Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advancesin Applied Science Research, 2014, 5(3):195-203

Library Library

| SSN: 0976-8610
CODEN (USA): AASRFC

Stability analysis of a system of coupled harmonic oscillators
S. O. Maliki and P. O. Nwoba

Department of Industrial Mathematics and Applied Statistics, Ebonyi Sate University Abakaliki, Nigeria

ABSTRACT

We present here a critical study of coupled harmonic oscillators. These are essentially two pendulums for which the
oscillating masses are connected by a spring of stiffness k. We derive the equation of motion of the masses using the
Euler-Lagrange equations. Exact analytical solutions of the eguations are obtained using Laplace transforms
enabling us to give a graphical profile as well as the phase portraits. Stability analysis of the nonlinear system is
investigated by the direct method.
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INTRODUCTION

The dynamics of coupled oscillators are signifidannhechanics, electronics and biological systehmsearly use of
mathematical modeling in biological systems was danPol’s use in 1928 of a driven Van der Polldoir[1] to
explain some normal, and pathological, rhythmdefhieart.

In this work, we focus on the dynamics of a syst#rmoupled pendulums oscillating in phase space. fdrmonic
oscillator and as well the system it will model matly has a single degree of freedom. However, roostplicated
systems have more degrees of freedom, for instameceor more masses and one spring (each beinghatiaio

fixed points and each other). In this case, theabiehir of the variables influences that of the ottwed this leads in
turn to a coupling of the oscillation.

1.1 Anatomy of an oscillator
Here we give a formal mathematical definition ofcatillator. It is essentially a dynamical systdmttproduces

periodic behaviour. For example, ih® we have the model,
% = f (X)) % = Fy (X Xg)
with a periodic orbit

P(t)=(py(t), Py (1))

with periodT > 0, i.e
P(t+T)=P(t)

such thafl is the smallest possible choice of periodicityatbftomponents.
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1.2 Derivation of the Equations of M otion

Consider a system of coupled pendulums of massegnshn the figure below. We will assume for simjijicthat
the masses and lengthd on each pendulums are equal. The equation of matiche coupled system can be
derived by the application of energy methods. #mtipular we employ the Lagrangian method [3] usthg

generalized angular coordinat§sndX, . The Lagrangian of the system is givenby=T —V where;

T = Total kinetic energy of the system
V = Total potential energy of the system

From the above figure, we have;

l—:cosx1 = h=I-I cog,

The potential energy of the first mass is;

V, = mgh =mgl (1- cosx,)

Similarly for the second mass;

V, =mgh =mgl (1- cosx,)

The potential energy of the spring is given by;
_ 1 2 _ 1 2 2

vV, —Ek(lxz—lxl) ——2k| (%,=%,)

- w2 1.2
Kinetic energy of the masses are respectivé]yr E mv; and T, = E mv;;

L I

where \; Z%(lxi) =%, and V, :%(Ixz) =1X,; X :d_t'

The Lagrangian then becomes;
L=T,+T,—(V,+V,+V,)
ie.

L =(4mi%¢ +1mi %) —[mgl (1-cosx,)+mgl ( & cos,)+1ki?(x,- xl)z}

The Euler-Lagrange equations are given by;
a_dfo) o iy,
ox dt{ ox

We have;
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g—)::rrgl sinx, +K?(x,=x,)

d(oL)_d/, 2.0 20
—| = |==(tm*?)=ml
dt[dxlj dt(2 %) .

Hence the equation of motion of the first mass is;
—mgl sinx, +k?(x,=x)-m*,=0

mx, = —Iﬂsinxﬁk(xz—xl)

Similarly for the second mass we get;

g—)l(;:—rnglsinxz+klz(x2—x1)
and;

dioL)|_d 2.2\ _ 120
E(@J_E(%ml XZ)—m X2

Hence the equation of motion for the second mass is

mx, = —Iﬂsinx2 +k(%,=X,)

Assuming small oscillations i.sinxl =X, Sinx2 = X,, equations (1) and (2) can be rewritten as

X =_|ﬂx1+k(xz_xl)

mX, =—Imxz+k(X1—X2)

With the initial conditionsX, =X, =0, X, =V, X, = Cat t = 0.

1)

)

®3)

(4)

Let L[)q (t)] =F,(s), i =1, 2. Then show that the Laplace transforms[1] of oufedéntial equations (i) and (ii)

are,

m(sF, -v) = _|@ F+k(F,-F,)
mSZFz = _Im F, +k(F1_ Fz)

Solve (5) and (6) simultaneously to get

v(sz+g+kj 1
Fy(s) = m

1

=V
52+g+27k 52+g 2 Sz+g+2—k
I m I I m

9
I

2

S™+
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(n)

_V _
(52+g+2kj(sz+gj 2l ¢4+ 9 sz+?+2k

Il m I
The inverse transforms are respectively;
sin g+—k t sin. |9 |t sin /9 |t sin ,Ig+2—k t
Il m I v I Il m
+ % 0= -
\/9+2k \E 2 ﬁ \/9+2k
I m I I I m
The derivatives of the above solutions are respelgti

ool 2ot ) oA A5

2.0 Conditionsfor stability, continuoustime systems
In this section we establish stability conditions ¢ontinuous time dynamical systems|[2].

Given a systemX = Ax, x O[] ”,A=(aij)

x (t) =e"x,

F,(s) =

v
Xi(t)_E

i X (0) = X,. Formally the solution is given by;

nxn

e‘A being the so-calleexponential matrix. We attempt to diagonalize the matfby a coordinate transformation:
X = AX

X=X = 72=STAY

X=

It turns out thatS™ASis a diagonal matrix which we labB| i.e.

A
SRS

This is most of the time possible, but not alwé&sppose temporarily that it is possible, i.e. tha diagonalizable.
Then/ are the eigenvalues gfand the-th column ofSthe eigenvector fov, .
We can represent the exponential matrix as;
t? t3
M= +HIA+— A+ —A’+...
2! 3!

and thus

2
S'e"S=S'S+tSAS+ % S'ASS 'AS+- -

- etD
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Hence, the solutions become;
x (t) = €%, = S Sx,

and in transformed coordinates this becomes
e“lzm

th
etz
This leads directly to the following proposition.

2.1 Proposition
If Ais diagonalizable

« The system is asymptotically stable if all eigaiwmes A satisfy Red <0
» The system is stable if all eigenvaluélssatisfy R<=/1i <o0.

 The system is strongly unstable ifﬂ’ie> 0 for at least one eigenvalul?.

2.2 Stability Analysis of the coupled pendulums
For the purpose of stability analysis we must vergothe coupled system of differential equations;

} K
X1:_|gX1+E(X2_X1) )

o __ 9 k
% =%t (%) (®)
Let Uy =X andU, = X,;setl, =U; = U, =U,

Similarly we setl, =U, = U, =U,.

The equations become;

U =u,

u, =u,

: k

U, :—lgul+a(u2—ul)
: k
u4:—|gu2+—(ul u,)

Or in matrix form, we get;

o, 0 0 1 0y,
a, | 0 0 0 1y,
u, | | —(g/I+k/m) k/m 0 0|y,
u, k/m -(g/t+k/m) 0 O)lu,

i.e. U= AU, where;
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0 0 10
a 0 0 01
A ~(g/! +k/m) k/m 00
k/m -(g/t+k/m) 0 0
The eigenvalues of the matixare given by;
|A-Al|=0
0 0 10 1 00O
0 0 01 010 Of_
= ~(g/1 +k/m) k/m 0 O_/] 0010 =0
k/m —(g/l+k/m) 0 O 0 001
For computational convenience set;
a=-(g/l +k/m), B=k/m
We then have
-A 0 1 O
O -4 0 1 ~ 0
a L -4 0
L a 0 -/
= M-20A*+(a’-p%)=0 9)

wherea? - B2 =(g/l +k/m)° = (k/m)* = (g/I + 2k/m) g/|

In equation (9) let = A2, hence
v —20'V+(O’2 —,6’2) =0

with roots
_2aiJaf—4@ﬁ—ﬁﬂ
- 2

Hence the two roots of equation (9) are givenhy=+./g/l +2k/m, A; = i\/g_/l .

% =azxf

We thus conclude using proposition (2.1 ) thatathepled system is asymptotically stable for thesod) , A, , and

strongly unstable for the rooid;", A, .

3.0 Simulations
9:=98 1:=2 m:=3 v:=0.2
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o1 0.17
el 05
x1(t) X1
) - 0 0 Xy - 0 0
0.1" 0.1t
t t
k=5 k=10
0.17
.05]
xA(t)
) - 0 0
0.1~
t t
3.0 Phase Portraits
9:=98 1:=2 m:=3 v:=0.2
k=0.5
0.17

é Eg%: 0.04

i) y2(1)
0.1
x2t)
0.2
YA y2(t)
0.2
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yi® o1 y2(t)

x1(t)

k=10

RESULTSAND DISCUSSION

We recall that ghase portrait is a geometric representation of the trajectoofea dynamical system in the phase
plane. Each set of initial conditions is represértg a different curve, or point. Phase portraits @n invaluable
tool in studying dynamical systems. The plot ofit@b trajectories in the state space reveals infdion such as
whether an attractor, a repeller or limit cyclgissent for the chosen parameter value [4,5].

We observe that for the given system above, tteermi only one circle-shaped trajectory, but a nemdd parallel
running lines. The trajectory is circling one fix@dint, while symmetrically, after some random tjne@rcling

another. Furthermore the trajectories depictedckrged curves indicating that for the dynamicateysenergy is
conserved.

Moreover, if we follow two very close segments lod trajectory, we will see that they run into diffiet regions of
the phase space after some time. Assuming we haugfinite long trajectory (also called attractotlen we can
imagine, that this trajectory fills a 2-dimensiorahne. This is not the case however; a measuremwietie
dimension of this trajectory would reveal a fractahension between two and three. These obsenaukpies are
typical for chaotic systems: Although small peratibns of such a system cause exponential diveggehits state,
after some time the system will come back to aesthat is arbitrary close to a former state ands ghsough a
similar evolution.

CONCLUSION

In this work we have studied a mathematical moded ooupled system of harmonic oscillators. Theagign of
motion were derived employing generalized coordisadnd the Euler-Lagrange equations. Exact analytic
solutions of the equations were obtained using d@plransforms, furthermore the trajectories as$ agethe phase
portraits were depicted. Stability analysis of timmlinear system was investigated by the direchowtand it was

observed that the coupled system is asymptoticstiple for the strictly negative rootd, , A, , and strongly

unstable for the strictly positive roo# , A, .
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