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ABSTRACT 
 

We present here a critical study of coupled harmonic oscillators. These are essentially two pendulums for which the 
oscillating masses are connected by a spring of stiffness k. We derive the equation of motion of the masses using the 
Euler-Lagrange equations. Exact analytical solutions of the equations are obtained using Laplace transforms 
enabling us to give a graphical profile as well as the phase portraits. Stability analysis of the nonlinear system is 
investigated by the direct method. 
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INTRODUCTION 
 

The dynamics of coupled oscillators are significant in mechanics, electronics and biological systems. An early use of 
mathematical modeling in biological systems was Van der Pol’s use in 1928 of a driven Van der Pol oscillator[1] to 
explain some normal, and pathological, rhythms of the heart.  
 
In this work, we focus on the dynamics of a system of coupled pendulums oscillating in phase space. The harmonic 
oscillator and as well the system it will model normally has a single degree of freedom. However, most complicated 
systems have more degrees of freedom, for instance two or more masses and one spring (each being attached to 
fixed points and each other). In this case, the behaviour of the variables influences that of the other and this leads in 
turn to a coupling of the oscillation. 
 
1.1 Anatomy of an oscillator 
Here we give a formal mathematical definition of an oscillator. It is essentially a dynamical system that produces 

periodic behaviour. For example, in d�  we have the model; 
 

( ) ( )1 1 1 1,..., ,      ,...,d d d dx f x x x f x x= =& &  

 
with a periodic orbit 
 

( ) ( ) ( )( )1 ,...,   dP t p t p t=  

 
with period T > 0, i.e. 

( ) ( )P t T P t+ =  

 
such that T is the smallest possible choice of periodicity of all components. 
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1.2 Derivation of the Equations of Motion 
Consider a system of coupled pendulums of masses shown in the figure below. We will assume for simplicity that 
the masses m and lengths l on each pendulums are equal. The equation of motion of the coupled system can be 
derived by the application of energy methods.  In particular we employ the Lagrangian method [3] using the 

generalized angular coordinates1x and 2x . The Lagrangian of the system is given by L T V= − where; 

 
T = Total kinetic energy of the system 
V = Total potential energy of the system 

                                        
From the above figure, we have; 

1 1cos        cos
l h

x h l l x
l

− = ⇒ = −  

 
The potential energy of the first mass is; 

( )1 11 cosV mgh mgl x= = −  

 
Similarly for the second mass; 

( )2 21 cosV mgh mgl x= = −  

 
The potential energy of the spring is given by; 

( ) ( )2 22
3 2 1 2 1

1 1

2 2
V k lx lx kl x x= − = −  

Kinetic energy of the masses are respectively; 
2

1 1

1

2
T mv=  and 

2
2 2

1

2
T mv= ; 

where ( )1 1 1

d
v lx lx

dt
= = &  and ( )2 2 2

d
v lx lx

dt
= = & ; ,    1,2.i

i

dx
x i

dt
= =&  

 
The Lagrangian then becomes; 

( )1 2 1 2 3L T T V V V= + − + +  

 
i.e. 

( ) ( ) ( ) ( )22 2 2 2 21 1 1
1 2 1 2 2 12 2 21 cos 1 cosL ml x ml x mgl x mgl x kl x x = + − − + − + −

 
& &

 

 
The Euler-Lagrange equations are given by; 

0,      1,2.
i i

L d L
i

x dt x

 ∂ ∂− = = ∂ ∂ &
 

We have; 

1x  2x  

mg
 

mg
 

h  

l h−  
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( )2
1 2 1

1

sin
L

mgl x kl x x
x

∂ = + −
∂

 

( )2 2 21
1 12

1

d L d
ml x ml x

dt x dt

 ∂ = = ∂ 
& &&

&
 

 
Hence the equation of motion of the first mass is; 
 

( )2 2
1 2 1 1sin 0mgl x kl x x ml x− + − − =&&

                                                                                        (1) 

( )1 1 2 1sin
mg

mx x k x x
l

= − + −&&

                                                                                                
(2)

 

 

Similarly for the second mass we get; 

( )2
2 2 1

2

sin
L

mgl x kl x x
x

∂ = − + −
∂  

 

and; 

( )2 2 21
2 22

2

d L d
ml x ml x

dt x dt

 ∂ = = ∂ 
& &&

&
 

 

Hence the equation of motion for the second mass is; 

( )2 2 1 2sin
mg

mx x k x x
l

= − + −&&  

 

Assuming small oscillations i.e, 1 1sinx x≈ , 2 2sinx x≈ , equations (1) and (2) can be rewritten as 

( )1 1 2 1

mg
mx x k x x

l
= − + −&&                                                                                                                                                  (3)

 ( )2 2 1 2

mg
mx x k x x

l
= − + −&&                                                                                                                                                 (4) 

 

With the initial conditions 1 2 1 20,  ,  0x x x v x= = = =& &  at 0t = .  

 

Let [ ]( ) ( ),  1,2i iL x t F s i= = . Then show that the Laplace transforms[1] of our differential equations (i) and (ii) 

are; 

( ) ( )2
1 1 2 1

mg
m s F v F k F F

l
− = − + −                                                                                                                                (5) 

( )2
2 2 1 2        

mg
ms F F k F F

l
= − + −                                                                                                                                (6) 

 
Solve (5) and (6) simultaneously to get 

2

1
2 22 2

1 1
( )

22 2

g k
v s

vl m
F s

g k gg k g s ss s
l m ll m l

   + +    = = + 
    + + ++ + +        
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2
2 22 2

2
1 1

( )
22 2

vk
vm

F s
g g kg k g s ss s
l l ml m l

   
    = = − 

    + + ++ + +        

 

The inverse transforms are respectively; 

1

2
sin sin

( )
2 2

g k g
t t

l m lv
x t

g k g

l m l

    
+    

    = + 
 +
 
 

,     

 

2

2
sin sin

( )
2 2

g g k
t t

l l mv
x t

g g k

l l m

    
+    

    = − 
 +
 
 

 

 
The derivatives of the above solutions are respectively; 
 

1

2
( ) cos cos

2

v g k g
y t t t

l m l

    
= + +        

    
 ,     2

2
( ) cos cos

2

v g g k
y t t t

l l m

    
= − +        

      
 

2.0 Conditions for stability, continuous time systems 
In this section we establish stability conditions for continuous time dynamical systems[2]. 

Given a system A=&x x , n∈�x , ( )ij n n
A a

×
= ; ( ) 00 =x x . Formally the solution is given by; 

( ) 0
tAt e=x x  

tAe being the so-called exponential matrix. We attempt to diagonalize the matrix A by a coordinate transformation: 

1       

A

S S AS

S

−

= 
= ⇒ =
= 

%

%

% %

x x

x z z z

x z
 

It turns out that 1S AS− is a diagonal matrix which we label D, i.e. 

                                                    
 
This is most of the time possible, but not always. Suppose temporarily that it is possible, i.e. that A is diagonalizable. 

Then iλ are the eigenvalues of A and the i-th column of S the eigenvector for iλ . 

We can represent the exponential matrix as;  
2 3

2 3

2! 3!
tA t t

e I tA A A= + + + +L  

and thus 
2

1 1 1 1 1

2!
tA

tD

t
S e S S S tS AS S ASS AS

e

− − − − −= + + +

=

L
 

   

1

n

D

λ

λ

 
 =  
 
 

O  
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Hence, the solutions become; 

( ) 1
0 0

tA tDt e Se S −= =x x x  

 
and in transformed coordinates this becomes  

( )
1

01

0

0
n

t

tD

t
n

e z

t e

e z

λ

λ

 
 = =  
 
 

Mz z  

This leads directly to the following proposition.  
 
2.1 Proposition  
If A is diagonalizable  

• The system is asymptotically stable if all eigenvalues iλ
 
satisfy Re iλ

 
< 0  

• The system is stable if all eigenvalues iλ
 
satisfy Re iλ ≤ 0.  

• The system is strongly unstable if Reiλ
 
> 0 for at least one eigenvalue iλ .  

 
2.2 Stability Analysis of the coupled pendulums 
For the purpose of stability analysis we must vectorize the coupled system of differential equations; 

( )1 1 2 1

g k
x x x x

l m
= − + −&&                                                                                                                                 (7) 

( )2 2 1 2

g k
x x x x

l m
= − + −&&                                                                                                                                                      (8) 

Let 1 1u x=  and 2 2u x= ; set 1 3 u u=&
1 3  u u⇒ =&& &

 
 

Similarly we set 2 4u u=&  2 4  u u⇒ =&& & . 

 
The equations become; 

1 3u u=&  

2 4u u=&  

( )3 1 2 1

g k
u u u u

l m
= − + −&

 

( )4 2 1 2

g k
u u u u

l m
= − + −&

 
 
Or in matrix form, we get; 

( )
( )

1 1

2 2

3 3

4 4

0 0 1 0

0 0 0 1

0 0

0 0

u u

u u

g l k m k mu u

k m g l k mu u

    
    
    =
    − +
        − +    

&

&

&

&

 

 
i.e. A=&u u , where; 

1

n

t

t

e

e

λ

λ

 
 =  
 
 

O  
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( )
( )

0 0 1 0

0 0 0 1

0 0

0 0

A
g l k m k m

k m g l k m

 
 
 =
 − +
  − + 

 

 
The eigenvalues of the matrix A are given by; 

0A Iλ− =
 

( )
( )

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0
        0

0 0 0 0 1 0

0 0 0 0 0 1

g l k m k m

k m g l k m

λ

   
   
   ⇒ − =
 − +  
   − +      

 
For computational convenience set; 

( ) ,  g l k m k mα β= − + =
 

 
We then have 

0 1 0

0 0 1
       0

0

0

λ
λ

α β λ
β α λ

− 
 −  =
 −
 −   

 

( )4 2 2 2   2  0λ α λ α β⇒ − + − =                                                     (9) 

 

where ( ) ( ) ( )2 22 2 2g l k m k m g l k m g lα β− = + − = +  

 

In equation (9) let 2v λ= , hence 

( )2 2 22 0v vα α β− + − =  

 
with roots 

( )2 2 22 4 4

2
v

α α α β
α β

± − −
= = ±  

Hence the two roots of equation (9) are given by;1 22 ,   g l k m g lλ λ± ±= ± + = ± . 

 

We thus conclude using proposition (2.1 ) that the coupled system is asymptotically stable for the roots 1 2,λ λ− − , and 

strongly unstable for the roots 1 2,λ λ+ + . 

 

3.0 Simulations 

g 9.8 l 2 m 3 v 0.2
 

         

                                        k = 0.5                                                                             k = 1 
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x1 t( )

x2 t( )

t

10 5 0 5 10

0.1

0.05

0.05

0.1

            

x1 t( )

x2 t( )

t

10 5 0 5 10

0.1

0.05

0.05

0.1

 
                                                  k = 5                                                                        k = 10 

 

x1 t( )

x2 t( )

t

10 5 0 5 10

0.1

0.05

0.05

0.1

   

x1 t( )

x2 t( )

t

10 5 0 5 10

0.1

0.05

0.05

0.1

 
 3.0 Phase Portraits 

g 9.8 l 2 m 3 v 0.2
     

                          k = 0.5                                                                                                          

y1 t( )

x1 t( )

0.1 0.05 0 0.05 0.1

0.2

0.1

0.1

0.2

         

y2 t( )

x2 t( )

0.04 0.02 0 0.02 0.04

0.1

0.05

0.05

0.1

 
                            k = 1 

y1 t( )

x1 t( )

0.1 0.05 0 0.05 0.1

0.2

0.1

0.1

0.2

 

y2 t( )

x2 t( )

0.1 0.05 0 0.05 0.1

0.2

0.1

0.1

0.2

 
                             k = 5 
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y1 t( )

x1 t( )

0.1 0.05 0 0.05 0.1

0.2

0.1

0.1

0.2

 

y2 t( )

x2 t( )

0.1 0.05 0 0.05 0.1

0.2

0.2

 
                           

 

                                                    k=10 

y1 t( )

x1 t( )

0.1 0.05 0 0.05 0.1

0.2

0.1

0.1

0.2

 

y2 t( )

x2 t( )

0.1 0.05 0 0.05 0.1

0.2

0.2

 
 

RESULTS AND DISCUSSION  
 

We recall that a phase portrait is a geometric representation of the trajectories of a dynamical system in the phase 
plane. Each set of initial conditions is represented by a different curve, or point. Phase portraits are an invaluable 
tool in studying dynamical systems. The plot of typical trajectories in the state space reveals information such as 
whether an attractor, a repeller or limit cycle is present for the chosen parameter value [4,5]. 
 
We observe that for the given system above, there is not only one circle-shaped trajectory, but a number of parallel 
running lines. The trajectory is circling one fixed point, while symmetrically, after some random time, circling 
another. Furthermore the trajectories depicted are closed curves indicating that for the dynamical system energy is 
conserved.    
 
Moreover, if we follow two very close segments of the trajectory, we will see that they run into different regions of 
the phase space after some time. Assuming we have an infinite long trajectory (also called attractor), then we can 
imagine, that this trajectory fills a 2-dimensional plane. This is not the case however; a measurement of the 
dimension of this trajectory would reveal a fractal dimension between two and three. These observed properties are 
typical for chaotic systems: Although small perturbations of such a system cause exponential divergence of its state, 
after some time the system will come back to a state that is arbitrary close to a former state and pass through a 
similar evolution.  
 

CONCLUSION 
 
In this work we have studied a mathematical model of a coupled system of harmonic oscillators. The equation of 
motion were derived employing generalized coordinates and the Euler-Lagrange equations. Exact analytical 
solutions of the equations were obtained using Laplace transforms, furthermore the trajectories as well as the phase 
portraits were depicted. Stability analysis of the nonlinear system was investigated by the direct method and it was 

observed  that the coupled system is asymptotically stable for the strictly negative roots 1 2,λ λ− − , and strongly 

unstable for the strictly positive roots 1 2,λ λ+ + . 
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