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ABSTRACT

In the present day scenario, there are large numbers of clustering algorithms available to group
objects having similar characteristics. But the implementations of many of those algorithms are
challenging when dealing with categorical data. While some of the algorithms available at
present cannot handle categorical data the others are unable to handle uncertainty. Many of
them have the stability problem and also have efficiency issues. This necessitated the
development of some algorithms for clustering categorical data and which also deal with
uncertainty. In 2007, an algorithm, termed MMR was proposed [3], which uses the rough set
theory concepts to deal with the above problems in clustering categorical data. Later in 2009,
this algorithm was further improved to develop the algorithm MMeR [2] and it could handle
hybrid data. Again, very recently in 2011 MMeR is again improved to develop an algorithm
called SDR [22], which can also handle hybrid data. The last two algorithms can handle both
uncertainties as well as deal with categorical data at the same time but SDR has more efficiency
over MMeR and MMR. In this paper, we propose a new algorithm in this sequence, which is
better than all its predecessors; MMR, MMeR and DR, and we call it SSDR (Standard deviation
of Sandard Deviation Roughness) algorithm. This takes both the numerical and categorical data
simultaneously besides taking care of uncertainty. Also, this algorithm gives better performance
while tested on well known datasets.

Keywords- Clustering, MMeR, MMR, SDR, SSDR, uncertainty.

INTRODUCTION

The basic objective of clustering is to group databjects having the similar characteristics in
the same cluster and having dissimilarity with otbleisters. It has been used in data mining
tasks such as unsupervised classification andsatenation. It is also used in segmentation of
large heterogeneous data sets into smaller homogsnsubsets which is easily managed,
separately modeled and analyzed [8]. The basic igoealuster analysis is to discover natural
groupings of objects [11]. Clustering techniques @sed in many areas such as manufacturing,
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medicine, nuclear science, radar scanning and nes@ad also in development. For example,
Wu et al. [21] developed a clustering algorithmcfieally designed for handling the complexity
of gene data. Jiang et al. [13] analyze a variétgluster techniques, which can be applied for
gene expression data. Wong et al. [16] presentedppnoach used to segment tissues in a
nuclear medical imaging method known as positrorsgion tomography (PET). Haimov et al.
[20] used cluster analysis to segment radar signassanning land and marine objects. Finally
Mathieu and Gibson [19] used the cluster analysia gart of a decision support tool for large
scale research and development planning to ideptdgrams to participate in and to determine
resource allocation.

The problem with all the above mentioned algorithmshat they mostly deal with numerical
data sets that are those databases having attrituiite numeric domains .The basic reason for
dealing with numerical attributes is that thesewa® easy to handle and also it is easy to define
similarity on them. But categorical data have mu#tiued attributes. This, similarity can be
defined as common objects, common values for ttib@ites and the association between two.
In such cases horizontal co-occurrences (commamevialr the objects) as well as the vertical
co-occurrences (common value for the attributes)bmaexamined [21].

Other algorithms, those can handle categorical Hatee been proposed including work by
Huang[3], Gibson et al. [4], Guha et al. [13] andnipster et al. [1]. While these algorithms or
methods are very helpful to form the clusters froategorical data they have the disadvantage
that they cannot deal with uncertainty. Howevergal world applications it has been found that
there is often no sharp boundary between clusiesently some work has been done by Huang
[8] and Kim et al. [14] where they have developets clustering algorithms using fuzzy sets,
which can handle categorical data. But, these dhgos suffer from the stability problem as they
do not provide satisfactory values due to the mpldtiuns of the algorithms.

Therefore, there is a need for a robust algorithat tan handle uncertainty and categorical data
together. In this sequence S. Parmar et al [3PBi72B.K.Tripathy et al [2] in 2009 and [22] in
2011 proposed three algorithms which can deal tdtth uncertainty and categorical attributes
together. But the efficiency and stability comeoirtlay when Purity ratio is measured. The
purity ratios of MMR, MMeR and SDR are in the ingseng order.

In this paper, a new algorithm called Standard Bewn of Standard Deviation Roughness
(SSDR) algorithm is proposed, which has highertpuatio than all the previous algorithms in
this series and previous to that. We establiststiperiority of this algorithm over the others by
testing them on a familiar data base, the zoo skttéaken from the UCI repository.

MATERIALSAND METHODS

2.1 Materials
In this section we first present the literatureieew as the basis of the proposed work, the
definitions of concepts to be used in the work alsd present the notations to be used.

211 Literature Review

In this section we present the literature of erggtategorical clustering algorithms. Dempster et
al. [1] presents a partitional clustering method, called Hxpectation-Maximization (EM)
algorithm. EM first randomly assigns different pabidities to each class or category, for each
cluster. These probabilities are then successagjysted to maximize the likelihood of the data
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given the specified number of clusters. Since thé& &gorithm computes the classification
probabilities, each observation belongs to eacltetuwith a certain probability. The actual
assignment of observations to a cluster is detexthibased on the largest classification
probability. After a large number of iterations, Ebtminates at a locally optimal solution. Han
et al.[26] propose a clustering algorithm to cluster relatechs in a market database based on
an association rule hypergraph. A hypergraph isl @sea model for relatedness. The approach
targets binary transactional data. It assumes sets1that define clusters are disjoint and there is
no overlap amongst them. However, this assumptiap not hold in practice as transactions in
different clusters may have a few common items. &des[8] extend K-means and introduce a
new dissimilarity measure for categorical data. @hssimilarity measure between two objects is
calculated as the number of attributes whose valoasot match. The K-modes algorithm then
replaces the means of clusters with modes, usinggaency based method to update the modes
in the clustering process to minimize the clustgiost function. One advantage of K-modes is
it is useful in interpreting the resulf8]. However, K-modes generate local optimal solutions
based on the initial modes and the order of objactise data set. K-modes must be run multiple
times with different starting values of modes tsttéhe stability of the clustering solution.
Ralambondrainyf15] proposes a method to convert multiple categorigshates into binary
attributes using 0 and 1 to represent either agoayeabsence or presence, and to treat the binary
attributes as numeric in the K-means algorithm. nduf8] also proposes the K-prototypes
algorithm, which allows clustering of objects délsed by a combination of numeric and
categorical data. CACTUS (Clustering CategoricaltaDdJsing Summaries)23] is a
summarization based algorithm. In CACTUS, the argthoduster for categorical data by
generalizing the definition of a cluster for nunsati attributes. Summary information
constructed from the data set is assumed to beisuif for discovering well-defined clusters.
CACTUS finds clusters in subsets of all attribuaesl thus performs a subspace clustering of the
data. Guha et aJ6] propose a hierarchical clustering method termed RQRbbust Clustering
using Links), which can measure the similarity ooxamity between a pair of objects. Using
ROCK, the number of “links” are computed as themmber of common neighbors between two
objects. An agglomerative hierarchical clusterihgpathm is then applied: first, the algorithm
assigns each object to a separate cluster, clusterthen merged repeatedly according to the
closeness between clusters, where the closendsfined as the sum of the number of “links”
between all pairs of objects. Gibson et [d] propose an algorithm called STIRR (Sieving
Through Iterated Relational Reinforcement), a galiexd spectral graph partitioning method for
categorical data. STIRR is an iterative approachickv maps categorical data to non-linear
dynamic systems. If the dynamic system converdes, dategorical data can be clustered.
Clustering naturally lends itself to combinatorfiatmulation. However, STIRR requires a non-
trivial post-processing step to identify sets afsaly related attribute valuga3]. Additionally,
certain classes of clusters are not discoveredTBRFS [23]. Moreover, Zhang et aJ24] argue
that STIRR cannot guarantee convergence and thergi@mpose a revised dynamic system
algorithm that assures convergence. He d7hpropose an algorithm called Squeezer, which is
a one-pass algorithm. Squeezer puts the first-tapdecluster and then the subsequent-tuples are
either put into an existing cluster or rejecteddom a new cluster based on a given similarity
function. He et al[25] explore categorical data clustering (CDC) and laotlstering (LC)
problems and propose a LCBCDC (Link Clustering BaSategorical Data Clustering), and
compare the results with Squeezer and K-mode. \reweng these algorithms, some of the
methods such as STIRR and EM algorithms cannoiagtee the convergence while others have
scalability issues. In addition, all of the algbnits have one common assumption: each object
can be classified into only one cluster and alkoty have the same degree of confidence when
grouped into a clustel5]. However, in real world applications, it is diffit to draw clear
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boundaries between the clusters. Therefore, thertaiaty of the objects belonging to the cluster
needs to be considered.

One of the first attempts to handle uncertaintyuzzy K-meang9]. In this algorithm, each
pattern or object is allowed to have membershigtions to all clusters rather than having a
distinct membership to exactly one cluster. Krighuram and Kellef18] propose a probabilistic
approach to clustering in which the membership tdadure vector in a class has nothing to do
with its membership in other classes and modifiegstering methods are used to generate
membership distributions. Krishnapuram et [dl7] present several fuzzy and probabilistic
algorithms to detect linear and quadratic shellstdis. Note the initial work in handling
uncertainty was based on numerical data. H§@8hgroposes a fuzzy K-modes algorithm with a
new procedure to generate the fuzzy partition mdtam categorical data within the framework
of the fuzzy K-means algorithm. The method findazfucluster modes when a simple matching
dissimilarity measure is used for categorical otsjeBy assigning confidence to objects in
different clusters, the core and boundary objettthe clusters can be decided. This helps in
providing more useful information for dealing witloundary objects. More recently, Kim et al.
[14] have extended the fuzzy K-modes algorithm by udumyy centroid to represent the
clusters of categorical data instead of the hapé-tgentroid used in the fuzzy K-modes
algorithm. The use of fuzzy centroid makes it polesio fully exploit the power of fuzzy sets in
representing the uncertainty in the classificatbddrcategorical data. However, fuzzy K-modes
and fuzzy centroid algorithms suffer from the sgmeblem as K-modes, that is they require
multiple runs with different starting values of nesdto test the stability of the clustering
solution. In addition, these algorithms have touatljone control parameter for membership
fuzziness to obtain better solutions. This necatest the effort for multiple runs of these
algorithms to determine an acceptable value of paimmeter. Therefore, there is a need for a
categorical data clustering method, having theitghib handle uncertainty in the clustering
process while providing stable results. One metlogdowith potential for handling uncertainty
is Rough Set Theory (RST) which has received cenaglile attention in the computational
intelligence literature since its development byvR& in the 1980s. Unlike fuzzy set based
approaches, rough sets have no requirement on domepertise to assign the fuzzy
membership. Still, it may provide satisfactory des@or rough clustering. The objective of this
proposed algorithm is to develop a rough set bappdoach for categorical data clustering. The
approach, termed Standard deviation of Standardii@v roughness (SSDR), is presented and
its performance is evaluated on large scale dasa se

2.1.2 Basics of rough sets

Most of our traditional tools for formal modelinggasoning and computing are deterministic and
precise in character. Real situations are verynaft@ deterministic and they cannot be described
precisely. For a complete description of a reakesysoften one would require by far more
detailed data than a human being could ever rezegimultaneously, process and understand.
This observation led to the extension of the basitcept of sets so as to model imprecise data
which can enhance their modeling power. The funddahe€oncept of sets has been extended in
many directions in the recent past. The notion u#zy Sets, introduced by Zadeh [10] deals
with the approximate membership and the notion ofigh Sets, introduced by Pawlak [12]
captures indiscernibility of the elements in a SkEtese two theories have been found to
complement each other instead of being rivals. ifilea of rough set consists of approximation
of a set by a pair of sets, called the lower andeuppproximations of the set. The basic
assumption in rough set is that, knowledge depepds the classification capabilities of human
beings. Since every classification (or partitiof)aouniverse and the concept of equivalence
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relation are interchangeable notions, the definitad rough sets depends upon equivalence
relations as its mathematical foundations [12].

Let U (*0) be a finite set of objects, called the univensd R be an equivalence relation over
U. By U / R we denote the family of all equivalerddasses of R (or classification of U) referred
to ascategories or concepts of R and [xk denotes a category in R containing an elemett. x
By a Knowledge base, we understand a relation sykte(U, R), where U is as above and R is a
family of equivalence relations over U.

For any subset P£(0) € R, the intersection of all equivalence relatiom$iis denoted by IND
(P) and is called thendiscernibility relation over P. The equivalence classes of IND (P) are
called P-basic knowledge about U in K. For any @R, Q is called a Q-elementary knowledge
about U in K and equivalence classes of Q are c¢&llelementary concepts of knowledge R.
The family of P-basic categories for all # P =R will be called thdamily of basic categoriesin
knowledge base K. By IND (K), we denote the fanafyall equivalence relations defined in k.
Symbolically, IND (K) ={IND (P):0 # PSS R}.

For any X< U and an equivalence relation & IND (K), we associate two subsets,
RX=Uf{YOU/RYOX and RX={YOU/ R Yn X2}, called the Rewer and Rupper
approximations of X respectively. The Roundary of X is denoted by BRN(X) and is given by
BNr(X) =RX —RX. The elements ofRX are those elements of U which can be certainly
classified as elements of X employing knowledg&oihe borderline region is the undecidable
area of the universe. We say Xraigh with respect to R if and only RX #RX , equivalently

BNgr(X) #0. X is said to be Reefinable if and only ifRX =RX, or BNk(X) =0 . So, a set is
rough with respect to R if and only if it is notdefinable.

2.1.3 Definitions

Definition 2.1.3.1 (Indiscernibility relation (Ind (B))): Ind (B) is aelation on U. Given two
objects x, x; € U, they are indiscernible by the set of attriblBes A, if and only if a (¥ = a ()
for every &B. That is, (x X € Ind (B) if and only ifJ aeB where B=A, a (X) = a ().

Definition 2.1.3.2 (Equivalence class ({Ixind 8))): Given Ind (B), the set of objectshaving the
same values for the set of attributes in B consifan equivalences classes)f¥g). It is also
known as elementary set with respect to B.

Definition 2.1.3.3 (Lower approximation): Given the set of attribuB# A, set of objects X in
U, the lower approximation of X is defined as th@om of all the elementary sets which are
contained in X. That is

Xg =U X | [X] ma 8 S X}

Definition 2.1.3.4 (upper approximation): Given the set of attribuBem A, set of objects X in
U, the upper approximation of X is defined as tion of the elementary sets which have a
nonempty intersection with X.That is

Xg = U {Xi | [X] ind ) NX#0 }.
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Definition 2.1.3. 5 (Roughness): The ratio of the cardinality of thedo approximation and the
cardinality of the upper approximation is definesl tae accuracy of estimation, which is a
measure of roughness. It is presented as

_ . I Xg
Rs(X) = 1- =
| Xe |
If Rg(X) = 0, X is crisp with respect to B, in other wisr X is precise with respect to B. IEX)
<1, X is rough with respect to B, That is, B is uagvith respect to X.

Definition 2.1.3.6 (Relative roughne$s Given a€ A, X is a subset of objects having one
specifics valueo of attribute g Xaj (3 =a) and Xaj (a =a) refer to the lower and upper

approximation of X with respect to jfa then R, (X) is defined as the roughness of X with
respect to {g, that is

X, (@ =)
R, (X3 =0) = L=t

———=— where g a €A and a# g,
X, @ =0a)l 3 3

Definition 2.1.3.7 (Mean roughness): Let A have n attributes aggd/Aa X be the subset of
objects having a specific valueof the attribute @ Then we define the mean roughness for the
equivalence class=ai, denoted by MeR (a0) as

MeR (=) =(3_R, (X /3 =a))/ (n-1).

Definition 2.1.3.8 (Standard deviation) : After calculating the me&each ac A, we will apply
the standard deviation to eaglbathe formula

SD (a0) :J(ll(n—l))_”z R, (X /a =a)- MeR(@=a )§

Definition 2.1.3.9 (Distance of relevance): Given two objects B andf Categorical data with n
attributes, DR for relevance of objects is defiasdollows:

DR(B,C)="(0,6).

Here, band ¢are values of objects B and C respectively, utitef” attribute a. Also, we have
1. DR(b,c)=1lifb#g
2. DR(h,c)=0ifbh=q

3. DR(G,q= 10, ~ &, |

if & is a numerical attribute; wherex, * is the number

assigned to the equivalence class that contaihegp " is similarly defined and ‘nois the total
number of equivalence classes in numerical ateilaut
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Definition 2.1.3.10 (Purity ratio) : In order to compare SDR with MM@Rd MMR and all other
algorithms which have taken initiative to handletegarical data we developed an
implementation. The traditional approach for cadtinlg purity of a cluster is given below.

Purity (i):the number of data occuring in both theluster and its corresponding cl
the number of data in the data set

#ofclusters

> Purity(i)
Over all Purity=—"3t
#ofclusters

METHODS

In this section we present the main algorithm &f plaper and the experimental part deals with
an example.

2.2.1 Proposed Algorithm
In this section we present our algorithm which va# 8SDR. The notations and definitions of
concepts have been discussed in the previous sectio

Procedure SSDR(U, k)
Begin
Set current number of cluster CNC =1
Set ParentNode = U
Loopl:
If CNC < k and CNC#1 then
ParentNode = Proc ParentNode (CNC)
. End if
/I Clustering the ParentNode
9. For each @A (i =1 to n, where n is the number of attribute#\)
10.  Determing X, ] ., (M =1 to number of objects)

11. For eachjeA (j = 1 to n, where n is the number of the atttésuin A, j4)
12. Calculate Roughaj (&)

13. Next
14. MeR (a=0) = (Zn: Rai (X/a =a))/(n-1).

i=1
j#i

ONOOAWNE

15. Next
16.  Apply standard deviation

SD(a0)= \/(1/(n—1»§ (R, (X /3 =a)- MeR(@@=a )§

17.  Next
18. Set SDR =SD {min {SD (&oay),....SD (a:akj )}.where k is the number of

equivalence classes in Don)(a
19. Determine splitting attribute ; acorresponding to the Standard deviatipn-
Roughness

20. Do binary split on the splitting attributg a
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21. CNC = the number of leaf nodes
22. Goto Loopl:

23. End

24.  Proc ParentNode (CNC)
25. Begin

26. Seti=1

27. Dountili<CNC

28.  If Avg-distance of cluster i is calculated
29. Goto label

30. else

31. n=Count (Set of Elements in Cluster i).

n-1 n

32.  Avg-distance () =2*D_ > ( Distance of relevance between objegtnal @

DI*(n -1)) o
33.

label :
34. increment i
35. Loop

36. Determine Max (Avg-distance (i))
37. Return (Set of Elements in cluster i) correspondomijlax (Avg-distance (i))
38. End

Experimental Part

In this section we present the experimental hykalgle which the characterization of various
animals in terms of size, animality, color and dgdater section we will show the efficiency of
this algorithm. The experimental table is as fobow

Tablel

ANIMAL NAME | SIZE | ANIMALITY | COLOUR | AGE
Al Small Bear Black 25
A2 Medium Bear Black 16
A3 Large Dog Brown 9
A4 Small Cat Black 30
A5 Medium Horse Black 28
A6 Large Horse Black 5
A7 Large Horse Brown 7

Let us consider the value of k is 3 that is k=3 allhmean the number of clusters will be 3.
Initially the value of CNC is 1 and the value oétRarentNode is U which indicates, the initial
value of ParentNode is whole table. So, we neeapdy our algorithm three times to get the
desired clusters.

Computational Part

So, initially CNC < k and CN€1 is false. So it will calculate the average distanf the parent
node, but initially only one table we have so thisreo need to calculate the average distance,
directly we will calculate the roughness of eactnitaite relative to the rest of the attributes
which is known as relative roughness. So, when iké&,value of @s ‘SIZE’ that is a= size.
This attribute has three distinct values ‘SmaNMedium’ and ‘Large’ so considering= ‘Small’
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first we get X={Al, A4} (where X is a subset of @gfs having one specific valaeof attribute
a) and considering j=2(as# j) we get g=’Animality’. So the equivalence classes ¢fisa{(Al,
A2), A3, A4, (A5, A6, A7)} and the lower approximanh of XElj (a =a) is given by
Xaj (a =a)= {1} and the upper approximation O(aj (a =a) is given beaj (a =a) = {Al,

A2, A4d}. So, the roughness of(@hen a="SIZE’ anda="Small’) is given by

X, @=a)l

R (X/a=a)=1-——" =
S X, @=a)]

1.9-4
3

Now, by changing the value of | (when j=3, 4,) &®aping constant the value gf(a='size’)
anda (a="Small’) we need to find the roughness pfalative to the attributes ‘COLOR’ (when
j=3) and ‘AGE’ (when j=4) and is given by

X, @=a)] |
R, (X/a=a)=1-—=————=1-—-=1when =3 and;aCOLOR’
, X, @=a)| 5
X, @=a)] |
R, (X/g =a) =1-—=———=1-—-=0when j=4 and;a’AGFE’
, X, @=a)| 2

Now, to get the standard deviation ¢{@='size’) wheno="Small’ we need to find the mean of
these values and is given k%ng—JrO:g And applying standard deviation formula we get th

value 0.4714 and will be stored in a variable.

This similar process will be continued by changing value ot (for o="Medium’ and ‘Large’)
and keeping constant the value ofAnd lastly we will get three standard deviaticalues for
each differenin. And again we will store those values in a vaegal#\fter calculating the SD
(standard deviation) of eactwe will take the minimum value of those differealues ofa and
will store it in another variable.

The above procedure will be continued for eadffioa 3='"ANIMALITY’, 'COLOR’ and 'SIZE’
when i=2, 3 and 4) and the corresponding valuelsheilstored in the variable. After completing
the above step we will take those minimum valuasnext calculation. We will apply SD
(standard deviation) to those minimum values tothgetSplitting attributes. If the value of SD
does not match with the minimum values then will take the nearest minimum vale as the
splitting attribute and will do the binary splittinthat is we will divide this table into two
clusters.

Let after splitting we have got two clustelr andc2 andcl contains 2 elements awe@ contains
5 elements. So now we need to calculate the aveliatgnce to choose the clustering table for
further calculation. This can be done by applyirgjathce of relevance formula.

Let us see how we calculate DR (distance of RelesjarFor example let us take two tuple A4
and A6 which is as follows
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Table 2

ANIMAL NAME | SIZE | ANIMALITY | COLOR | AGE
A4 Small Cat Black 30
A6 Large Horse Black 5

Here B=A4 and C=A6 and DR (B, C) is defined as

DR (B, C) =3 DR(b.¢)

=DR (%6 GCsizd + DR (unimalitys Canimaiity) + DR (ReolonCeolor) + DR (lige Cage
S0, DR (Rize, Gsize) = 0 @s Bze# Csize
DR (Rnimaiity, Canimality) = O @S Bnimality# Canimality
DR (Beotor, Ceolor) = 1 @S Bolor= Ceolor

But for DR (e, Cag9 We need to follow some different method as ‘AG&’the numerical

attribute. To calculate the DR of a numerical htite we need to exclude that numerical attribute
from that table and need to find the average edgmea class of all attributes. So, in this case we
need to exclude the attribute ‘AGE’ first and tivem have to find the average equivalence class.

So, the average equivalence class is (3+4+2)/31r this case we have got a integer value but
we can get a fraction also then we need to takereits floor value or its roof value.

Now we need to sort the attribute value of thalaite ‘AGE’. After sorting in ascending order
we get {5, 7, 9, 16, 25, 28, 30}. Now we will dibtte these numbers into three sets which is as
follows

Setl1={5,7}

Set 2 = {9, 16}

Set 3 = {25, 28, 30}

Now we will calculate DR (fe,Cagd- IN our case = 30 and gge= 5. So, we will put 3 and 1 in
place of 30 and 5 as 30 belongs to the set 3 d®dohgs to the set 1.

|3-1]
total _number of _sets

2
So, DR (Rge,Cagd = = 3

Fina"y, DR (B ’ C) = DR (Qzecsize) + DR (banimalitylocmimality) + DR (b:olor;ccolor) + DR (bagecaga

= 0 + 0 + 1 + 2
3

=1.666667

So, in this way we will calculate the average distaofC1 andC2 and the cluster having the
larger average distance we will take that particalaster as the input for further calculation.
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So, in this fashion we will apply this algorithmtiinve get the desired number of cluster. In our
case we will stop when we will g&t3 because in our case the total number of clustéds is

RESULTSAND DISCUSSION

In this section we present the original result ieaested on ZOO dataset which was also taken
by MMR, MMeR and SDR algorithm.

The ZOO data has 18 attributes and out them 13aotean attribute, 2 are numeric and 1 is
animal name and it has 101 objects. The total tbj@e divided into seven classes so; we need
to stop when we will get seven clusters. After mgkithe ZOO dataset as the input we have got
the following output which is as follows:

Table3

Cluster Number | Classl | Classll | Class Il | ClasslV | Class V | ClassVI | Class VII | Purity Ratio

1 19 3 0 0 0 0 2 0.7916

2 0 0 0 13 0 0 0 1

3 0 0 0 0 0 8 0 1

4 0 0 0 0 4 0 0 1

5 0 0 5 0 0 0 0 1

6 0 8 0 0 0 0 0 1

7 22 9 0 0 0 0 8 0.5641
Overall Purity 0.9079

3.2.1 Comparison of SSDR with MMeR, MMR, SDR and Algorithms based on FUZZY Set
Theory

Till the development of MMR, the only algorithms mh aimed at handling uncertainty in the
clustering process were based upon fuzzy set t[#&8jf¥hese algorithms based on fuzzy set
theory include fuzzy K-modes, fuzzy centroids. Kyenodes algorithm replaces the means of
the clusters (K-means) with modes and uses a freyueased method to update the modes in
the clustering process to minimize the clusteriogt dunction. Fuzzy K-modes generates a fuzzy
partition matrix from categorical data. By assignanconfidence to objects in different clusters,
the core and boundary objects of the clusters atermiined for clustering purposes. The fuzzy
centroids algorithm uses the concept of fuzzy bebity to derive fuzzy centroids to create
clusters of objects which have categorical attebuBut in MMR, MMeR and in SDR they have
used rough sets concept to build those algorithmdisae compared to efficiency MMeR is more
efficient than MMR and less efficient than SDR B@&DR is much more efficient than other.

3.2.2 Emperical Analysis

The earlier algorithms for classification with unegnty like K-modes, Fuzzy K-modes and

Fuzzy centroid on one hand and MMR, MMeR and SDRherother hand were applied to ZOO
data sets. Table 4 below provides the comparisqruofy for these algorithms on this datasets.
It is observed that SSDR has a better purity tHaatler algorithms when applied on zoo data
set.

As mentioned earlier, all the fuzzy set based @lgms face a challenging problem that is the
problem of stability. These algorithms require greffort to adjust the parameter, which is used
to control the fuzziness of membership of each gatat. At each value of this parameter, the
algorithms need to be run multiple times to achi@wtable solution.
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MMR, MMeR and SDR on the other hand have no suodblpm. SSDR continues to have the
advantages of MMR, MMeR and SDR over the otherriétlyns as mentioned above. But it has
higher purity than MMR, MMeR and SDR which estaldis its superiority over MMR, MMeR
and SDR.

Table4

DATA SET | K-modes | Fuzzy K-modes | Fuzzy centroids | MMR | MMeR | SDR | SSDR
Z00 0.6 0.64 0.75 0.787 0.902 0.9p7 0.907*

*In this case we have got the same Purity ratioamspared to SDR but as standard deviation has
better central tendency over mean or minimum il give better result for other data sets.
Manually it has been checked for a small datalsstit is giving much better result than MMR,
MMeR and SDR

CONCLUSION

In this paper, we proposed a new algorithm call8®B8, which is more efficient than most of
the earlier algorithms including MMR, MMeR and SDiich are recent algorithms developed
in this direction. It handles uncertain data usiaggh set theory. Firstly, we have provided a
method where both numerical and categorical databeahandled and secondly, by providing
the distance of relevance we are getting much tetteilts than MMR where they are choosing
the table to be clustered, according to the nunobeybjects. The comparison of purity ratio
shows its superiority over MMeR. Future enhancementthis algorithm may be possible by
considering hybrid techniques like rough-fuzzy thusmg or fuzzy-rough clustering.

REFERENCES

[1] A. Dempster, N. Laird, D. Rubidpurnal of the Royal Satistical Society 39 (1) (977) 1-38.
[2] B.K.Tripathy and M S Prakash Kumar Chternational Journal of Rapid Manufacturing
(special issue on Data Mining) (Switzerland),voht,2, 009), pp.189-207

[3] D Parmar, Teresa Wu, JenniferBata & Knowledge Engineering (2007)

[4] D. Gibson, J. Kleinberg, P. Raghavdine Very Large Data Bases Journal 8 (3—4) 2000)
222-236.

[5] M. Halkidi, Y. Batistakis, M. Vazirgiannislournal of Intelligent Information Systems 17 (2—
3) (2001) 107-145.

[6] S. Guha, R. Rastogi, K. Shitmformation Systems 25 (5) €000) 345—-366.

[7] Z. He, X. Xu, S. DengJournal of Computer Science & Technology 17 (5) @002) 611-624.
[8] Z. Huang,Data Mining and Knowledge Discovery 2 (3) (1998) 283-304.

[9] E. Ruspini,Information Control 15 (1) (1969) 22—-32.

[10] L.A. Zadeh,Information and Control, 11 (1965), pp.338-353.

[11] R. Johnson, W. Wichern, Applied Multivariate Statigl Analysis, Prentice Hall, New
York, 2002.

[12] Zdzislaw Pawlak, Rough Sets- Theoretical Aspect®Reasoning About Data. Norwell:
Kluwar Academic Publishers1992).

[13] D. Jiang, C. Tang, A. Zhand-EE Transactions on Knowledge and Data Engineering 16
(11) (2004) 1370-1386.

[14] D. Kim, K. Lee, D. LeePattern Recognition Letters 25 (11) 2004) 1263—-1271.Mkm.

[15] H. RalambondrainyRattern Recognition Letters 16 (11) (995) 1147-1157.

325

Pelagia Research Library



Adhir Ghosh et al Adv. Appl. Sci. Res., 2011, 2 (3):314-326

[16] K. Wong, D. Feng, S. Meikle, M. FulhartEEE Transactions on Nuclear Science 49 (1)
(2002) 200-207.

[17] R. Krishnapuram, H. Frigui, O. NasraolEEE Transactions on Fuzzy Systems 3 (1) (1995)
29-60.

[18] R. Krishnapuram, J. KellelEEE Transactions on Fuzzy Systems 1 (2) (1993) 98-110.

[19] R. Mathieu, J. GibsonEEE Transactions on Engineering Management 40 (3) @004) 283—
292.

[20] S. Haimov, M. Michalev, A. Savchenko, O. Yordanti¥-E Transactions on Geo Science
and Remote Sensing 8 (1) (1989) 606—610.

[21] S. Wu, A. Liew, H. Yan, M. Yang|EEE Transactions on Information Technology in
BioMedicine 8 (1) 2004) 5-15.

[22] Tripathy, B.K. and A.Ghosh: SDR: An Algorithm forlUStering Categorical Data Using
Rough Set Theory, Communicated to the InternatidBRE conference to be held in Kerala,
(2012).

[23] V., Ganti, J. Gehrke, R. Ramakrishnan, CACTUS -steling categorical data using
summaries, in: Fifth ACM SIGKDD International Cordace on Knowledge Discovery and
Data Mining, (999), pp. 73-83.

[24] Y. Zhang, A. Fu, C. Cai, P. Heng, Clustering categ data, in: Proceedings of the 16th
International Conference on Data Engineeri2800Q), pp. 305-324.

[25] Z. He, X. Xu, S. Deng, A link clustering based aygwh for clustering categorical data,
Proceedings of the WAIM Conference, 2004).
<http://xxx.sf.nchc.org.tw/ftp/cs/papers/0412/0412@df>

[26] E. Han, G. Karypis, V. Kumar, B. Mobasher, Clustgribased on association rule
hypergraphs, in: Workshop on Research Issues oa Biting and Knowledge Discovery,
(2997), pp. 9-13.

326

Pelagia Research Library



