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Abstract

Background: In pediatric clinical trials and cohort studies,
actual height and weight of children at a specific age may
be required for certain developmental assessments such
as energy expenditure. This necessitates the choice of a
growth model with desired characteristics to predict
height and weight accurately.

Methods: We compared two commonly used growth
curve models, namely, Logistic and Gompertz models,
with respect to the distribution of their residuals as well
as the logistical challenges in model convergence using
the US and Turkish Growth Curve Standards for the first 3
years of life. We compared the model results in terms of
the size of the residuals as well as prediction standard
error for each data source, for each anthropometric
measurement, namely, height and weight, for each
gender, and for each modeling parameterizations. We
also compared these models under missingness.

Results: We have shown that Gompertz model with only
the first parameter is defined with a profile specific
random term as well is the best model in terms of
prediction accuracy. Although the same Gompertz model
fitted on each individual profile without a random term
also has similar prediction accuracy, it has much inflated
standard error of estimation, thus, not recommended to
be used.

Conclusion: We conclude that Gompertz model with only
the first parameter is defined with as a random effect
performs the best with and without missing data for both
height and weight growth in the first three years of life.

Keywords: Growth curve; Growth models; Early child
development; First years of life

Introduction
Assessing the anthropometric and cognitive development of

children is among the most important primary aims of

pediatric clinical trials and cohort studies. Having standardized
growth curves for the population in which such studies are
conducted is essential to form a comparison platform for the
study population against the general population. To address
such requirements and to monitor developmental changes of
the whole populations over time, Center for Disease Control
(CDC) of the United States undertook an effort to generate
standard growth curves for the US population in 1970s [1-7].
Such efforts also took place in describing growth curve for
international populations as well [8-12]. Ozturk et al. proposed
growth charts for Turkish children aged 0-18 years [13].

In pediatric clinical trials and cohort studies, actual height
and weight of children at a specific age, say 24-months, is
required for certain developmental assessments such as
energy expenditure. More often than not, study participants
may not have anthropometric measurements exactly at that
time point of interest, or may have them at a close
neighbourhood of that time point of interest, say ±3 months,
etc., and the predictions of anthropometric measurements
must be made to obtain measurements at those exact time
points. This necessitates that a growth curve models with
desirable prediction characteristics be chosen.

Our goal in this research is to compare two most commonly
used growth curve models in literature in terms of their
prediction precision using growth standards for the US and
Turkish pediatric populations.

Materials and Methods

Models and statistical methods
We begin by presenting the two most commonly used

growth curves in literature for pediatric growth.

Gompertz function as a growth curve model
In growth curve modeling, Winsor in 1932 introduced the

Gompertz function as shown below:��� = �1exp exp(�2)exp(�3���)− 1�3 + ���
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where ��� is the growth measurement of interest in subject-i
at time���. We use ��� as the measurement times may be
potentially different for each subject [14].

For each of the parameters in the above function, we can
assume patient specific random deviation to better fit
individual profiles, where the model becomes:��� = (�1+ �1�)exp exp(�2+ �2�)exp((�3 + �3�)���)− 1�3 + �3�+ ���
Logistic non-linear as a growth curve model

Lindstrom and Bates in 1990 and Pinheiro and Bates in 1995
proposed the following logistic nonlinear model:��� = �11 + exp −(��� − �2�3 + ���

where is the growth measurement of interest in subject-i at
time [15]. Similarly as above, we can define patient specific
deviation for the other two parameters as well, which results
in the following function:��� = �1 + �21 + exp −(��� − (�2 + �2�))�3 + �3� + ���

As we see, the logistic function is a simpler function
compared to the former, which will make its model fitting
computationally much easier.

Both of these functions are non-linear functions and we
used the following parameterization for modelling:

None of , and had random effects; that is, each participant
had its own individual model fit (Model-0);

Only had a random effect () (Model-1);

Only had a random effect () (Model-2);

Only had a random effect () (Model-3);

Both and had random effects (Model-4);

Both and had random effects (Model-5);

Both and had random effects (Model-6);

All , and had random effects (Model-7)

The first model where none of , and had random effects was
fit using classical non-linear regression approach using the
NLIN procedure of SAS ® Version 9.4. All remaining seven non-
linear mixed-effects models were fit using the NLMIXED
procedure in SAS ® Version 9.4.

From each model, we extracted the predicted value for each
anthropometric measurement of interest at a given time point,
and its standard error. We then summarized these summary
measures across participants to compare the predictive ability
of the above-mentioned models.

To compare the prediction characteristics of the above
models further, we induced 20% missing data to the growth
profiles, fitted the models, and summarized the prediction
errors.

Growth data for the US and Turkish
populations.

For the US pediatric population, we utilized the growth
standards by Center for Disease Control (CDC, https://
www.cdc.gov/growthcharts). These growth standards were
originally compiled and proposed in 1977, and then revised in
2000 to address certain issues that the original growth curves
proposed in 19771.

For the Turkish pediatric population, we used three data
sources:

Data Source-1 (Family Medicine): Growth Charts at http://
www.ailehekimligi.com.tr/?CtrlCustom=HesapOlcum

Data Source-2 (Protective Family): Growth Charts at http://
www.koruyucuaile.gov.tr/cocuk/cocuklarda-yasa-gore-
buyume-egrisi-degerleri

Data Source-3 (Ozturk et al.): Growth Curves proposed by
Ozturk et al.[13].

From each of these sources, we extracted the growth curves
for 3rd, 10th, 25th, 50th, 75th, 90th, and 97th percentiles for the
first 3 years of life, and treated these percentiles as
‘individuals’ for modeling and model comparison purposes. In
the US growth charts, we had growth measures from birth (0-
month) to 36-months in 38 time points. For the Turkish data
sources, we had 12, 10, and 13 time points spanning from
Birth to 36-months generally having 3-month increment.

As these data on growth curve standards are publicly
available and obtained averaging the population of interest,
they include no human subject data and no protected health
information; therefore, no IRB review was required, and no
informed consent process was applicable.

Results
As the parameter estimation process is an iterative process

with non-linear models (especially the mixed-effects non-
linear models), converge becomes a major issue especially
when model parameterization becomes heavier. In Table 1, we
present a converge summary from which we conclude that
when more than one-parameter is coupled with its random
effect as well (i.e., in Models 4-7), we run into serious
convergence issue even with wider initial search grids provided
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for these models. Therefore, we will focus our attention to
Individual-Fit Model (Model-0) and one-random effects
models (Model 1-3).

Table 1 Model Convergence Summaries (X Represents Models That Had No Convergence Issues. (F: Female, M: Male, US CDC:
United States Center for Disease Control).

Variable Individual
Fit

β1 as a
random
factor

β2 as a
random
factor

β3 as a
random
factor

β1 and β2
as random
factors

β1 and
β3 as
random
factors

β2 and β3
as random
factors

β1 and β2
and β3 as
random
factors

L
o
gi
st
ic

Go
mpe
rtz

Logi
stic

Go
mpe
rtz

Logi
stic

Go
mpe
rtz

Logi
stic

Go
mpe
rtz

L
o
gi
st
ic

Go
mpe
rtz

L
o
gi
st
ic

G
o
m
p
er
tz

Logi
stic

G
o
m
p
er
tz

Logi
stic

G
o
m
pe
rtz

H
ei
g
ht

Family
Medicine

X X X X X X X X X X X X

F X X X X X X X X X X

Protective
Family

M X X X X X X X X X X

F X X X X X X X X

Ozturk et al. M X X X X X X X X X X

F X X X X X X X X X X X

US CDC M X X X X X X X X X X X X

F X X X X X X X X X X

W
ei
g
ht

Family
Medicine

M X X X X X X X X X

F X X X X X X X X X X

Protective
Family

M X X X X X X X X X X

F X X X X X X X X X X

Ozturk et al. M X X X X X X X X X X

F X X X X X X X X X X X X

US CDC M X X X X X X X X X X

F X X X X X X X X X

Individual-fit model gave overall the closest predictions
compared Models 1-3, where Model-1 was its best competitor
when only the predictions were considered (Table 2).

Table 2 Comparisons of Model Performance for modeling Height. (US CDC: United States Center for Disease Control).

Variable Logistics Gompertz Curve

Individual

Fit

β1 as a
random
factor

β2 as a
random
factor

β3 as a
random
factor

Individual

Fit

β1 as a
random
factor

β2 as a
random
factor

β3 as a
random
factor

Family
Medicine

Male Mean |
Residual| 0.36 0.41 1.49 0.73 0.28 0.35 1.00 1.63

Mean SE 0.53 0.17 0.64 0.33 0.43 0.15 0.44 0.68

Female Mean |
Residual| 0.54 0.55 1.42 0.90 0.50 0.53 1.38 2.01

Mean SE 0.90 0.41 0.63 0.56 0.85 0.40 0.69 0.92
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Protective
Family

Male Mean |
Residual| 1.15 1.17 2.20 1.41 1.01 1.03 1.71 2.37

Mean SE 2.05 0.58 1.05 0.71 1.82 0.52 0.78 0.98

Female Mean |
Residual| 0.90 0.93 2.05 1.08 0.77 0.81 1.51 2.22

Mean SE 1.47 0.45 1.01 0.56 1.26 0.39 0.68 0.95

Ozturk et al. Male Mean |
Residual| 1.04 1.04 2.34 1.30 0.89 0.89 1.36 1.79

Mean SE 1.55 0.39 0.86 0.51 1.32 0.33 0.54 0.68

Female Mean |
Residual| 0.82 0.82 2.02 1.06 0.68 0.69 1.32 1.81

Mean SE 1.22 0.31 0.76 0.43 1.01 0.25 0.52 0.67

US CDC Male Mean |
Residual| 0.95 0.95 1.88 1.12 0.83 0.84 1.22 1.66

Mean SE 1.30 0.23 0.45 0.29 1.14 0.20 0.31 0.39

Female Mean |
Residual| 0.82 0.83 1.72 0.99 0.71 0.72 1.16 1.62

Mean SE 1.12 0.20 0.41 0.26 0.96 0.17 0.29 0.38

However, Individual-fit model had much higher standard
error of estimates as expected due to the fact that it utilized
the growth data of an individual alone, while other models
utilized the entire growth data, where individuals were treated
as independent clusters. This same conclusion is valid for all
data sources and both Logistic and Gompertz-based models.
Therefore, we propose Gompertz Model-1 (i.e., the model
with Only β1 having a random effect (i.e., β1 + β1i)) as our best
model. This is illustrated in Figure 1 as well.

Figure 1 Mean absolute residuals and mean standard error
of predictions by data source, gender, and modeling
approach for height.

Both Table 2 and Figure 2 also show that Gompertz Model
performed much better both in terms of prediction and
standard error of predictions.

Figure 2 Mean absolute residuals and mean standard error
of predictions by data source, gender, and modeling
approach for weight.

We also compared these models in terms of prediction
characteristics in the presence of missing data in growth
profiles by inducing 20% missing data in each growth profile.
The results of these model comparisons under missingness is
provided in Figure 3 for height and the results for weight is
also in the same direction. As for the full profiles with no
missingness, again, Gompertz Model-1 has performed the best
among all with missing data as well.
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Figure 3 Mean absolute residuals and mean standard error
of predictions by data source, gender, and modeling
approach for height with 20% missing data in each profile.

Discussion
In generating population level growth curves, pediatric

population representing different segment of the general
population is followed over time, and the observed data is
smoothed using advanced statistical models so that growth
percentiles and standardized ratios such as Weight-for-height
ratio, etc. can be obtained for the population of interest. Once
growth percentiles are generated, they provide a comparison
platform to observe changes in growth characteristics of the
pediatric population over longer time intervals, say, over
decades, as well as to compare a given sub-population or a
study cohort with the general population such as comparing a
African American pediatric study cohort with the general US
populations, or comparing a cohort of autistic children with
the general pediatric population.

In finalizing the standard growth curves for a population, it
is expected that the choice of model is essential. In this study,
we compared two such models using already standardized
growth curves by considering those growth curve percentiles
as individuals. We have shown that Gompertz Growth Curve
model with only the first parameter defined with its random
effect (i.e., Model-1) performed the best in both the US and
Turkish pediatric populations in all Height, Weight, and Head
Circumference growth.

One of the main difficulties of these modeling approaches is
the issue of model convergence, especially with the models
with more than one random effects. To tackle this issue, we
utilized the model estimates from the simpler versions of
these more complicated models as much as possible. For
example, when we are fitting Model-4 where both beta-1 and
beta-2 have their random effects as well, we used the model
estimates for Model-1 and Model-2 as initial value of the
search grid for Model-4. This was helpful for some cases but
not all. Therefore, the complexity of determining a reasonable

search grid in parameter estimation of these growth
parameters still remains a challenge. However, even when the
converge issue is resolved, the resulting prediction and its
standard error was never better than those of Model-1, which
gives us additional assurance that the proposed model is still
the most reasonable. As expected, the convergence issue
becomes worse under missingness, which was our experience
as well in this study when we induced 20% missingness to each
profile. Only the single random-term models were able to have
acceptable convergence characteristics, thus, providing stable
parameter estimates.

We plan to expand this research to include comparisons of
the model under different types of missing data. Here, we are
using the term ‘missing data’ loosely in the sense that the
actual measurement may not be obtained at the time point
targeted. This becomes relevant especially in clinical trials and
cohort studies where a growth measure is required so that
certain developmental assessments such as energy
expenditure can be calculated.

Conclusion
It is common that some study participants may not have

anthropometric measurements at every time points pre-
determined in the study protocol. Generally, the obtained
measurements are at a close proximity of the targeted time
point; for example, a 2-year weight measurement can be
obtained ± 3 months of 2-years, say at 27 months. However, to
calculate the 2-year energy expenditure for that particular
child, a measure of weight is needed exactly at 24-month,
which necessitates that it be predicted for 24-month using all
other weight measurements for that child. In such predictions,
the choice of the underlying growth models becomes critical
and it may even be the case that different growth curve
models may perform differently in different populations due to
growth diversities. Therefore, this paper provides a working
approach to compare such models.
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