207	1339	0	0	0	119.746
-			Methy	l Metha	crvlate (1) + Decar	ne-2-ol (2)		
0	1423	1423	1423	1423	1335	0	0	0	38.451
0.05544	1408	1415	1389	1412	1326	0.244	1.847	0.078	34.319
0.09990	1397	1408	1364	1403	1318	0.644	5.422	0.174	32.369
0.15533	1383	1399	1337	1391	1308	1.417	10.856	0.371	29.321
0.19980	1371	1392	1318	1382	1301	2.366	14.975	0.654	26.373
0.25555	1357	1382	1296	1370	1292	3.528	20.033	0.969	23.16
0.29991	1346	1374	1281	1361	1285	4.472	23.470	1.215	20.797
0.35543	1332	1364	1263	1349	1276	5.748	26.450	1.577	17.713
0.39998	1321	1355	1251	1339	1269	6.651	27.973	1.826	15.396
0.45545	1308	1343	1237	1326	1261	7.354	29.078	1.963	12.968
0.49994	1297	1334	1228	1316	1254	8.001	28.477	2.161	10.821
0.55540	1284	1321	1217	1303	1246	8.217	27.085	2.184	8.589
0.59993	1273	1310	1210	1292	1240	8.431	24.632	2.299	6.63
0.65550	1260	1296	1202	1279	1233	7.987	21.249	2.173	4.725
0.69990	1250	1283	1197	1267	1227	7.174	18.246	1.914	3.506
0.75555	1237	1267	1191	1253	1220	6.071	13.720	1.658	1.961
0.79990	1227	1254	1188	1241	1214	4.763	10.242	1.273	1.182
0.85546	1214	1236	1185	1225	1207	3.190	5.877	0.888	0.345
0.89987	1204	1220	1183	1213	1201	1.823	3.067	0.513	0.045
0.95548	1192	1200	1182	1196	1195	0.411	0.714	0.107	0.05
1	1182	1182	1182	1182	1190	0	0	0	0.43

Deviation in isentropic compressibility ($\Delta \kappa_s$) were fitted to Redlich-Kister [17] polynomial equation of type,

$$Y = x_1 x_2 \sum_{i}^{n} a_i (x_1 - x_2)^i$$
(18)

where Y is $\Delta \kappa_s$ and n is the degree of polynomial. Coefficient a_i was obtained by fitting equation (19) to experimental results using a least squares regression method. In each case, optimum number of coefficients is ascertained from an examination of variation in standard deviation (σ).

 σ was calculated using relation,

$$\sigma(\mathbf{Y}) = \left[\frac{\sum (Y_{expt} - Y_{calc})^2}{N - n}\right]^{1/2}$$
(19)

where N is number of data points and n is number of coefficients. The calculated values of the coefficients a_i along with the standard deviations (σ) are given at 298.15 K in Table 3.

 Table 3 Adjustable parameters of Redlich-Kister Polynomial Equation for deviation in isentropic compressibility for Acrylates (1) + Decane-2-ol (2)

Property	a ₀	a_1	a_2	a ₃	a_4	σ				
	Methyl Acrylate (1) + Decane-2-ol (2)									
	58.4230	35.9430	25.0119	-4.2558	-22.9234	0.28388				
	Ethyl Acrylate (1) + Decane-2-ol (2)									
$\Delta \kappa_{\rm s} / ({\rm TPa}^{-1})$	20.0120	15.3601	-6.4729	5.6403	22.6601	0.66040				
		Butyl A	Acrylate (1)	+ Decane-	2-ol (2)					
	-0.7841	4.1070	7.6155	0.8304	-10.9231	0.31658				
		Methyl M	athacrylate	(1) + Deca	ne-2-ol (2)					
	36.6692	22.6216	4.1846	-4.3274	3,4808	0.30463				

Jouyban Acree [18, 19] recently proposed model for correlating ultrasonic velocities of liquid mixtures at various temperatures. The proposed equation is,

 $lny_{mT} = f_1 lny_{1T} + f_2 lny_{2T} + f_1 f_2 \sum [A_j (f_1 - f_2)^{J}/T]$ (20) Where y_{mT} , y_{1T} and y_{2T} is ultrasonic velocities of mixture, solvents 1 and 2 at temperature T, respectively, f_1 and f_2 are mole fraction and Aj are model constants. The correlating ability of model was tested by calculating the average percentage deviation (APD) between the experimental and calculated values of ultrasonic velocities as,

Sujata S. Patil and Sunil R. Mirgane

(21)

APD = (100/N) $\sum [(|y_{expt} - y_{cal}|)/y_{expt})]$

Where N is number of data points in each set. Jouyban Acree model provides reasonably accurate calculations for ultrasonic velocity of binary liquid mixtures and could be used in data modeling. The optimum numbers of constants Aj, in each case, are determined from the examination of the average percentage deviation value which is represented in Table 4.

Table 4 Adjustable parameters of Jouyban-Acree Model Equation for ultrasonic velocity for Acrylates (1) + Decane-2-ol (2)

Property	a ₀	a_1	a_2	a3	a_4	σ	APD						
		Methyl Acrylate (1) + Decane-2-ol (2)											
	0.0818	-0.2291	-1.8521	0.5625	3.2343	1313.8158	0.0178						
		Ethyl Acrylate (1) + Decane-2-ol (2)											
v (m a ⁻¹)	0.0988	0.0216	-1.0346	-0.4437	1.2038	1310.0579	0.0201						
u (m.s)		Butyl Acrylate (1) + Decane-2-ol (2)											
	-0.0444	-0.2932	-0.9405	0.7343	1.9723	1329.7640	0.0197						
			Methyl Meth	acrylate (1) +	Decane-2-ol (2)							
	0.0404	0.1906	-0.6552	-0.5028	1.0571	1318.5762	0.0205						

RESULTS AND DISCUSSION

Thermodynamic functions are highly useful in understanding the interaction in binary liquid mixtures. Figure 1 shows graphical variation of deviation in isentropic compressibility ($\Delta \kappa_s$) of acrylates with decane-2-ol at 298.15 K.

Figure 1 Variation of deviation in isentropic compressibility for Acrylates (1) + Decane-2-ol (2)

In present study of binary liquid mixtures, values of $\Delta \kappa_s$ are found to be positive for all mixtures. $\Delta \kappa_s$ attributed to relative strength of effects which influenced free space, according to which positive $\Delta \kappa_s$ arise due to breaking of hydrogen bonds in self associated decane-2-ol and physical dipole-dipole interactions between decane-2-ol monomers and multimers contribute to increase in free space, decrease in sound velocity and positive deviation in $\Delta \kappa_s$. This effect will be counteracted by changes of free volume in real mixtures.

Kiyohara and Benson [20] have suggested that is resultant of several opposing effects.

Deviation in isentropic compressibility can be interpreted as:-

1. Increase in free volume in mixture compared to pure components due to rupture of alkanols aggregates with addition of second component.

2. Interstitial accommodation of acrylate molecules in aggregates of alkanols.

Sujata S. Patil and Sunil R. Mirgane

Positive values of deviation in isentropic compressibility suggest a mixture is more compressible than corresponding ideal one. In binary liquid mixtures, an expansion in free volume makes mixture more compressible than ideal mixtures.

Figure 2 shows graphical variation of excess specific acoustic impendence (Z^E) with mole fraction acrylates with decane-2-ol at 298.15 K, which clearly indicates exactly reverse graphical variation of deviation in isentropic compressibility ($\Delta \kappa_s$).

Figure 2 Variation of excess specific acoustic impedance for Acrylates (1) + Decane-2-ol (2)

Deviations in Z^E more negative, as length of carbon chain in acrylates increases. Observed negative values of Z^E in curves and opposite behaviour in $\Delta \kappa_s$ curves reinforce that, structure breaking effect and weak interactions between unlike molecules dominates. In present case, negative values of Z^E represent weak interactions are dominant over dispersion forces.

Figure 3 represents graphical comparison of excess available volume (V_a^E) of present binary liquid mixtures. Positive values of V_a^E over entire range of composition mean strong molecular interactions.

Figure 3 Variation of excess available volume for Acrylates (1) + Decane-2-ol (2)

Graphical variation of excess internal pressure (π_{int}^{E}) for acrylates with decane-2-ol represented in Figure 4 at 298.15 K.

Figure 4 Variation of excess intrinsic pressure for Acrylates (1) + Decane-2-ol (2)

Values of π_{int}^{E} are found to be negative in all binary liquid mixtures. Less magnitude of π_{int}^{E} suggests that, weak type of intermolecular interactions are present with some dispersion due to dissociation of decane-2-ols aggregates with addition of solute (acrylates) in the binary liquid mixtures. Excess internal pressure is used to study intermolecular interactions in liquid mixtures.

Table 1 represents variation of excess intermolecular free length (L_f^E) for acrylates with decane-2-ol. Values of L_f^E are found to be positive for all systems which suggests that, rupture of hydrogen bonded chain of decane-2-ol and resulting loosening exceeds the interaction i. e. hydrogen bonding and dipole-dipole between unlike molecules. The degree of intermolecular hydrogen bond also decreases as the intermolecular chain length is increased.

Computed values ultrasonic velocities with the average percentage errors for all binary liquid mixtures have been calculated theoretically over entire mole fraction range using Nomoto, Van Deal, collision factor theory (CFT) and Jacobson's free length theory (FLT) at 298.15 K and are summarized in Table 2. A close scrutiny of the result indicates that CFT does succeed in computing the ultrasonic velocity value for all the mixtures studied in the present investigation to a greater degree of accuracy as compared with Nomoto, Van Deal and FLT. Nomoto and CFT show positive and van Deal theory shows negative deviations for the prediction of theoretical ultrasonic velocities. FLT seems to be not suitable for comparison purpose, as it shows large negative deviations from experimental values for almost all binary liquid mixtures investigated. Free length theory is generally not applicable to systems having self associated components.

Evaluated values of derived thermodynamic parameter such as deviation isentropic compressibility ($\Delta \kappa_s$) were fitted to Redlich-Kister polynomial equation at 298.15 K and are represented as in Table 3 with their standard percentage deviation. The Redlich-Kister equation was originally developed to correlate the excess Gibb's energy function and calculate the values of the activity coefficients. Tomiska [21, 22] has described the mathematical procedure to transform a power expansion, such as that of Redlich-Kister, into an orthogonal series [23].

Experimentally measured fundamental thermodynamic properties such as ultrasonic velocity were correlated using recently proposed Jouyban-Acree model. The constants (Aj) calculated from the least square analysis along with the average percentage deviation (APD) are presented in Table 4. The proposed model provides reasonably accurate calculations for ultrasonic velocity of binary liquid mixtures.

CONCLUSION

In present paper, an attempt is made to measure fundamental thermodynamic property like ultrasonic velocity and various derived thermodynamic parameters of binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with decane-2-ol at 298.15 K. Positive values of $\Delta \kappa_s$ decides compactness due to molecular arrangement. Negative values of Z^E represent the weak interactions are dominant over dispersion forces. L_f^E values increase with increase of chain length in acrylates. Positive values of V_a^E mean strong molecular interactions. Negative values of π_{int}^E suggest weak types of intermolecular interactions are present in present binary

liquid mixtures. Nomoto, CFT show positive and van Deal theory, free length theory shows negative deviations for the prediction of theoretical ultrasonic velocities.

Acknowledgements

Author (SSP) acknowledge Department of Science and Technology, New Delhi, Government of India, for financial support by awarding Junior Research Fellowship.

REFERENCES

[1] Hagen R, Behrends R, Kaatze V, J. Chem. Eng. Data., 2004, 49 (4), 988.

- [2] Vatanakul M, Zheng Y, Couturier M, Ind. Eng. Chem. Res., 2004, 43 (18), 5681.
- [3] Kozhemyakin G N, Zolkina L V, Inatomi Y, Cryst. Growth Des., 2006, 6 (10), 2412.
- [4] Behrends R, Kaatze U, J. Phys. Chem. A., 2000, 104 (15), 3269.
- [5] Owusu S O, Adewuyi Y G, Ind. Eng. Chem. Res., 2006, 45 (13), 4475.
- [6] Behrends R, Kaatze U, J. Phys. Chem. A., 2001, 105 (24), 5829.
- [7] Stieler T, Scholle F D, Weiss A, Ballauff M, Kaatze U, Lanmuir, 2001, 17 (5), 1743.
- [8] Protozov T, Protozov R, Suslick K S, J. Ame. Chem. Soc., 2004, 126 (43), 1389.
- [9] Hagen R, Behrends R, Kaatze V, J. Chem. Eng. Data., 2004, 49 (4), 988.
- [10] Mahajan A R, Mirgane S R, Deshmukh S B, Mat. Sci. Res. India, 2007, 4, 345.
- [11] Nomoto O, J. Phuy. Soc., Japan, 1958, 13, 1528.
- [12] Van Dael W, Vangeel E, Proceedings of the First International Conference On Colorimetry and Thermodynamics, Warsaw, 1969, 555.
- [13] Schaffs W, Z Phys, 1975, 114, 110; 1975, 115, 69.
- [14] Schaffs W, Molecular Akustic, Chapter XI and XII, Springer, Berlin, 1963.
- [15] Jacobson B, Acta Chem. Scand, 1952, 6, 1485.
- [16] Jacobson B, J. Chem. Phys., 1952, 20, 927.
- [17] Redlich O, Kister A T, Algebraic Representation of Thermodynamic Properties and The Classification of Solutions Ind. Eng. Chem., **1948**, 40, 345.
- [18] Jouyban A, Khoubnasabjafari M, Vaez Gharamaleki Z, Fekari Z, Acree Jr W E, J. Chem. Pharm. Bull, 2005, 53, 519.
- [19] Jouyban A, Fathi Azarbayjani A, Acree Jr W E, Ind. J. Chem., 2005, 44, 1553.
- [20] Kiyohara O, Benson G C, J. Chem. Thermo., 1979, 11, 861.
- [21] Tomiska J, CALPHAD, 1981, 5, 93.
- [22] Tomiska J, CALPHAD, 1984, 8, 283.
- [23] Peralta R D, Infante R, Cortez G, WisniakJ, J. Sol. Chem., 2005, 34 (5), 515.