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ABSTRACT  
 
The study presented here generalizes a model given by B. Dubey in which he proposed and analyzed a non-linear 
mathematical model to study the dynamics of fishery resource having two zones. In this paper, we have considered a 
prey-predator fishery model with prey dispersal in a two-patch environment, one is assumed to be a free fishing zone 
and the other is a reserved zone, where fishing and other extractive activities are prohibited. The local and global 
stability analysis has been carried out. Biological equilibria of the system along with the conditions of their 
existence are obtained. Criteria for the coexistence of predator-prey are obtained. Numerical simulation has also 
been performed in support of analysis. 
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INTRODUCTION 
 

Population dynamics refers to changes in the sizes of populations of organisms through time, and predator-prey 
interactions may play an important role in explaining the population dynamics of many species. The co-existence of 
interacting biological species has been of great interest in the past few decades like Anderson and Lee [1], 
Chaudhuri and Johnson [3],Ganguly and Chaudhuri[9], Krishna et.al [13]and Pradhan and Chaudhuri [16]. The 
combined harvesting of two competing species was studied in detail by Chaudhuri [4]. Collings[5] studied the 
nonlinear behavior of predator-prey model with refuge protecting a constant proportion of prey and wit temperature 
dependent parameters chosen appropriately for a mite interaction on fruit species. Krivan [14] proposed a 
mathematical model and investigated the effects of optimal anti predator behavior of prey in predator-prey 
system.Dubey et.al.[7]propose and analyses a mathematical model to study the dynamics of a fishery resource 
system in an aquatic environment that consists with of  free fishing zone and a reserve zone.Kar and Chaudhuri [10], 
investigated a dynamic reaction model in the case of a prey-predator type fishery system, where only the prey 
species is subjected to harvesting, taking taxation as a control instrument. Dubey et.al.[8]proposed and analyzed a 
mathematical model to study the dynamics of one prey, two predators system with ratio dependent predators growth 
rate. Kar [12], in their paper, offer some mathematical analysis of the dynamics of a two prey, one predator system 
in the presence of a time delay. 
 
Kar and Matsuda [11] investigated a prey-predator model with Holling type of predation and harvesting of mature 
predator species.Braza[2] analyzed a ‘two predator, one prey model in which one predator interferes significantly 
with other. A generalized predator-prey system with exploited terms and the existence of eight positive periodic 
solutions was studied by Zhanga and Tianb [19]. A Lotka-Volterra  predator-prey system with a single delay was 
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used by Yan and Zhang [18] in their investigation.Singh et.al. [17] proposed a generalized mathematical model to 
study the depletion of resources by two kinds of populations, one is weaker and others stronger.A model of prey- 
predator with a generalized transmission function for unsaturated zone has been analyzed by Mehta et al. [7].We 
consider the two cases: one when the predator is wholly dependent on the prey and other when the predator is 
partially dependent on the prey in the unreserved zone.we study the coexistence and stability behavior of predator-
prey system in the habitat [6]. 
 
MATHEMATICAL MODEL 
Let us consider the prey-predator model, wherex(t) be the density of prey species in unreserved zone, y(t) the 
density of prey species in reserved zone and z(t) the density of the predator species at any time t ≥ 0.Let σ1 be the 
migration rate coefficient of prey species from unreserved to reserved zone and σ2 the migration rate coefficient of 
prey species from reserved to unreserved zone. It is assumed that the prey species in both zones are growing 
logistically. We assume that the prey grows logistically in both zones with carrying capacity K and L, intrinsic 
growth rate coefficients r and s of prey species in unreserved and reserved zones respectively; β1 is the depletion rate 
coefficient of the prey species due to the predator, and β0 is the natural death rate coefficient of the predator species. 
Q(z) represents the growth rate of predator. 
 
Using the symbols, notations and basic assumptions of Dubey [6], the dynamics of system may be governed by the 
following system of ordinary differential equations: 

1

0
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dx x
rx x y xz

dt Ax K
dy y

sy x y
dt L
dz

Q z z
dt
x y z

σ σ β

σ σ

β

= − − + −
+

= − + −

= −

≥ ≥ ≥

                                                                                                 (1)                                                                                                                          

 
In  model (1) r,s,σ1, σ2 ,β1 ,β2 , β0 and A are assumed to be positive constants and consider the predatoris wholly 
dependent on the prey species, i.e. Q(z) = β2xz.                                                                                                          (2)     
 
Existence of  Equilibria: 

It can be seen that model (1) ,when Q(z) satisfies (2) , has only three nonnegative equilibrium , namely 0(0,0,0)E ,

1 ˆ ˆ( , ,0)E x y and ( , , )E x y z . The equilibrium 0E exists obviously and we shall show the existence of 1E and E  as 

follows: 
 

3.1 Existence of E1 (
$ $, ,0x y ) 

Here $ $x and yare positive solution of the following algebraic equations: 
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From equation (3a) we have 
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Putting the value of y from equation (4) into equation (3b), 
 
 ax3 + bx2 + cx + d =0                                                                                                                                                   (5)                                                                                                      
 
where 
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It may be noted that equation (5) has a unique positive solution x = x* if the following inequalities hold: 
 

2
2 2 1 1 1
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From the model system(1) we note that if there is no migration of the prey species from reserved to unreserved zone 

(i.e. σ2 = 0) and r- σ1 ˂ 0, then 
dx

dt
˂ 0. Similarly if there is no migration from of the prey species from unreserved to 

reserved zone (i.e. σ1 = 0)and s - σ2 < 0,then 
dy

dt
< 0. Hence it is natural to assume that  

1 2.r and sσ σ> >                                                                                                                                                (6c) 

 

Knowing the value of  $x  ,the value of $ycan be computed from equation (5),It may also be noted that for $y to be 

positive, we must have 

$
1( ).

K
x r
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3.2   Existence of  ( , , )E x y z  

Here , ,x y z arethe positive solutions of the following algebraic equations: 
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Solving the above equations, we get,  

0
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For z to be positive, we must have 
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Equation (9) gives a threshold value of the carrying capacityof the free access zone for the survival of predators. 
In the following lemma,we show that all solutions of model (1) are nonnegative and bounded. 
 
Lemma .1  

The set 3{( , , ) : 0 }+Ω = ∈ < = + + ≤x y z R w x y z
µ
η

 

for all solutions initiating in the interior of the positive octant. 
 
Where η  is a constant such that 
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Proof .Let 
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Since β1 is the depletion rate coefficient of prey due to its intake by the predator and β2 is the growth rate coefficient 
of predator due to its interaction with their prey, and hence it is natural to assume that β1≥ β2. 
 
Now choose η such that 0 < β0.  
 
Then equation (10) can be written as  

2 2

( ) ( )+ = + − + + −
+

dw rx sy
w r x s y

dt Ax K L
η η η  
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By using the ordinary differential equations rule, we obtain 

0 < w {x (t), y (t), z(t)} ≤  (1 ) { (0), (0), (0)}t te x y z eη ηµ
η

− −− +  

Taking limit when t →∞, we have, 0 < w (t) ≤
µ
η

, proving the lemma. 

3.3 Stability Analysis 
The Variation matrix of the system (1) is 
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The characteristic equation of the Variation matrix (11) at  E0(0,0,0) is 
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By computing the variationmatrices correspondingto each equilibrium, we note the following: 
1. E0 is a saddle point with stable manifold locally in the z-direction from the equation (12). 

2. If 
2 0xβ β> then E1 is a saddle point with stable manifold locally in the xy-plane and with unstable manifold 

locally in the z- direction from the equation (13). 

3. If 
2 0<xβ β  then E1 is locally asymptotically stable (13). 
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Theorem 1.   The model system (1) under the assumption (2) cannot have any periodic solution in the interior of the 
quadrant of the xy- plane. 

Proof .Let H(x,y) = 
1

xy
.Clearly H(x,y) is positive in the interior of the positive quadrant of thexy-plane. 

1 1 2

2 1 2
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          (14) 

 
From the above equation, we note that ∆ (x,y) does not change sign and is not identically zero in the interior of the 

positive quadrant of the xy- plane.In the following theorem, we show thatE is locally asymptotically stable. 
 

Theorem 2. The interior equilibriumE  is locally asymptotically stable. 
 
Proof.In order to prove this theorem, we first linearize model (1) by taking the following  
 
transformation. 

x = , ,x X y y Y z z Z+ = + = +  

 
Now we considered the following positive definite function: 
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Where c1 and c2 are positive constant to bechosen suitably.  
 
Now differentiating V with respect to time t along the linear version of model (1) we get 
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If we choose 2
1

1

=c
σ
σ

,then above condition is satisfied and show that V is Liapunov function. 

Theorem 3.The interior equilibrium E  is globally asymptotically stable with respect to all solutions. 
 

Proof. Consider the following positive definite function about E , 
 

 
Differentiating W with respect to time t along the solutions of model (1), we get 
 

 
 
 
 
 
 
 

Choosing 2
1

1

= y
c

x

σ
σ

 and 1
2

2

,= dW
c

dt

β
β

 can further be written as  

 
 

 

Which is negative definite. Hence W is a Liapunov function with respect to E whose domain contains the region of 
attraction Ὠ, proving the theorem. 
 
4.Numerical Simulation : 
For simulation let us take 
 

 r = 3.3,s = 2.002, K = 29, L = 48, σ1=2.8,σ2 = 2.001, A =0.001, 0 1 23, 2, 1β = β = β = (17) 

 
For the above values of the parameters for the model (1) given and we get an equilibrium point  
ˆ ˆx 30.5149,        y = 45.2730= (18) 

 
The following graphical presentation shows the stability of the above equilibrium point. 
 
The result (18) of numerical simulation are displayed graphically. In Figure (1.1) prey (x) and  prey (y) population 
are plotted against time (where predator (z) is absent), from this graph it can be said that  initial value of  the 
population tend to their corresponding value of equilibrium point E1 and hence coexist in the form of stable steady 
state, assuming the local stability of E1. 
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i )Figure (1.1) correspond to model (1) when the predator is wholly dependent on the prey. The predator is zero 
equilibrium level (z = 0), the total density of the prey species at equilibrium level is 85.7879 (30.5149+45.2730).
 

When predator is wholly dependent on the prey, we obse

given by values of 
 
x 3,     y 14.203,      z 5.35               = = =
 
 

The result (19) of numerical simulation are displayed graphically. In Figure (1.2) prey (x),  prey (y) and predator (z)  
population are plotted against time,  from this graph it can be said that  initial value the population showing stable 
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Figure-1.1 

to model (1) when the predator is wholly dependent on the prey. The predator is zero 
equilibrium level (z = 0), the total density of the prey species at equilibrium level is 85.7879 (30.5149+45.2730).

When predator is wholly dependent on the prey, we observe that the positive equilibrium 

x 3,     y 14.203,      z 5.35                                                                                               

 
Figure-1.2 

 
The result (19) of numerical simulation are displayed graphically. In Figure (1.2) prey (x),  prey (y) and predator (z)  
population are plotted against time,  from this graph it can be said that  initial value the population showing stable 
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to model (1) when the predator is wholly dependent on the prey. The predator is zero 
equilibrium level (z = 0), the total density of the prey species at equilibrium level is 85.7879 (30.5149+45.2730). 
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The result (19) of numerical simulation are displayed graphically. In Figure (1.2) prey (x),  prey (y) and predator (z)  
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behavior tend to their corresponding value of equilibrium point E and hence coexist in the form of stable steady 
state. 
 
ii )Figure (1.2) correspond to model (1) when the predator is wholly dependent on the prey. Then density of the 
predator is 5.35while the total density of the prey has decreased from 85.7879 to 17.203. 
 

CONCLUSION 
 

In this paper, we have analyzed a prey-predator fishery model with prey dispersal in a two-patch environment, one is 
assumed to be a free fishing zone and the other is a reserved zone where fishing and other extractive activities are 
prohibited. we have discussed the local and global stability of the system. It has been observed that the asymptotic 
stability of the controlled system is proved using the Liapunov function. Finally, extensive numerical examples and 
simulation are introduced 
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