Available online at <u>www.pelagiaresearchlibrary.com</u>

Pelagia Research Library

Advances in Applied Science Research, 2011, 2 (6): 498-504

Studies on X – doped (X = Al, Zn and Cu) and undoped Lead Iodide single crystals relating to XRD

D. S. Bhavsar

Research Department, Department of Electronics, Pratap College, Amalner, India

ABSTRACT

X – doped (X = Al, Zn and Cu) and undoped Lead Iodide crystals were grown by gel technique by single diffusion method. After the complete growth of X – doped and undoped Lead Iodide crystals in test tube, they were taken out carefully from the test tube. Then, they are washed with acetone and dried for whole night under light. Then, they are crushed in a size of 150 mesh. Asgrown crystals were subjected to XRD, lattice parameters, hkl plane and structure compared and reported.

Keywords: Gel technique, XRD.

INTRODUCTION

Band gap of Lead Iodide crystals is about 2.55 eV having layered structure similar to Cadmium Iodide, atoms are located in layers of Pb and I perpendicular to c-axis in the succession I-Pb-I-I-Pb-I. Compounds exhibiting a structure of this kind possess a strong intralayer bonding, ionic in nature. Whereas Lead Iodide is highly insulating material with a resistivity of about 10¹² ohm-cm. Variours properties has been studied by different researchers.

In the present course of investigation it has been decided, on the preliminary view, to study on X – doped and undoped Lead Iodide single crystals especially on XRD.

MATERIALS AND METHODS

X - doped (X = Al, Zn and Cu) and undoped Lead Iodide single crystals have been synthesized by gel method. A.R.grade chemicals were used throughout the work. Acetic Acid (5 ml) was taken in the beaker, drop by drop, Sodium Metasilicate added with constant stirring by magnetic stirrer till 4 pH obtained. Then Lead Acetate and Aluminium Chloride (5 ml each) added in the

D. S. Bhavsar

above mixture with constant stirring. These mixtures poured in the test tube. The mouth of the test tube covered by cotton. After 10 to 12 days gel get set. Then, Potassium Acetate poured slowly over the set gel. After 10 days crystals were takent out from the test tube. These crystals are crushed in a uniform size (150 mesh). The Xray diffraction patterns of the deposited films were recorded with the help of X-ray diffractometer (Philips PW XL-1730) using CuKa radiation Ni filter (1.5418 Å). The XRD patterns of all the films were taken from 20 to 90⁰ (2 θ). The peaks of the patterns were searched by computer programming method. Similar procedure were adopted for Zn and Cu doping.

RESULTS AND DISCUSSION

X-ray diffraction

X-ray diffractometry is useful in analyzing crystal structure, evaluation of 'd' values, cell parameters, system to which the sample under study belongs, grain size, microstrain, reflecting planes etc. Records of X-ray powder diffraction patterns of these samples, doped and undoped Lead Iodide crystals, under identical conditions signifies that the samples belongs to hexagonal system and are crystalline in nature. Fig. 1, 2, 3, and 4 represents an X-ray diffractogram of undoped and X-doped (X= Al, Zn and Cu) respectively. Similar X-ray diffractogram were obtained for undoped Lead Iodide crystals [1]. The observed and calculated 'd' values are given Table 1. 2, 3 and 4 for undoped and X-doped (X= Al, Zn and Cu) Lead Iodide crystals respectively.

The lattice parameters 'a' and 'c' of all the samples are well matching with the ASTM data of Lead Iodide. It may be seen from this table that the unit cell volume is sensitively affected by dopant concentrations. Similar results were given for CdS [3]. As seen from Fig.3, the height of peaks goes on increasing as the dopant concentrations increases for Cu-doped Lead Iodide crystals while Fig. 2 and Fig. 3 depicts the height of peaks decreases as the dopant concentrations increases for Al-doped and Zn doped Lead Iodide crystals respectively.

Explanation of doping

Effect of dopant concentration on lattice parameters may be explained as follows (i) Al-doped in the form of Al-acetate presumably dissociates into aluminium ion and acetate ion. Aluminium ion (ionic radius=0.5 Å) might be replacing lead ion maintaining the charge neutrality. As the radii of the substituted ions are shorter than the replacing ions, the lattice parameters and the unit cell volume remain unaltered at lower concentration in the lead iodide crystals, (ii) at higher Al dopant concentration (above 0.1M), the non-isoelectronic substitution may results in the creation of cation vacancies. The substitution of aluminium ions at cation site leads to the creation of cation vacancies. The vacancies so created in the lattice might be responsible for the increase in the values of unit cell volume and (iii) as the lead iodide crystals are layered structures, the doping affects more in 'c' lattice parameter than 'a' lattice parameter as seen in the Table 2.

Similar arguments may apply to Cu-doped and Zn-doped Lead Iodide crystals

T 11 1 XZ	1 1.66 4.	1 (7 1	T 1 1 1 1
Table I X-ray	powder diffraction	1 data (Lead	lodide crystals).

'd' valu	ies	I/I _o	hkl plane	
diffractogram	computer			

D. S. Bhavsar

3.5036	3.5269	92	002
2.6496	2.6297	66	102
2.3540	2.3512	65	003
2.0299	2.0199	54	103
1.9163	1.9138	30	112
1.7634	1.7634	100	004
1.7323	1.7220	33	202
1.6407	1.6363	33	113
1.6040	1.6100	26	10.4
1.4700	1.4594	29	211
1.3955	1.3946	46	114
1.3774	1.3738	28	212
1.3232	1.3284	80	300
1.2624	1.2595	26	213

'd' values						I/I _o			hkl plane		
diffracto	. computer	r diffracto	. compute	r diffracte	ed. computer	0.1 A	Al 0.5	Al 1Al	0.1 Al	0.5 Al	1Al
3.5588	3.5395	3.5310	3.5310	3.5588	3.5395	24	51	92	002	002	002
2.6804	2.6350	2.6694	2.6315	2.6804	2.6350	33	61	100	102	102	102
2.3779	2.3597	2.3659	2.3540	2.3779	2.3597	82	93	66	003	003	003
2.0386	2.0253	2.0299	2.0217	2.0386	2.0253	31	35	63	103	103	103
1.7698	1.7698	1.7634	1.7655	1.7698	1.7698	100	43	81	004	004	004
1.6515	1.6391	1.3955	1.3956	1.3992	1.3977	17	100	63	113	114	113
1.3992	1.3977	1.1210	1.1247	1.3264	1.3326	24	37	68	114	221	310
1.3264	1.3326					32			105		
1.1231	1.1248					23			221		
1.1190	1.0946					22			310		

Table 3 X-ray powder diffraction data (Zn-doped Lead Iodide crystals)

	'd' values						I/I _o hkl plane				
diffracto.	computer	diffracto.	computer	diffracto.	computer	0.1 Zn	0.5 Zn	1 Zn	0.1 Zn	0.5 Zn	1 Zn
3.4502 2.6496 2.3540 2.2962 2.1892 2.0213 1.9087	3.4514 2.6292 2.3528 2.2875 2.1752 2.0166 1.9067	3.5588 2.6961 2.3901 2.0473 1.7762 1.4030 1.3279	3.5524 2.6449 2.3682 2.0328 1.7762 1.4029 1.3225	3.5310 2.6649 2.3659 2.0299 1.9163 1.7634 1.7323	3.5310 2.6361 2.3540 2.0238 1.9198 1.7655 1.7277	09 24 79 18 09 18 10	18 31 62 29 43 100 33	24 26 74 18 13 100 14	$ \begin{array}{c} 1 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 3 \\ 2 & 0 & 1 \end{array} $	$\begin{array}{c} 0 \ 0 \ 2 \\ 1 \ 0 \ 2 \\ 0 \ 0 \ 3 \\ 1 \ 0 \ 3 \\ 0 \ 0 \ 4 \\ 1 \ 1 \ 4 \\ 2 \ 0 \ 4 \end{array}$	$\begin{array}{c} 0 & 0 & 2 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 0 & 3 \\ 1 & 1 & 2 \\ 0 & 0 & 4 \\ 2 & 0 & 2 \end{array}$
1.7571 1.5131 1.4617 1.3919 1.3774 1.3200	1.7571 1.5127 1.4646 1.3935 1.3777 1.3208			1.6407 1.3955 1.3810 1.3297 1.3232	1.6405 1.3976 1.3787 1.3304 1.3304	100 10 11 19		15 22 15 15 26	$\begin{array}{c} 0 \ 0 \ 4 \\ 2 \ 0 \ 3 \\ 2 \ 1 \ 1 \\ 1 \ 1 \ 4 \\ 2 \ 1 \ 2 \\ 3 \ 0 \ 0 \end{array}$		$ \begin{array}{r} 1 & 1 & 3 \\ 1 & 1 & 4 \\ 2 & 1 & 2 \\ 3 & 0 & 0 \\ 1 & 0 & 5 \\ \end{array} $

	'd' values							I/I _o			hkl plane		
diffracto	. computer	r diffracto	. compute	er diffracto	. computer	0.1Cu	1 0.5C	u 1Cu	0.1Cu	0.5Cu	1Cu		
3.5036	3.5269	3.5588	3.5524	3.5036	3.5269	73	32	92	002	002	002		
2.6496	2.6407	2.6804	2.6513	2.6496	2.6297	82	49	66	102	102	102		
2.3540	2.3512	2.3779	2.3682	2.3540	2.3512	83	90	65	003	003	003		
2.0299	2.0249	2.0473	2.0357	2.0299	2.0199	61	32	54	103	103	103		
1.7634	1.7634	1.7698	1.7762	1.9163	1.9138	100	100	30	004	004	112		
1.3919	1.3946	1.3992	1.3863	1.7634	1.7634	58	21	100	114	105	004		
1.3232	1.3284	1.3297	1.3297	1.7323	1.7220	77	36	33	300	300	202		
				1.6407	1.6363			33			113		
				1.6040	1.6100			26			104		
				1.4700	1.4594			29			211		
				1.3955	1.3946			46			114		
				1.3774	1.3738			28			212		
				1.3232	1.3284			80			300		
				1.2624	1.2595			26			213		

Table 4 X-ray powder diffraction data (Cu-doped Lead Iodide crystals).

 Table 5 Effect of preparative conditionons lattice parameters

Compound	dopant concentration	Lattice	parameters			
-	(molar)	a (Å)	c (Å)	c/a	$V(Å)^3$	
Deported		1 575	6 080	1 5 2 7 7	126 60	
Reported	-	4.373	0.989	1.5277	120.09	
Undoped	-	4.575	7.0357	1.5379	127.53	
Al-doped	0.1	4.575	7.079	1.5473	128.32	
Al-doped	0.5	4.575	7.062	1.5436	128.01	
Al-doped	1.0	4.575	7.079	1.5473	128.32	
Zn-doped	0.1	4.575	7.0285	1.5363	127.40	
Zn-doped	0.1	4.575	7.1047	1.5529	128.78	
Zn-doped	0.1	4.575	7.062	1.5436	128.01	
Cu-doped	0.1	4.575	7.0545	1.5420	127.87	
Cu-doped	0.1	4.575	7.1047	1.5529	128.78	
Cu-doped	0.1	4.575	7.0537	1.5418	127.86	
Interación in a						

Intensity in cps

Fig. 1 X-ray diffractogram for undoped Lead Iodide crystals Intensity in cps

Fig. 2 X-ray diffractogram for Al-doped Lead Iodide crystals (from top 0.1, 0.5 and 1 Molar concentration)

Fig. 3 X-ray diffractogram for Zn-doped Lead Iodide crystals (from top 0.1, 0.5 and 1 Molar concentration)

Fig. 4 X-ray diffractogram for Cu-doped Lead Iodide crystals (from bottmm 0.1, 0.5 and 1 Molar concentration)

CONCLUSION

1) Lattice constants 'a' and 'c' and hence the unit cell volume are sensitively affected by the dopant concentrations

2) Unit cell volume tends to increase with dopant concentrations

3) There is no dilation of the unit cell along 'a' or 'c' direction as the ratio of 'c/a' is almost constant.

Pelagia Research Library

503

4) The addition of $CuCl_2$ into PbI_2 in the present case is considered to enhance the atomic rearrangement by creation of Pb vacancies.

Acknowledgement

We are grateful to Dr.S.R.Chaudhari, Principal, Pratap College, Amalner for providing the laboratories facilities. The authors are thankful to Dr.Deore, Dr.N.R.Shah and Dr.M.S.Patil for fruitful discussions and Dr.P.P.Patil for X-ray diffractograms, Head, Department of Physics, North Maharashtra University, Jalgaon.

REFERENCES

[1] J. Eckstein, B. Erler and K.W. Benz, *Mat. Res. Bull.* Vol. (1992) 27 537.

[2] D.S.Bhavsar, Archieves of Physics Resarch, 2011 2 (1) 99-106

[3] Patil L.A., Wani P.A., Cryst.Res.Technol. (2001) 36 (4-5) 371-378