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ABSTRACT

The study presented here generalizes a model giydéh Dubey in which he proposed and analyzed alinear

mathematical model to study the dynamics of fishesgurce having two zones. In this paper, we ltavsidered a
prey-predator fishery model with prey dispersal itwa-patch environment, one is assumed to be &ibimg zone
and the other is a reserved zone, where fishingather extractive activities are prohibited. Thedband global
stability analysis has been carried out. Biologiaduilibria of the system along with the conditioofstheir

existence are obtained. Criteria for the coexisten€ predator-prey are obtained. Numerical simdathas also
been performed in support of analysis.
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INTRODUCTION

Population dynamics refers to changes in the sifgsopulations of organisms through time, and predarey

interactions may play an important role in explagithe population dynamics of many species. Thexistence of
interacting biological species has been of gretarést in the past few decades like Anderson arel [ié,

Chaudhuri and Johnson [3],Ganguly and Chaudhurf®ishna et.al [13]and Pradhan and Chaudhuri [Téje

combined harvesting of two competing species wadietl in detail by Chaudhuri [4]. Collings[5] stedi the
nonlinear behavior of predator-prey model with gefyprotecting a constant proportion of prey andtentperature
dependent parameters chosen appropriately for a mteraction on fruit species. Krivan [14] propdse

mathematical model and investigated the effectsomtimal anti predator behavior of prey in predgicey

system.Dubey et.al.[7]propose and analyses a matieah model to study the dynamics of a fisheryotese

system in an aquatic environment that consists @fitlfree fishing zone and a reserve zone.Kar dma@huri [10],
investigated a dynamic reaction model in the cdsa prey-predator type fishery system, where onby phey
species is subjected to harvesting, taking taxa®m@ control instrument. Dubey et.al.[8]proposed analyzed a
mathematical model to study the dynamics of ong,fveo predators system with ratio dependent paedagrowth
rate. Kar [12], in their paper, offer some matheoatanalysis of the dynamics of a two prey, onedator system
in the presence of a time delay.

Kar and Matsuda [11] investigated a prey-predatodehwith Holling type of predation and harvestioigmature
predator species.Braza[2] analyzed a ‘two predatoe, prey model in which one predator interfergmificantly
with other. A generalized predator-prey system wiploited terms and the existence of eight pasiperiodic
solutions was studied by Zhanga and Tianb [19].08%k&-Volterra predator-prey system with a singtéagl was
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used by Yan and Zhang [18] in their investigatiamgB et.al. [17] proposed a generalized mathematizalel to
study the depletion of resources by two kinds gfuations, one is weaker and others stronger.A inofdprey-
predator with a generalized transmission functionunsaturated zone has been analyzed by Mehta [¢].8Ve
consider the two cases: one when the predator @lywbependent on the prey and other when the poeda
partially dependent on the prey in the unresen@teave study the coexistence and stability behadigredator-
prey system in the habitat [6].

MATHEMATICAL MODEL

Let us consider the prey-predator model, wherext)the density of prey species in unreserved zgftg the
density of prey species in reserved zone and kgt)}density of the predator species at any timéil ets, be the
migration rate coefficient of prey species fromasarved to reserved zone aidthe migration rate coefficient of
prey species from reserved to unreserved zone #ssumed that the prey species in both zonesravng
logistically. We assume that the prey grows logaty in both zones with carrying capacity K andihtrinsic
growth rate coefficients r and s of prey speciegrireserved and reserved zones respectifelg;the depletion rate
coefficient of the prey species due to the predatodp, is the natural death rate coefficient of the ptedspecies.
Q(z) represents the growth rate of predator.

Using the symbols, notations and basic assumptibisibey [6], the dynamics of system may be govermg the
following system of ordinary differential equations

%= rx(1- X
dt Ax+ K

)=0X+0,y=B Xz

dy y
—=sy(1-=)+0, x—0., Y,
m ¢ L) 1 X= 0L,

dz _ B
g Q(29-8 2
x(0)=0,y(0)= 0,z(0% O.

@)

In model (1) r,s5, o2 ,B1 B2, Po and A are assumed to be positive constants amsid=nthe predatoris wholly
dependent on the prey species, i.e. Q(@)xz. 2)

Existence of Equilibria:
It can be seen that model (1) ,when Q(z) satigflgs has only three nonnegative equilibrium, nkerE0 (0,0,0),

Ei(f(, Y, 0)and E(Zy_z) . The equilibriumE exists obviously and we shall show the existencé&ptnd E as
follows:

3.1 Existence of E; (X, Y,0)

Here X and Vare positive solution of the following algebraicuatjons:

rx(l— Ax)j- Kj -o,X+0,y=0, af3
sy[l—%) +0,x-0,y=0. (3b)
From equation (3a) we have

1 X
y=;z{Ax+ K—(r—JI)X} )
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Putting the value of y from equation (4) into eguiat(3b),

aX +bX +cx+d=0 €]
wher_e
S

a= W{rz —2r(r —o)A+(r —01)2A2}}

L 2

[ _ _ 2 2 _
b= 2rs(r 201)+2(r ale_alAz\ _(S aj){rA—(r—al)Az}

| KLo, KLo, K o,K
o= (r-0) - (s—ay)r , 2(s=0,)(r-0)A_20,A

| Lo, o,K oK K
g {(s—az)(r—al)_al}

0-2

It may be noted that equation (5) has a uniquetigessolution x = x* if the following inequalitielsold:

(s-0,)r 2(s-0,)(r-0, )A+ blAS s(-o, §
K oK K Lo,

(6a)

(r—ol)(s—oz)s 0,0,. (6b

From the model system(1) we note that if thereisimgration of the prey species from reserved t@served zone

dx
(i,e.op,=0)and ro, <0, thena< 0. Similarly if there is no migration from of thpeey species from unreserved to

dy

reserved zone (i.e; = 0)and s 6,< O,thena< 0. Hence it is natural to assume that

r>g, and s>o, (6¢)

Knowing the value of X ,the value ofy can be computed from equation (5),It may also edthat for yto be
positive, we must have

>A<>$(r—al). (7)

3.2 Existence of E(?(,_y,_z)

Here X, Y, Z arethe positive solutions of the following algebrequations:

X
1- -oX+ - =0,
rx( At Kj oxX+0,y- B,xz
S 1——y + - =
Y| L o, x-0,y=0.

B,xz- B3,z=0.
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Solving the above equations, we get,

R:%, (8a)
— 1

y= ZSﬁz[(s—az)Lﬂzw{( s-0) 1B} + 9.5, 13, (8)
P ,Bz N _ &_ rﬂoz

* ﬁoﬁiaz ol ﬁz<Aﬁo+ﬁzK)} (%)

For z to be positive, we must have

- _ & rBy
{"2”“ g >ﬁz(Aﬁo+ﬁZK)} ©

Equation (9) gives a threshold value of the cagyiapacityof the free access zone for the suraf/predators.
In the following lemma,we show that all solutiorfsnodel (1) are nonnegative and bounded.

Lemma.l
TheseQ ={(x ¥ 2O R":0< w= » W zﬁ}
ui
for all solutions initiating in the interior of theositive octant.
Where/}] is a constant such that
0<n<p,
K 2, L 2

=—(r+ +—(s+ , >
p= (s +r) Bz p,
Proof .Let
a(t) = x(t) + y(t) + ) andy >0

be a constant. Then

d—W+/7W=9(+ﬂ/+—dZ+/7(x+ y+ 2

dt dt dt dx
B LS _i_ _ e .
=(r +7)x AX+K+(S+/7)y 3 (B.-B,)xz=(By—1n) z (10;

Sincep; is the depletion rate coefficient of prey duettoimtake by the predator afiglis the growth rate coefficient
of predator due to its interaction with their prapd hence it is natural to assume fhatp,.

Now choosey such that 0 6.

Then equation (10) can be written as

dw rx’ sy’
—+nw=(r+n)x- +(s+n) y-—=
dt d (r+m) Ax+ K (s+my L
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ré sy
" K"‘(S""?)y I

2

S = (1 +n)x-
dt

X

AX Zr(Ir +17)

—(r +17)? -

K|q

+ ()’ —E[y——L(sm)}

dw
4 <_ + +—(s+ =
at nws= ar (r+n)? (S n)? = u(say)

By using the ordinary differential equations ruies obtain

0<wi{x(0),y ), z()}< —(1 e™)+{X0), 0), 20)} &"

Taking limit when t—w, we have, 0 <w (tiﬂ , proving the lemma.
Ui

3.3 Stability Analysis
The Variation matrix of the system (1) is

2xk + x2A
_r(m)_cl_ﬁlz 02 _B]_X
J= g, s—%’—c2 0 (12
Bzz 0 BzX_Bo

The characteristic equation of the Variation matti) at E(0,0,0) is

A =(1=0,+10, =BA” +(15= 0,5~ 0, )(-Bo A+ (15-0,8 @, ,= O. (12

The characteristic equation of the Variation matfid) at El(;(, S/ 0)is

) 2%k + X°A B B 2%k + X°A o« B
{?\ +{((AX 0?2 7)—(r-0,)—(s-o )}M{(r ((AX k)2 )~ 0,)(s 0, ) GGH
[B.X =B, -A]=0. (13

By computing the variationmatrices correspondiregioh equilibrium, we note the following:
1. Eyis a saddle point with stable manifold locallytlie z-direction from the equation (12).

2. If ﬁzQ > ,6’0 then g is a saddle point with stable manifold locallytlire xy-plane and with unstable manifold
locally in the z- direction from the equation (13).

3. If ﬁzQ < B, then K is locally asymptotically stable (13).
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Theorem 1. The model system (1) under the assumption @yatshave any periodic solution in the interiothod
guadrant of the xy- plane.

1
Proof .Let H(x,y) = — .Clearly H(x,y) is positive in the interior of tim®sitive quadrant of thexy-plane.
Xy

X

h(x y) = n(l- o K

)_01X+02 Y,

h(xy)= sy(l-%)+ g, %x0,Yy
Then

o o
B(X,¥) = oy H)+ o (0, H)

1 K o,y 1 O,.X (14)
A(x,y)=-— r >+ 22 -= E+L2 <0.
Y| (Ax +K) X x|L y

From the above equation, we note thgk,y) does not change sign and is not identicadiyozn the interior of the
positive quadrant of the xy- plane.In the followitiggorem, we show thét is locally asymptotically stable.

Theorem 2. The interior equilibriurrE is locally asymptotically stable.
Proof.In order to prove this theorem, we first lineanmedel (1) by taking the following

transformation.
x=x+X, y=y+Y, = =# Z

Now we considered the following positive definiten€tion
1 1 1
Vi) ==X*+=¢qgY*+=¢Z 15
(1 > 56Vt 6 (15)

Where gand g are positive constant teechosen suitably.

Now differentiating V with respect to time t alotige linear version of model (1) we get

dv X 0,y Sy o.X o
W -~ +22 | X?—q| 2+ Y+ X + + X
dt (AX+ K X j Cl( L —yj Y(JZ (I.Ul) 1 B, 2'181)‘

X : . o
'81_ we note that V is negative definite if
Y4
2

2 sy oX X g,y
(2 + 1) <401(Ty+ %j(AH K+ ;yj

Choosing c, =

It can be written as

2 sy , oX X o,y
o,—-co,) +t4coo.,<4c| —+ +
(. -c01) 0 ‘(L 7](AX+K 7)
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If we chooses, =—% ,then above condition is satisfied and show that Mapunov function.
01
Theorem 3.The interior equilibriumE is globally asymptotically stable with respecttbsolutions.

Proof. Consider the following positive definite functiabout E,

W(t):[x X="XIn— ) 9( y—‘y—_yn:;/j+ g[ z_z_ln:;). (16

Differentiating W with respect to time t along tbelutions of model (1), we get

dw r 2 GCS > _ _
=- X=X) ———(y-Y) +(x z -
i Axr K( ) C (Y= +(x=R( 272 $B,-5)
_{X Xy— "X
+Uz(><—><{ = j+qa (y- y{ Y ﬂ
XX yy
Choosingc, = yo —2 andc, =ﬁ —— can further be written as
Ul 2
aw r <\2 y S 2 _ 2 —~ Y 2
=- X=X X Xy©.
dt AX+ K( )y X, L( »- xy( ¥ Xy

Which is negative definite. Hence W is a Liapunordtion with respect t&€ whose domain contains the region of
attraction(Q), proving the theorem.

4 Numerical Simulation :
For simulation let us take

r=23.3,5=2.002, K=29, L =48,=2.80,=2.001, A=0.0013, = 3,3, = 2,3, = 1(17)

For the above values of the parameters for the hi@ilgiven and we get an equilibrium point
=30.5149, “y=45.27418)

The following graphical presentation shows the ifitglof the above equilibrium point.

The result (18) of numerical simulation are displdygraphically. In Figure (1.1) prey (x) and p(gy population
are plotted against time (where predator (z) iseat)s from this graph it can be said that initi@lue of the
population tend to their corresponding value ofildaium point E; and hence coexist in the form of stable steady
state, assuming the local stability of E
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Stability graph of the point (30.5149, 45.2730)
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10
0
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time
Figure-1.1

i )Figure (1.1) correspontb model (1) when the predator is wholly dependemthe prey. The predator is z¢
equilibrium level (z = 0), the total density of theey species at equilibrium level is 85.7879 (3@%+45.2730

When predator is wholly dependent on the prey, barve that the positive equilibriunE(T(,X/,_Z)exists and it is

given by values of

X=3, V=14.203, “z 5.35

Stability Graph of (x = 3, y =14.203, z=5.35)
16
)
12 |
g 10
S 8¢ —_ X
S 6
[~ N 4 |O....O..0.00........O..O....O.. ----Y
| 7
2
0
0 50 100 150 200 250
time
Figure-1.2

(19)

The result (19) of numerical simulation are displdygraphically. In Figure (1.2) prey (x), prey @nd predator (z
population are plotted against time, from thispgrit can be said that initial value the populatsthowing stabli

Pelagia Research Library

300



Neelima Daga et al Adv. Appl. Sci. Res., 2014, 5(3):293-301

behavior tend to their corresponding value of éguilm point E and hence coexist in the form of stable steady
state.

ii )Figure (1.2) correspond to model (1) when the pieds wholly dependent on the prey. Then densityhe
predator is 5.35while the total density of the pneg decreased from 85.7879 to 17.203.

CONCLUSION

In this paper, we have analyzed a prey-predatoerysinodel with prey dispersal in a two-patch envwinent, one is
assumed to be a free fishing zone and the otherdseaved zone where fishing and other extractitieities are

prohibited. we have discussed the local and gletadility of the system. It has been observed ttatasymptotic
stability of the controlled system is proved usthg Liapunov function. Finally, extensive numerieabmples and
simulation are introduced
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