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ABSTRACT

Korobeinikov and Wake [9] introduced a family ofapyinov functions for three-compartmental epidengjicial
models which appear to be useful for more soplittat modeldn this paper we have reinvestigated the models of

Korobeinikov and Wake [9] with different incidenc@e basic reproduction numbéd , is identified and local

stability of the equilibrium states is discussedhe TGlobal stability of the equilibrium states isoped by
constructing a Lyapunov function. Some numericaliitions are given to illustrate the analyticabudts.
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INTRODUCTION

Population sizes of individuals are affected ndt/doy ecological interactions such as competitiprgdation, and
parasitism, but also by the effects of infectioisedses [6, 7]. Infectious diseases are said tof &S type if
individuals have no immunity after an infection, that susceptible move to the infective class winéected and
then back to the susceptible class after recoMérthere is temporary immunity in a recovered claser an
infection, then the disease is of SIRS type. An Bidtel is a special case of an SIRS model in wtiiehmmunity
is permanent, so that recovered individuals nesse their immunity.The incidence in an epidemiatagimodel is
the rate at which susceptible become infectious. fohm of the incidence rate that is used in tlssital Kermack-

Mckendrick model [8] is the simple mass actid®lwhere S and | denote the number of susceptibleérdectious,

I
respectively,A is called the infection coefficient. The standardidence isWWhere N is the total population

size andA is called the daily contact rate. Another kindrafidence is the saturation incidem(egf—ls where c is
a constant. When the number of susceptible S d®laompared to c that incidence is approximatekhls kind of
incidence was proposed by Anderson and May [1]. Wasearchers Esteva and Matias [5], Hethcote awthl[7],
Liu et al. [11] have proposed transmission laws/lrich the nonlinearities are more than quadragwegal different
incidence rates have been proposed by researchergdemic models. Different models for mutuallyensecting
species are also studied [12, 14]. A model of gmedator with a generalized transmission functmmuinsaturated
zone has been analyzed by Mehta et. al. [13]. Aahfoat Hepatitis C with saturated chronic infecti@te has been
studied by Ujjainkar et. al. [15]. One of the baaiw important research subjects in mathematiddeepology is
the global stability of the equilibrium states bétepidemic models. Generally, an epidemic modsiitadwo types

of equilibrium states. The first one is the disefase-equilibrium staté,,, whose global stability means biologically

118
Pelagia Research Library



S. Porwalet al Adv. Appl. Sci. Res., 2014, 5(1):118-126

that the disease always dies out. The second ot isndemic equilibrium stafe . Epidemiologically, if E'is
globally asymptotically stable, the diseasel wikersist at the endemic equilibrium levdl if is initially
present. Korobeinikov and Wake [9] introduced a ifanof Lyapunov functions for three-compartmental
epidemiological models and global stability of thiedemic equilibrium states is proved. In this paper have
reanalyzed the epidemic models of Korobeinikov rake [9] with vertical transmission and differentidences.

2. SIS model with vertical transmission and simplenass action incidence
Let S be the number of susceptible and | be thebeurof infective individuals with size N = S + lolfowing
Korobeinikov and Wake [9], the proposed model is

3—?=yN—/]SI— pl+dl-0S

2.1)

%=ASI—(5+0’+£— p) |

Sl
The simple mass action incidengkS| is used instead of the standard incide'gﬁe-. The parameters in this and

other models in this paper are:
J/ = Natural birth rate constant

O =Natural death rate constant

O =Recovery rate constant
& =Loss of immunity rate constant
P =Constant

& = Disease related death rate constant.

Equilibria of model (2.1) can be obtained by equatright hand side to zero. This provides two ehud: an
infection-free equilibriuns, = (§,, 1,) , with
N
==—, 1,=0
$=0 b
and an endemic equilibriufE’ = (S, I ), with
* N * 1
s=N =L(1__ JN-
otl, (og+¢) Uo
AN
o(0+o+&-py)

existence of the positive endemic equilibrium skate In order to get an idea of stability, the vanatmatrix of the
system (2.1) is

3= —(Al +0) —(AS+ py-9)
Y AS-(0+o+e-py) |

The parametet], = is called the basic reproduction number. The dadil], >1ensures

Theorem 2.1:If [, < 1, the infection-free equilibrium state, is locally stable; if L], =1, E; is stable and if
U,>1, E, isunstable.

Proof: For the equilibrium poink,, the variation matrix is

I = 7

. |
0 M- (rore-py)
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The corresponding eigen values are

A=-0, A :A%N—(J+J+£— py) .

AN
For stability A, and A, should be negative so that we obta’rﬁy— <(O0+o+e-py)ie  O,<1 Thus, if

g
U, < 1, the infection-free equilibrium state, is locally stable; if L1, =1, E, is stable; and ift]1,>1, E, is
unstable.

Global properties of the system (2.1) are givethayfollowing Theorem.

Theorem 2.2: The infection-free equilibrium staté&, of the system (2.1) is globally stabRroof: Consider a

Lyapunov function L =1 then the Lyapunov derivativel =1 =Qonly if 1=0. Thus, E, is globally
asymptotically stable.

Theorem 2.3: The endemic equilibrium statE of the system (2.1) is globally stable.

Proof: Consider a Lyapunov function

(S S|y (@re (11
u(s, I)_S(S* In Sj+(5+a+£— > I*( i In Tj (2.2)

which is defined and continuous for all S, | > Gnde applied to the system (2.1).It is easy tatsgtethe endemic

equilibrium stateE™ = (S, [ ) is the only extremum and the global minimum of tiection U (S, I) in Ri.
From system (2.1), it follows that

A" =yN+(0- p) I"'-0S'=(0+o+e- p) I (2.3)
In the case of system (2.1), using (2.3), the a¢itie of the functiorlJ (S, ) satisfies
u(s, |):6_U 5 Y
oS 4l
SD
:[1—€j[yN -ASI+(0-p) 1-09
(0+¢) I°
1-— |[ASI-(0+0+&- I
(5+a+£—py)( I [ ( P

=yN-ASI+(0- p)|-0S
O
—yN%+/]S”I—(J— ) I—S\;+JS§j

(0+¢) _1SP) - _p
(5+a+£—py)(/18| ASH) —-(o+&)(1-1Y)
_ B _S_SD
=[N p|)+5l][2 _S” _Sj

=—{(N- p|)+5l]é(1——ssgj
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That isU(S, 1)< Ofor all S, 1 >0 ensured by(N — pl)>0. SinceU(S, I)=0 holds only for S=S
and the endemic equilibrium stafe’ is the only invariant set of the system on the §= S, by the asymptotic
stability theorem [2] the equilibrium stafe is globally asymptotically stable.

3. SIRS model with vertical transmission and simplenass action incidence

In this section we consider the following SIRS miogih vertical transmission and simple mass actimidence.
In the SIRS model the total population is N = S + R, where R is the removed individuals. Using $laene
parameters as the analogous SIS model in sectiiwe 2jfferential equations are

3—?2y(N—pl)—x]Sl—aS+a F

dl

a:/lSH pyl=(og+9)I (3.1)
Ccll—I?:JI —aR-[yN-o(S+ )]

We assume that the population size N is constantiesdo not need an equation for the removed &agsus, our
model (3.1) becomes

O|—S:(y+a)N -ASl-(a+ p)|I-(a+0)S

3|t (3.2)
—=ASl-(c+0- |

p (o )

The equilibria of system (3.2) are: an infectioaefrequilibrium, = (S, ;) , with
aty
= N, 1,=0
=2,
and an endemic equilibriufE’ = (S, 1), with

g -{a+pN . (@+y) (1—1j|\|.
(a+o0), (a+0+09) Oo

(a+ AN
(a+0)(a+d-py)

U, >1ensures existence of the positive endemic equjiibri;tateE* .The variation matrix of the system (3.2) is

The parameter [, = is called the basic reproduction number. The dadi

given by

j= -Al+a+0) -(AS+a+ py)
- Al AS—-(c+5-p) |

Theorem 3.1:1f [, < 1, the infection-free equilibrium stafe, is locally stable; ifL] ;= 1, E, is stable and if
U,>1, E; isunstable.
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Proof: For the equilibrium poink,, the variation matrix is

—(a+0) {)I(CHVJNMH py}
a+o
B~ o+ :
0 /l( yjN—(a+5— py)
a+o

The corresponding eigen values are

N=—(a+0), A :A(aﬂ/jN —(G+3-py).
a+o
. . aty .
For stability A, and A, should be negative so that we obta]rEaTj N<(g+d-py) iel,<1Thus,
ag

if [,< 1, the infection-free equilibrium state, is locally stable; ifll,= 1, E, is stable; and if1,> 1, E;
is unstable.

Global properties of the system (3.2) are givethayfollowing Theorem.

Theorem 3.2: The infection-free equilibrium staté, of the system (3.2) is globally stablé€roof: Consider a

Lyapunov function L =1 then the Lyapunov derivativel =1 =Qonly if 1=0. Thus, E, is globally
asymptotically stable.

Theorem 3.3: The endemic equilibrium statE of the system (3.2) is globally stable.

Proof: After a small alteration, the Lyapunov function

g2 S g SN
V(S I)—S(§ InS)+(J+5_ > F(,] In,]) (3.3)

which is defined and continuous for all S, | > Gsleasy to see that the endemic equilibrium sEate= (S N ) is
the only extremum and the global minimum of thection V (S, 1) in Ri. From system (3.2), it follows that

ASTI"=(y+a)N-(a+ p) I"-(a+0)S'=(c+5- ) I (3.4)

In the case of system (3.2), using (3.4), the @dixe of the functioV (S, 1) satisfies

' ov , oV~
V(S l)=—S— |
(59 oS 4l

:[1—%]][(y+a)N—ASI—(a+ W) I-(a+0)9

o |
+m(1—Tj[ASI —(oc+o-p) ]

=(y+a)N-ASl-(a+ ) |-(a+0) S
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—(y+a)NS§D+ASDI+(a+ ) |—S\;+(a+o—)sD

g

*rrasoy Ui sP)-a(1- 19
=[(y+a)N-(a+ py) 11[2—5——53
N _mS[_SY
={N-pl)+a(N I)]Sm(l Sj

That isV(S, 1)< Ofor all S, =0 ensured by )N - pl) +a(N-1)]=0. SinceV/ (S, 1) =0 holds only
for S= S and the endemic equilibrium stafe is the only invariant set of the system on the &= S, by the
asymptotic stability theorem [2] the equilibriunatst E is globally asymptotically stable.

4. SIRS model with vertical transmission and noslinear incidence
Sl
Here we consider the SIRS model with vertical traigsion and the non- linear incidencel—. Using the

+al
parameters defined previousf, as the infection coefficient ané as the constant, the differential equations are

ds £ Sl

—=)(N-pl)-———=-0S+a R

dt 4 P) 1+ al

dl _ gSi

2 _ P2 - 4.1
" 1+al+pyl (g +9)l (4.1)
dR

EZJI —aR-[yN-o(S+ )]

We do not need an equation for the removed clasinRe the population size N is constant. Thus,noodel (4.1)
becomes

ds B S|

—= N-‘-=— | - S

o (y+a) 1+al (a+py)-(a+0) -
d _ BSl '
— = —(c+J-py)l

dt 1+al (@ bY)

The system of equations (4.2) possesses two equititpoints: an infection-free equilibriurkr, = (S), IO) , with

gz(a”’j N, 1,20

a+to

and an endemic equilibriufE’ = (S, 1), with

1
o L@+paradN (CHV)(l_DJN

(@+o)d, (a+y)aN)
((a+a+5)+ o J

(a+y)BN
(a+o)(o+d-py)

U, >1ensures existence of the positive endemic equilibrstateE .

is called the basic reproduction number. The dwdi

The parameter U, =

123
Pelagia Research Library



S. Porwalet al Adv. Appl. Sci. Res., 2014, 5(1):118-126

The variation matrix of the system (4.2) is

_[ B [ BS
(1+al +a+a) ((1+al P +a+ pyj

B BS

1+al (1+al ¥

—(g+o-py)

Theorem 4.1:1f [, < 1, the infection-free equilibrium stafe, is locally stable; ifL] ;= 1, E, is stable and if
U,>1, E, isunstable.

Proof: For the equilibrium poink,, the variation matrix becomes

“@ro) | AL Ny
_ a+o
E .
0 ﬁ(‘”yjN—wM— o)
a+o

The eigen values oﬂE0 are

A=-(a+0) A =ﬁ[2’+g]N—(a+5— o).

aty
at+to
U, < 1, the infection-free equilibrium state, is locally stable; ifL],= 1, E, is stable; and if1,> 1, E, is
unstable.

For stability A, and A, should be negative so that we obtdﬁ{ j N<(og+0-py)iel,<1.Thus, if

Global properties of the system (4.2) are givethayfollowing Theorem.

Theorem4.2: The infection-free equilibrium staté, of the system (4.2) is globally stabRroof: Consider a

Lyapunov function L =1 then the Lyapunov derivativel =1 =Qonly if 1=0. Thus, E, is globally
asymptotically stable.

Theorem 4.3: The endemic equilibrium statE of the system (4.2) is globally stable.

Proof: Consider a Lyapunov function

_ o
W(S )=(S Sin $+m

which is defined and continuous for all S, | >10is easy to see that the endemic equilibriurresE:[ = (S N} )

( + lin ) (4.3)

is the only extremum and the global minimum offimection W (S ) in Ri. From system (4.2), it follows that
BS°I°
1+al”

=(y+a)N-(a+py)l"’-(a+0)S'=(c+d- ) I (4.4)

In the case of system (4.2), using (4.4), the @¢ive of the functiohV (S ) satisfies
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oW -
w(s ')'E S5

_[1_S _Bst_ _
—[1 Sj[(y+a')N 1t al (a+p)l-(a+0)9

N o 1_I_D (,BSI
(c+o-py) I J\1+al

a _ pSl
=(y+a)N 1+—

-(o+0- py)lj

-(a+py)|-(a+0)S

s, BS,
(y+a)NS+1 + al

o BS|
“oro-ppliral
=[(y+a)N=(a+pp) ] _1‘%5{1‘_585)(“ aFH

1+ al

+(a + py)|—§+(a+a)8D

ﬂSIDj—a(I -19)

1+ al

=[(y+a)N—-(a+py) 1] :1—%D+(1——Ssjj—g;]
=0

That isW(S [) = Ofor all S, | = 0.Hence, by the asymptotic stability theorem [2] thquilibrium stateE is

globally asymptotically stable.

5. Numerical Example and Concluding remarks

We have investigated numerically the model giversaation 4. If we choose the parameters for modléd) (as
follows: y=1,=0.6, N =2, 0=0.8,d =0.1, 0 =0.2, p=0.1, a=1 then we get unique positive equilibrium
point (S =2.020408163, | = 0.346938776). Here the basic reproduction number, = 1.6296 > 1. For the above

choice of parameters we see that the compon8ntand | approach to their steady state values as time goes

infinity, the disease becomes endemic (see fig 1).

25

Stabilty Graph for the point
(S =2.020408163, 1=0.346938776)
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Figure 1

On increasing the value of ‘a’, the susceptibleytation increases and infective population decreaggmificantly.
The details of the numerical results are given iméxure followed by the references. If immunitypermanent,

then theSIRSmodel reduces to tH&Rmodel.
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Annexure

VI8 |IN|oc|a|s| P| a S* I*

1 06| 2| 08/ 0.1 02 0.1 1 2.0204081p3 0.346938776
1 06| 2| 08| 0.1 02 01 1pb 2.112 0.272

1 06| 2| 08/ 0.1 02 0.1 2 2.1710526B2 0.223684P11
1 06| 2| 08/ 01 02 01 2p 2212290503 0.189944134
1 06| 2| 08/ 0.1 0.2 0.1 3 2.242718447 0.165048b44
1 06| 2| 08/ 01 02 01 3p 2.266094421 0.145922747
1 06| 2| 08| 0.1 0.2 0.1 4 2.284615385 0.130769R31
1 06| 2| 08/ 01 02 01 4p 2.299651568 0.118466899
1 06| 2| 08| 0.1 0.2 0.1 5 2.312101911 0.108280R55
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