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ABSTRACT 
 
In the present paper, we proposed and analyzed an SIRS compartment model with Vaccination. Determine the 
steady state of the model and Stability analysis is carried out. Equilibrium analysis is presented and it is found that 
in each case the equilibrium Points are locally asymptotically stable under certain conditions The stability of the 
equilibriums are studied by using the Routh-Hurwitz criteria. 
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INTRODUCTION 
 

The Simple epidemic model developed by Kermack and Mckendrick in 1927. This model establishes the broad 
principles of epidemiology and is a building block for the later [1,2,3,7]. Mathematical model are important tools are 
analyzing the spread and control of infectious disease. The name epidemiology has derived from the word epidemic 
is it has improved beyond it’s in the study of infectious disease and their cause in human population. 
 
In 1927 Kermack and Mckendrick [6] derived the celebrated threshold theorem which is one of the key results in 
epidemiology products depending on transmission potential of infection. The mathematical fraction of susceptible in 
the population that must be infected if an epidemic is to occur. 
 
A vector-host epidemic mathematical model with demography structure has been investigated by Qui, Ruan and 
Wang [10, 11], where the threshold condition for control of the vector disease transmission has been obtained and 
the dynamical behavior of the model is globally performed. Epidemiological models with vector host are numerous 
in the literature [4, 5]. Dynamical study of an SIRS Epidemic Model with Vaccinated Susceptibility has been 
discussed by Porwal and Badshah [9]. 
 
In this paper we have modified the model of Pathak, et al. [8]. In the first section we present the model in which p is 
the vaccination rate, S(t), I(t), R(t) represent the number of susceptible, infectious, and recovered Population at the 
time t respectively, b is the requirement rate of the population, d is the natural death rate of the population, µ is the 
natural recovery rate of the infective individuals. In the next section we obtained the disease free equilibrium and the 
endemic equilibrium. In the last section we analyzed the stability conditions for the disease free equilibrium and the 
endemic equilibrium. 
 
The transfer diagram is depicted in the following figure:  
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The transfer diagram leads to the following system of differential equations:  ���� = � − �� − ��� − 	� 
�
� = ��� − 
� + ���                                                                 (1.1) 

 ���� = �� − �� + 	� 

 
2. Stability Analysis. 
For the equilibrium points the above differential equation should be equated to zero. �. �.		 ���� = ���� = ���� = 0 

 

we have two equilibrium points are given by �� = � �
�� , 0, ��


���� is the disease free equilibrium points of the 

system (1.1) and the unique endemic equilibrium point �∗ = 
�∗, �∗, �∗� , where 
 �∗ = � + ��  �∗ = � !

���

�"� 

�"�                                         

 �∗ = �#�� − 
� + 	�
� + ��$ + 	
� + ��%��
� + ��  

 
The basic reproduction number given by  �� = ��
� + ��
� + 	� 
 
2.1 Theorem. The disease free equilibrium of the system is locally asymptotically stable if R0< 1 and instable if R0> 
1. 
 
Proof: We consider equations  
F1 = b – dS – βSI – pS 
F2 = βSI – (d + µ)I 
F3 = µI – dR + pS 
 
The Jacobian matrix 
 

& = '−� − �� − ( −�� 0�� �� − 
� + �� 0	 � −�) 
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At equilibrium point �� = � �
�� , 0, ��


���� the jacobian matrix becomes 

& =
*++
++,−� − 	 −� - �� + 	. 0

0 � - �� + 	. − 
� + �� 0	 � −�/00
001 

Therefore, its characteristics equation  

22
−� − 	 − 3 −� - �� + 	. 0

0 � - �� + 	. − 
� + �� − 3 0( � −� − 32
2 = 0 


−� − 	 − 3� 4-� - �� + 	. − 
� + �� − 3. 
−� − 3�5 = 0 

Therefore, 
λ1 = – (d + p) 3% = 
�� − 1� 
λ3 = – d  
 
Therefore, all the Eigen values of the characteristic equation are negative. Hence the equilibrium point E0 is locally 
asymptotically stable if �� < 1 and unstable if �� > 1. 
 
2.2 Theorem. If �� > 1, the endemic equilibrium E* is locally esymptotically stable. 
Proof. We consider the equation  
F1 = b – dS – βSI – pS 
F2 = βSI – (d + µ)I 
F3 = µI – dR + pS 
 
The Jacobian matrix 
 

& = '−� − �� − 	 −�� 0�� �� − 
� + �� 0	 � −�) 
At the endemic equilibrium point �∗ = 
�∗, �∗, �∗� 
& = '−� − ��∗ − 	 −��∗ 0��∗ ��∗ − 
� + ��� 0	 � −�) 
its characteristic equation is  

9−� − ��∗ − 	 − 3 −��∗ 0��∗ ��∗ − 
� + �� − 3 0	 � −� − 39 = 0 

3: + ;<3% + ;%3 + ;: = 0 
 
where 
a1 = d(d+µ)+bβ 
a2 = d(d + p) (d + µ)+ {bβ - (d + p)(d + µ)}(2d + p)  
a3 = d(d + µ){bβ - (d + p)(d + µ)}  
 
By Routh-Hurwitz Criterion, the system (2.1) is locally asymptotically stable if a1> 0, a3> 0 and a1a2> a3. 

 
Thus, E* is locally asymptotically stable. 
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