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A B S T R A C T 
 

 

A mathematical model is presented here to study mechanical vibrations 
of a visco-elastic rectangular tapered plate which is clamped at all four 
edges. The main aim of the present study is to assist the engineers and 
researchers in designing various structures in the field of science and 
technology, mainly used in satellite and aeronautical engineering. The 
model is presented here to study two directional thermal effects i.e. 
linearly in x-direction and linearly in y-direction with varying thickness 
in both directions i.e. linearly in x-direction and linearly in y-direction. 
The fourth order differential equation governing the motion of such plate 
has been solved by Rayleigh-Ritz method to calculate frequency for first 
two modes of vibration for different values of thermal gradient, taper 
constants and aspect ratio. All the results are presented in form of graphs. 
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INTRODUCTION

Plates of non-uniform thickness are 
widely used as structural components in various 
engineering fields like missile, submarine, 
aerospace industry etc under elevated 
temperature. Thus, the study of vibration of 
visco-elastic plates of non-uniform thickness of 
various shapes with different boundary 
conditions is essential to control the unwanted 
vibration.  

Leissa (1969) gave different models on 
the vibration for different plates. Jain and Soni 
(1973) analyzed the free vibrations of 
rectangular plates with parabolically varying 
thickness. Tomar and Gupta (1983) studied the 
thermal gradient effect on the vibration of a 

rectangular plate with bi-directional variation in 
thickness. Leissa (1987) had evaluated the effect 
of thermal gradient varying linearly in one 
direction on the vibration of parallelogram plate 
with bi-directional thickness variation in both 
directions. Laura et al. (1979) analyzed the 
transverse vibrations of rectangular plates 
having thickness variation in the x- and y- 
directions. Li (2004) gave an analysis on modal 
characteristics on vibrations of rectangular plate 
with general elastic supports along its edges. 
Gupta and Khanna (2007) had analyzed the time 
period and deflection for the first two modes of 
vibrations of visco-elastic rectangular plate with 
linearly thickness variations in both directions. 
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Gupta and Khanna (2009) had evaluated time 
period and deflection for the first two modes of 
vibration of visco-elastic rectangular plate for 
bi-directional thickness variation linearly. 
Khanna and Kaur (2012) had analyzed the effect 
of varying non-homogeneity constant on 
thermally induced vibrations of non-
homogeneous rectangular plate. 

In this study, authors are dealing with 
linearly varying thickness and linearly varying 
temperature in both the directions. The 
frequencies for the first two modes of vibration 
are obtained for clamped (C-C-C-C) 
homogeneous rectangular plate by Rayleigh Ritz 
method. The authenticity and accuracy of 
numerical results of the present work has been 
verified with the published paper9. Results are 
presented in form of graphs. 
 
ANALYSIS OF MOTION 

Equation of motion for isotropic 
rectangular plate in Cartesian coordinate is [11]: 
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  is the flexural 

rigidity of the plate’s material, 
�D  is visco-

elastic operator , W = W(x, y) is the deflection 
function,  is poisson ratio,  is mass per unit 
volume and d is thickness of the plate. 

Taking deflection w as a product of two 
functions10 as: 
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                                 (2.2) 
where T(t) is a time function. 
Substituting the equation (2.2) into 

equation (2.1), one obtains 
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Taking both sides of equation (2.3) 

equals to a constant 2, we have  
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These are the differential equations of 

motion (2.4) and time function (2.5) for 
rectangular plate of variable thickness in 
Cartesian coordinate respectively. 

It is assumed that thickness of the 
rectangular plate varies linearly in both 
directions, i.e. 
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                                     (2.6) 
where a & b are length and breadth of 

rectangular plate respectively and β1 & β2 are 
taper parameters in x-direction and y-direction 
respectively.  

Authors also assumed bi-linear 
temperature variations as: 
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where  denotes the temperature excess 

above the reference temperature at any point on 
the plate and 0  denotes the temperature excess 
above the reference temperature at x = y = 0.  

The temperature dependence of the 
modulus of elasticity for most of engineering 
materials can be expressed as follows: 
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            (2.8) 
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where E0 is value of the Young’s 
modulus at reference temperature i.e.  = 0 and 
 is slope of variation of E and . On using 
equation (2.7) in equation (2.8), one obtains 
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where,  =  0 (0 ≤  < 1) is thermal 
gradient. 

On substituting the values of d and E 
from equations (2.6) and (2.9), the expression of 
flexural rigidity (D1) becomes: 
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SOLUTION OF FREQUENCY EQUATION  

Rayleigh Ritz technique is applied to 
solve the Frequency equation. In this method, 
one requires maximum strain energy (Ev) must 
be equal to the maximum kinetic energy (Ek). So 
it is necessary for the problem under 
consideration that 
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all the four edges, so the boundary conditions 
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Corresponding two-term deflection 

function can be taken as10 
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The expressions for kinetic energy (Ek) 

and strain energy (Ev) are 
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On using equations (3.5) & (3.6) in 

equation (3.1), one gets 
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   is a 
frequency parameter.   

Equation (3.4) consists two unknown 
constants i.e. A1 and A2 arising due to the 
substitution of W. These two constants are to be 
determined as follows: 
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On simplifying equation (3.10), one gets 

 
bn1 A1 + bn2 A2 = 0, n = 1, 2                      (3.11) 

where bn1 and bn2 include parametric 
constant. 
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RESULTS AND DISCUSSION 

For calculating the values of frequency 
() for two modes of vibrations of a rectangular 
plate with different values of thermal gradient (α), 
taper constants (β1 and β2) and aspect ratio (a/b), 
the following material parameters are used for an 
aluminum alloy duralumin reported at 2007: E = 
7.08*1010 N/M2, ρ = 2.80*103 Kg/M3,   = 0.345. 
The thickness of the plate is taken at the center as 
d0 = 0.01m. 

Various cases of frequencies against 
thermal gradient, taper constants and aspect ratio 
which are stated as below were considered: 
 
Frequency versus Thermal gradient 

Figures 4.1(a) and 4.1(b) show the 
numerical results of frequencies for the variations 
in thermal gradient. For different combinations of 
taper constant i.e. (i) β1 = 0.0, β2 = 0.0, (ii) β1 = 
0.0, β2 = 0.4, (iii) β1 = 0.4, β2 = 0.2, and (iv) β1 = 
0.8, β2 = 0.4, authors can easily conclude that 
frequency increases as taper constant increases but 
it decreases continuously as thermal gradient α 
increase from 0.0 to 1.0 for first two modes of 
vibrations. 
 
Frequency versus Taper constant (1) 

From figures 4.2, authors conclude that 
frequency increases continuously as taper 
constants β1 increases from 0.0 to 1.0. For the 
fixed values of thermal gradient (α = 0.2), 
frequency continuously increases as β1 increases 
from 0.0 to 1.0 for both the modes of vibrations 
for the following cases: (i) β2 = 0.4 and (ii) β2 = 
0.8 and for the fixed values of thermal gradient.  
 
Frequency versus Taper constant (2) 

From figures 4.3, authors conclude that 
frequency increases continuously as taper constant 
β2 increases from 0.0 to 1.0. For the fixed values 
of thermal gradient (α = 0.4) frequency 
continuously increases as β2 increases from 0.0 to 
1.0 for both the modes of vibrations for the 
following cases: (i) β1 = 0.2 and (ii) β1 = 0.6.  
 
Frequency versus Aspect ratio (a/b) 

From figure 4.4(a) and 4.4(b), one can 
clearly observe that frequency increases 
continuously as aspect ratio increases from 0.5 to 
2.5 for different values of thermal gradient and 

taper constant (β1 and β2) for both the first two 
modes of vibrations for the following cases: 

(i) α = 0.2, β1 = 0.0, β2 = 0.0, (ii) α = 0.8, 
β1 = 0.2, β2 = 0.4 and (iii) α = 0.2, β1 = 0.6, β2 = 
0.6. 

It can be observed that as the combined 
values of β1 and β2 increases for fixed values of α, 
both the modes of frequency increase rapidly. 

 
CONCLUSION 

On comparing the results of the present 
paper with [9], authors conclude that frequencies 
for both the modes of vibration are slightly greater 
for the corresponding parameters in the present 
paper. Engineers or practitioners are advised to 
analyze the numerical finding of the present paper 
to get the required values of frequency by 
appropriate tapering of plates. The main aims of 
the authors in the paper is to provide a kind of 
mathematical design so that scientists can perceive 
their potential in mechanical engineering field & 
increase strength, durability and efficiency of 
mechanical design with a practical approach with 
higher level of safety and economy. 
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Graph 4.1: Frequency versus Thermal gradient 
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Graph 4.2: Frequency versus Taper constant (1) 

 
Graph 4.3: Frequency versus Taper constant (2) 
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Graph 4.4: Frequency versus Aspect ratio (a/b) 


