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ABSTRACT

We study compartmental epidemiological models of the form x = A(x)x, xO0", where A(x)is the so called

MetZer matrix. We prove that for such systems there exist an energy function V (x) which can be used to establish
the stability of the critical points of the system.

Mathematical models describing the evolutionanjdgical systems constitute a rich theory with a eviceld of
applications. It provides a way to examine the piaé effects of the proximate biological and belbaal
determinants of epidemic outbreak dynamics.

Epidemic outbreak is the occurrence in a commumitsegion of cases of an illness clearly in exadssxpectation.
On the other hand the incidence of a disease iauh#er of new cases per unit time and plays amwitapt role in
the study of mathematical epidemiology. Thieme &adtillo-Chavez [1] have proposed that the gerferah of a

population size dependent incidence should bee/mr'mtsBC(N)%l , WwhereSand| are respectively the numbers of

susceptibles andinfectives at any given timé, [ is the probability per unit time of transmittingetilisease between
two individuals taking part in a contacC(N), is the unknown probability for an individual take part in a

contact. C(N)is usually called the contact rate, on the otherdh@C(N) represents the average number of

contacts of an individual per unit time and is nfteferred to as thadeguate contact rate. An adequate contact is a
contact that is sufficient for transmission of thiection from and infective to a susceptible. the popular literature
the adequate contact rate is of two forms. Oneinisatly proportional to the total population sikg i.e.

C(N):,BN , hence the corresponding incidence is bilinear eqdals ﬁN%I =9, the second form is a

constant, sayl and the corresponding incidenceis%l , called the standard form. When the total popoitesize

N is not too large, we expect the number of conta@de by an individual to increaseMsncreases. In this case
the linear adequate contacts rAté is suitable. However when the total population $zquite large, it is expected

that the number of contacts made by an infectiveupi time would be limited a increases and as such the linear
contacts rat@N is not suitable and the constant adequate coratefir may be more realistic.

Our objective is to show how mathematical modestglies have contributed to our understanding efdnamics
and the disparities in the global spread of diseA¥e have standard convention labels for three majo
compartments; namel§ (for susceptible)l, (for infections) andR (for recovered). We therefore call this model the
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SIR model. The SIR is dynamic in the sense thatiddals are born susceptible, then may acquireirtfections
(move into the infections compartment) and finalgover (moved into the recovered compartment).

For the present study we consider the SIS modedusecit is easy to generalize it toradimensional SIS group
model.

1.1 THE SSISMODEL

Susceptibles Infectives

We observe that certain infections do not confegliasting immunity and as such do not have a re@avstate [4].
This means that individuals in the population bee@usceptible again after infection. The matherabtimdel for
the SIS model is written

S=-49 +yl
I =49 -yl

1(0)=1,>0,5(0=5,>0 1.1

With S+1 =0 = S(t)+1(t) = N. Since the population is constant it suffices tovnig(t) which can be obtained
from the first order ordinary differential equatjon

. _ _ 2
[ =(BN=-y)I -pI 1.2
The exact solution for the above is given by;

1(t)= 5 +[1 1/} Je—(ﬂN—y)t, I, =1(0)

AN=V o ANy 1.3
We observe that for this model;
(i) AN o liml(t)=0 (ii) BN Iiml(t):’BN_y

' o 4 o B 14

2.0 Generalization of the SISmodel

For many infectious diseases the transmission ecdénr a heterogeneous population, in this case the
epidemiological model must divide the populatiotoirsubpopulations or groups, in which the membergeh
similar characteristics. This division into grougen be based not only on mode of transmissionacbmpatterns,
latent period, infectious period, genetic suscéfititor resistance, and amount of vaccination lemotherapy, but
also on social, cultural, economic, demographiogesgraphic factors. This is the rationale for ititeoduction of
multi-group models. In the epidemiological liten@ythe term “multi-group” usually refers to thevidion of a
heterogeneous population into several homogeneoospg based on individual behaviour. The interest i
multigroup endemic models originally stems fromusxransmitted diseases such as gonorrhea or HIDSA

We consider here a system consistinghajroups with constant population size and a disedseh confer no
immunity after recovery.
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We model the contact by the mass action Iaw.S_eand |i be respectively the number of susceptible and
infectives in the group Our model now reads;

n

Z MURIAL
| Z% ~(u+r)
N =S+l, i=12,..n

15

For the purpose of recasting the above systematrixrform, we write;
: B;
S = 4N - 4S - Z N 3l
1-1

I-i:jzi;%a|i—(yi+yi)li 1.6

and we letx :ll\l_l [3’”. =BN;, a, = i + ), giving the following systems of differential edjaas;

% =(1-%) 2 By —ax i=12.n
j=1 1.7
If we define
?11 ?12 ?m -, 0 - 0
8=(8). =% P= " Prl D-diaga)=| O %0

ﬁnl ﬁnz ﬁnn 0 O —O'n

the above equation can be recast in matrix form as;

x =[ D+B~diag(x)B]x 18

which can also be written;

x =[ D +diag(1-x)B]x 19

2.1 Définition
A matrix A:(qj)nxn, n= 2is called irreducible if for any proper subset]of {1n} there areildO,

andj U Osuch thata; #0.
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2.2 Definition
A Metzler matrix A:(aj) ,N22 is a matrix such thag, >0,0i # j [3,5,9]. These matrices are also called

nxn

quasi-positive matrices.

2.3 Remark

1.In the above model the matifkdescribes the contact interaction between groups.

2.The irreducibility of the matri¥8 implies that no group is contact isolated in andfoom the remaining groups.
3.In the system (1.9) the matri@ is a stable Metzler matrix and describes the femnsf individuals out of
compartments.

4.The termB —diag(x) B represents the disease transmission, B/@imonnegative irreducible matrix.
5.Metzler matrices arise naturally in compartmentatleis and hence their preference in the presedy.stu

2.4 Equilibrium
The equilibrium of the system is given by
x=[D+B-diag(x)B]x=0
— A — : — -1 -1 _ -1
= x=0,D+B-diagx)B=0 = diagx)=DB*+BB™"=DB"+1 110

SinceD is diagonal then clearly the matrB™ + 1 must be a diagonal matrix and hence the remairdodilerium
points can be picked out easily. We will also bteriested inendemic equilibrium points which are essentially
steady state solutions of (1.9) where the diseassgts in the population (all state variables fgiasitive).

2.5 Thebasic reproduction number
The basic reproduction number denotégis a key concept in epidemiology and is definedpynas the number

of new cases of infection caused by a typical i@cindividual in a population of susceptible onikhis
terminology is quite common in most literature be subject. [1,2,6]. For the purpose of giving ecige definition

of U, we need to define the spectral radju(sA) of a matrixA given by;
p(A) =max{|A] :A 0 Spe¢A)}

Where Sped A) is the spectrum oA.
Moreover the matrix-D B will be referred to as the next generation matagaading to [§. We now define the
basic reproduction numbas O, = p(—D'lB).

2.6 Theorem
Given O, >1, there exists a unique endemic equilibrium X satisfying;

X = -D'BX +diag(X) D'BX
Furthermore the search for an endemic equilibriumis equivalent to finding the fixed point of a map
F:[0" - [0,4" where F (x) =[ diag(1- D*Bx)]" (-DB)x.

Proof
We observe that if an endemic equilibrium existaiitst belong to the s@ : diag(f) =DB'+ 1} .Hence

X = -D™'BX +diag(X) D'BX

= X=-D"Bx+(DB™+1)D'BX

= X=-D"BXx+DB'D'BX+ D 'BX

We observe that sind2 is a diagonal matrix then;
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DB'D™BXx =B 'DD™BX =B BX = X
And the result follows.

On the other hand an endemic equilibrium satisfies;

(D +B) X = diag(X) BX

Equivalently,

%+ diag(X)(-D™BX) = X+ diad -D™'BX) X
=-D7'BX

We can thus write;

1+diag(-D™'BX) |X = -D™'BX
[ 1+ diag(-D 8%

It then follows that;
-1

X = [1+ diag(—D*Bi)J (-D7B)x

If we define F (x) = [diag(l— D'le)T(—D'lB) x then the last equation beconfefx) = x as required.]
The proof of the uniqueness of the endemic equilibiis provided in [9].

2.7 On the stability of the equilibrium
For arbitrary dimensional systems, the most efficimethod is the Lyapunov method. In particular ltiyapunov
function

V(x)= :la(x ~XInx)

has been applied successfully to Lotka-Volterra J(¥odels [7]. It turns out that epidemic models dan
transformed to fit LV models and hence the abovapyov function can be applied in stability stud@ssuch

models. However for the general systens A(x) X, x0O0 "where A(x) is a Metzler matrix we state and prove
the following stability result.

2.8 Theorem (Lyapunov)
Given Q an open set containing the origin, which is positively invariant for the system
X = A(x)x, x O0 "where A(x) is a MetzZler matrix, depending continuously on x . We assume there exists

¢" 0 Osuchthat cTA(x)D 0 OxOQ,x # 0. Thentheoriginis globally asymptotically stableon Q .

Proof

We consider oM the Lyapunov function

V(XFZC.I&I

Furthermore we define, =sign(x), so thatjx | =&, x.
Hence

V(x)=3 08, %

i=1
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The above function is locally Lipschitz and the derivative [8] is given by

n

V(X)@%*‘Z £ 2A%

:stlxj {Cjajj +ZC xa11:|
Zn:e‘ X, {ca +an”}:zn:|xj|(cTA)j <0
j=1 j=1

i#j

Sincec’A(x) 00nQ, thenV is negative definite’]

For the system (1.9), the global stability of thedemic equilibrium was proved in [9], and such itl wot be
considered here.

CONCLUSION

We have shown in this work how to generalize th® &pidemic model to a multi group epidemiologicaidwel
which divides the population into subpopulationsyidnich the members have similar characteristi¢e fiesulting
mathematical model is an-dimensional system of equations involving the alled Metzler matrix. The
equilibrium of the system and a stability resuttypded.
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