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ABSTRACT 
 
In the present day scenario, there are large numbers of clustering algorithms available to group 
objects having similar characteristics. But the implementations of many of those algorithms are 
challenging when dealing with categorical data. While some of the algorithms available at 
present cannot handle categorical data the others are unable to handle uncertainty. Many of 
them have the stability problem and also have efficiency issues. This necessitated the 
development of some algorithms for clustering categorical data and which also deal with 
uncertainty. In 2007, an algorithm, termed MMR was proposed [3], which uses the rough set 
theory concepts to deal with the above problems in clustering categorical data. Later in 2009, 
this algorithm was further improved to develop the algorithm MMeR [2] and it could handle 
hybrid data. Again, very recently in 2011 MMeR is again improved to develop an algorithm 
called SDR [22], which can also handle hybrid data. The last two algorithms can handle both 
uncertainties as well as deal with categorical data at the same time but SDR has more efficiency 
over MMeR and MMR. In this paper, we propose a new algorithm in this sequence, which is 
better than all its predecessors; MMR, MMeR and SDR, and we call it SSDR (Standard deviation 
of Standard Deviation Roughness) algorithm. This takes both the numerical and categorical data 
simultaneously besides taking care of uncertainty. Also, this algorithm gives better performance 
while tested on well known datasets. 
 
Keywords- Clustering, MMeR, MMR, SDR, SSDR, uncertainty. 
______________________________________________________________________________ 

 
INTRODUCTION 

 
The basic objective of clustering is to group data or objects having the similar characteristics in 
the same cluster and having dissimilarity with other clusters. It has been used in data mining 
tasks such as unsupervised classification and data summation. It is also used in segmentation of 
large heterogeneous data sets into smaller homogeneous subsets which is easily managed, 
separately modeled and analyzed [8]. The basic goal in cluster analysis is to discover natural 
groupings of objects [11]. Clustering techniques are used in many areas such as manufacturing, 
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medicine, nuclear science, radar scanning and research and also in development. For example, 
Wu et al. [21] developed a clustering algorithm specifically designed for handling the complexity 
of gene data. Jiang et al. [13] analyze a variety of cluster techniques, which can be applied for 
gene expression data. Wong et al. [16] presented an approach used to segment tissues in a 
nuclear medical imaging method known as positron emission tomography (PET). Haimov et al. 
[20] used cluster analysis to segment radar signals in scanning land and marine objects. Finally 
Mathieu and Gibson [19] used the cluster analysis as a part of a decision support tool for large 
scale research and development planning to identify programs to participate in and to determine 
resource allocation. 
 
The problem with all the above mentioned algorithms is that they mostly deal with numerical 
data sets that are those databases having attributes with numeric domains .The basic reason for 
dealing with numerical attributes is that these are very easy to handle and also it is easy to define 
similarity on them. But categorical data have multi-valued attributes. This, similarity can be 
defined as common objects, common values for the attributes and the association between two. 
In such cases horizontal co-occurrences (common value for the objects) as well as the vertical 
co-occurrences (common value for the attributes) can be examined [21]. 
 
Other algorithms, those can handle categorical data have been proposed including work by 
Huang[3], Gibson et al. [4], Guha et al. [13] and Dempster et al. [1]. While these algorithms or 
methods are very helpful to form the clusters from categorical data they have the disadvantage 
that they cannot deal with uncertainty. However, in real world applications it has been found that 
there is often no sharp boundary between clusters. Recently some work has been done by Huang 
[8] and Kim et al. [14] where they have developed some clustering algorithms using fuzzy sets, 
which can handle categorical data. But, these algorithms suffer from the stability problem as they 
do not provide satisfactory values due to the multiple runs of the algorithms. 
 
Therefore, there is a need for a robust algorithm that can handle uncertainty and categorical data 
together. In this sequence S. Parmar et al [3] in 2007, B.K.Tripathy et al [2] in 2009 and [22] in 
2011 proposed three algorithms which can deal with both uncertainty and categorical attributes 
together. But the efficiency and stability come into play when Purity ratio is measured. The 
purity ratios of MMR, MMeR and SDR are in the increasing order.  
 
In this paper, a new algorithm called Standard Deviation of Standard Deviation Roughness 
(SSDR) algorithm is proposed, which has higher purity ratio than all the previous algorithms in 
this series and previous to that. We establish the superiority of this algorithm over the others by 
testing them on a familiar data base, the zoo data set taken from the UCI repository.  
 

MATERIALS AND METHODS 
 

2.1 Materials 
In this section we first present the literature review as the basis of the proposed work, the 
definitions of concepts to be used in the work and also present the notations to be used. 
 
2.1.1 Literature Review 
In this section we present the literature of existing categorical clustering algorithms. Dempster et 
al. [1] presents a partitional clustering method, called the Expectation-Maximization (EM) 
algorithm. EM first randomly assigns different probabilities to each class or category, for each 
cluster. These probabilities are then successively adjusted to maximize the likelihood of the data 
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given the specified number of clusters. Since the EM algorithm computes the classification 
probabilities, each observation belongs to each cluster with a certain probability. The actual 
assignment of observations to a cluster is determined based on the largest classification 
probability. After a large number of iterations, EM terminates at a locally optimal solution. Han 
et al. [26] propose a clustering algorithm to cluster related items in a market database based on 
an association rule hypergraph. A hypergraph is used as a model for relatedness. The approach 
targets binary transactional data. It assumes item sets that define clusters are disjoint and there is 
no overlap amongst them. However, this assumption may not hold in practice as transactions in 
different clusters may have a few common items. K-modes [8] extend K-means and introduce a 
new dissimilarity measure for categorical data. The dissimilarity measure between two objects is 
calculated as the number of attributes whose values do not match. The K-modes algorithm then 
replaces the means of clusters with modes, using a frequency based method to update the modes 
in the clustering process to minimize the clustering cost function. One advantage of K-modes is 
it is useful in interpreting the results [8]. However, K-modes generate local optimal solutions 
based on the initial modes and the order of objects in the data set. K-modes must be run multiple 
times with different starting values of modes to test the stability of the clustering solution. 
Ralambondrainy [15] proposes a method to convert multiple categories attributes into binary 
attributes using 0 and 1 to represent either a category absence or presence, and to treat the binary 
attributes as numeric in the K-means algorithm. Huang [8] also proposes the K-prototypes 
algorithm, which allows clustering of objects described by a combination of numeric and 
categorical data. CACTUS (Clustering Categorical Data Using Summaries) [23] is a 
summarization based algorithm. In CACTUS, the authors cluster for categorical data by 
generalizing the definition of a cluster for numerical attributes. Summary information 
constructed from the data set is assumed to be sufficient for discovering well-defined clusters. 
CACTUS finds clusters in subsets of all attributes and thus performs a subspace clustering of the 
data. Guha et al. [6] propose a hierarchical clustering method termed ROCK (Robust Clustering 
using Links), which can measure the similarity or proximity between a pair of objects. Using 
ROCK, the number of ‘‘links’’ are computed as the number of common neighbors between two 
objects. An agglomerative hierarchical clustering algorithm is then applied: first, the algorithm 
assigns each object to a separate cluster, clusters are then merged repeatedly according to the 
closeness between clusters, where the closeness is defined as the sum of the number of ‘‘links’’ 
between all pairs of objects. Gibson et al. [4] propose an algorithm called STIRR (Sieving 
Through Iterated Relational Reinforcement), a generalized spectral graph partitioning method for 
categorical data. STIRR is an iterative approach, which maps categorical data to non-linear 
dynamic systems. If the dynamic system converges, the categorical data can be clustered. 
Clustering naturally lends itself to combinatorial formulation. However, STIRR requires a non-
trivial post-processing step to identify sets of closely related attribute values [23]. Additionally, 
certain classes of clusters are not discovered by STIRR [23]. Moreover, Zhang et al. [24] argue 
that STIRR cannot guarantee convergence and therefore propose a revised dynamic system 
algorithm that assures convergence. He et al. [7] propose an algorithm called Squeezer, which is 
a one-pass algorithm. Squeezer puts the first-tuple in a cluster and then the subsequent-tuples are 
either put into an existing cluster or rejected to form a new cluster based on a given similarity 
function. He et al. [25] explore categorical data clustering (CDC) and link clustering (LC) 
problems and propose a LCBCDC (Link Clustering Based Categorical Data Clustering), and 
compare the results with Squeezer and K-mode. In reviewing these algorithms, some of the 
methods such as STIRR and EM algorithms cannot guarantee the convergence while others have 
scalability issues. In addition, all of the algorithms have one common assumption: each object 
can be classified into only one cluster and all objects have the same degree of confidence when 
grouped into a cluster [5]. However, in real world applications, it is difficult to draw clear 
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boundaries between the clusters. Therefore, the uncertainty of the objects belonging to the cluster 
needs to be considered. 
 
One of the first attempts to handle uncertainty is fuzzy K-means [9]. In this algorithm, each 
pattern or object is allowed to have membership functions to all clusters rather than having a 
distinct membership to exactly one cluster. Krishnapuram and Keller [18] propose a probabilistic 
approach to clustering in which the membership of a feature vector in a class has nothing to do 
with its membership in other classes and modified clustering methods are used to generate 
membership distributions. Krishnapuram et al. [17] present several fuzzy and probabilistic 
algorithms to detect linear and quadratic shell clusters. Note the initial work in handling 
uncertainty was based on numerical data. Huang [8] proposes a fuzzy K-modes algorithm with a 
new procedure to generate the fuzzy partition matrix from categorical data within the framework 
of the fuzzy K-means algorithm. The method finds fuzzy cluster modes when a simple matching 
dissimilarity measure is used for categorical objects. By assigning confidence to objects in 
different clusters, the core and boundary objects of the clusters can be decided. This helps in 
providing more useful information for dealing with boundary objects. More recently, Kim et al. 
[14] have extended the fuzzy K-modes algorithm by using fuzzy centroid to represent the 
clusters of categorical data instead of the hard-type centroid used in the fuzzy K-modes 
algorithm. The use of fuzzy centroid makes it possible to fully exploit the power of fuzzy sets in 
representing the uncertainty in the classification of categorical data. However, fuzzy K-modes 
and fuzzy centroid algorithms suffer from the same problem as K-modes, that is they require 
multiple runs with different starting values of modes to test the stability of the clustering 
solution. In addition, these algorithms have to adjust one control parameter for membership 
fuzziness to obtain better solutions. This necessitates the effort for multiple runs of these 
algorithms to determine an acceptable value of this parameter. Therefore, there is a need for a 
categorical data clustering method, having the ability to handle uncertainty in the clustering 
process while providing stable results. One methodology with potential for handling uncertainty 
is Rough Set Theory (RST) which has received considerable attention in the computational 
intelligence literature since its development by Pawlak in the 1980s. Unlike fuzzy set based 
approaches, rough sets have no requirement on domain expertise to assign the fuzzy 
membership. Still, it may provide satisfactory results for rough clustering. The objective of this 
proposed algorithm is to develop a rough set based approach for categorical data clustering. The 
approach, termed Standard deviation of Standard deviation roughness (SSDR), is presented and 
its performance is evaluated on large scale data sets. 
 
2.1.2 Basics of rough sets 
Most of our traditional tools for formal modeling, reasoning and computing are deterministic and 
precise in character. Real situations are very often not deterministic and they cannot be described 
precisely. For a complete description of a real system often one would require by far more 
detailed data than a human being could ever recognize simultaneously, process and understand. 
This observation led to the extension of the basic concept of sets so as to model imprecise data 
which can enhance their modeling power. The fundamental concept of sets has been extended in 
many directions in the recent past. The notion of Fuzzy Sets, introduced by Zadeh [10] deals 
with the approximate membership and the notion of Rough Sets, introduced by Pawlak [12] 
captures indiscernibility of the elements in a set. These two theories have been found to 
complement each other instead of being rivals. The idea of rough set consists of approximation 
of a set by a pair of sets, called the lower and upper approximations of the set. The basic 
assumption in rough set is that, knowledge depends upon the classification capabilities of human 
beings. Since every classification (or partition) of a universe and the concept of equivalence 
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relation are interchangeable notions, the definition of rough sets depends upon equivalence 
relations as its mathematical foundations [12]. 
 
Let U (≠∅ ) be a finite set of objects, called the universe and R be an equivalence relation over 
U. By U / R we denote the family of all equivalence classes of R (or classification of U) referred 
to as categories or concepts of R and [x]R denotes a category in R containing an element x∈U. 
By a Knowledge base, we understand a relation system k= (U, R), where U is as above and R is a 
family of equivalence relations over U.   
 
For any subset P (≠∅ ) ⊆ R, the intersection of all equivalence relations in P is denoted by IND 
(P) and is called the indiscernibility relation over P. The equivalence classes of IND (P) are 
called P- basic knowledge about U in K. For any Q∈R, Q is called a Q-elementary knowledge 
about U in K and equivalence classes of Q are called Q-elementary concepts of knowledge R. 
The family of P-basic categories for all ∅  ≠ P ⊆R will be called the family of basic categories in 
knowledge base K. By IND (K), we denote the family of all equivalence relations defined in k. 
Symbolically, IND (K) = {IND (P): ∅  ≠ P ⊆ R}. 
 
 For any X ⊆ U and an equivalence relation R ∈ IND (K), we associate two subsets,  

{ / : }RX Y U R Y X= ∈ ⊆U and { / : }RX Y U R Y X= ∈ ∩ ≠ ∅U , called the R-lower and R-upper  
approximations of X respectively. The R-boundary of X is denoted by BNR(X) and is given by 

BNR(X) = RX RX− . The elements of RX are those elements of U which can be certainly 
classified as elements of X employing knowledge of R. The borderline region is the undecidable 

area of the universe. We say X is rough with respect to R if and only ifRX RX≠ , equivalently 

BNR(X) ≠∅ . X is said to be R- definable if and only ifRX RX= , or BNR(X) = ∅ . So, a set is 
rough with respect to R if and only if it is not R-definable.  
 
2.1.3 Definitions 
Definition 2.1.3.1 (Indiscernibility relation (Ind (B))): Ind (B) is a relation on U. Given two 
objects xi, xj ∈ U, they are indiscernible by the set of attributes B in A, if and only if a (xi) = a (xj) 
for every a∈B. That is, (xi, xj ∈ Ind (B) if and only if ∀ a∈B where B⊆A, a (xi) = a (xj). 
 
Definition 2.1.3.2 (Equivalence class ([xi] Ind (B))): Given Ind (B), the set of objects xi having the 
same values for the set of attributes in B consists of an equivalences classes, [xi] Ind(B). It is also 
known as elementary set with respect to B. 
 
Definition 2.1.3.3 (Lower approximation): Given the set of attributes B in A, set of objects X in 
U, the lower approximation of X is defined as the union of all the elementary sets which are 
contained in X. That is  
       BX  = ∪ xi | [xi] Ind (B) ⊆ X}. 

Definition 2.1.3.4 (upper approximation): Given the set of attributes B in A, set of objects X in 
U, the upper approximation of X is defined as the union of the elementary sets which have a 
nonempty intersection with X.That is  
       BX  = ∪ {x i | [xi] Ind (B) ∩X≠∅ }. 
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Definition  2.1.3. 5 (Roughness): The ratio of the cardinality of the lower approximation and the 
cardinality of the upper approximation is defined as the accuracy of estimation, which is a 
measure of roughness. It is presented as 
 

 RB(X) = 1- 
| |

| |
B

B

X

X
 

If RB(X) = 0, X is crisp with respect to B, in other words, X is precise with respect to B. If RB(X) 
<1, X is rough with respect to B, That is, B is vague with respect to X. 
 
Definition 2.1.3.6 (Relative roughness) : Given ai ∈ A, X is a subset of objects having one 

specifics value α of attribute ai, ( )
ja iX a a=  and ( )

ja iX a a=  refer to the lower and upper 

approximation of X with respect to {aj}, then 
jaR (X) is defined as the roughness of X with 

respect to {aj}, that is 

   ( /
ja iR X a =α) = 1-

| (

| ( ) |

j

j

a i

a i

X a

X a

α

α

= ) |

=
, where ai, aj ∈A and ai ≠ aj. 

 
Definition 2.1.3.7 (Mean roughness): Let A have n attributes and ai∈ A. X be the subset of 
objects having a specific value α of the attribute ai. Then we define the mean roughness for the 
equivalence class ai=α, denoted by MeR (ai=α) as  
 

    MeR (ai=α) =
1

( ( / / ( 1)
j

n

a i
j
j i

R X a nα
=
≠

= )) −∑ . 

 
Definition 2.1.3.8 (Standard deviation) : After calculating the mean of each ai ∈ A, we will apply 
the standard deviation to each ai by the formula 
 

     SD (ai=α) =
1

2
i

1

(1/ ( 1)) ( ( / MeR(a ))
i

n

a i
i

n R X a α α
−

=

− = ) − =∑   

 
Definition 2.1.3.9 (Distance of relevance): Given two objects B and C of categorical data with n 
attributes, DR for relevance of objects is defined as follows: 
 

1

( , ) ( , )
n

i i
i

DR B C b c
=

=∑ . 

 
Here, bi and ci are values of objects B and C respectively, under the ith attribute ai . Also, we have 
1. DR (bi , ci) = 1 if bi ≠ ci 
2. DR (bi , ci) = 0 if bi = ci 

3. DR (bi , ci) = 
| |

i iB C

i

eq eq

no

−
 if ai is a numerical attribute; where ‘

iBeq ’ is the number 

assigned to the equivalence class that contains bi. ‘
iCeq ’ is similarly defined and ‘noi’ is the total 

number of equivalence classes in numerical attribute ai. 
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Definition 2.1.3.10 (Purity ratio) : In order to compare SDR with MMeR and MMR and all other 
algorithms which have taken initiative to handle categorical data we developed an 
implementation. The traditional approach for calculating purity of a cluster is given below. 
 
Purity (i)= the number of data occuring in both the th cluster and its corresponding class

the number of data in the data set
  

Over all Purity=

#

1

( )

#

ofclusters

i

Purity i

ofclusters
=
∑

 

 
METHODS 

 
In this section we present the main algorithm of the paper and the experimental part deals with 
an example. 
 
2.2.1 Proposed Algorithm 
In this section we present our algorithm which we call SSDR. The notations and definitions of 
concepts have been discussed in the previous section.  
 

1. Procedure SSDR(U, k) 
2. Begin 
3. Set current number of cluster CNC = 1 
4. Set ParentNode = U 
5. Loop1: 
6. If CNC < k and CNC ≠1 then 
7. ParentNode = Proc ParentNode (CNC) 
8. End if 
     // Clustering the ParentNode 
9. For each ai ∈A ( i = 1 to n, where n is the number of attributes in A) 
10. Determine ( )[ ]

im Ind aX  (m = 1 to number of objects) 

11. For each aj ∈A (j = 1 to n, where n is the number of the attributes in A, j≠i) 
12. Calculate 

jaRough (ai) 

13. Next 

14. MeR (ai=α) = 
1

( ( / / ( 1)
j

n

a i
j
j i

R X a nα
=
≠

= )) −∑ . 

15. Next 
16. Apply standard deviation 

     SD(ai=α)= 
1

2
i

1

(1/ ( 1)) ( ( / MeR(a ))
i

n

a i
i

n R X a α α
−

=

− = ) − =∑  

17. Next  
18. Set SDR =SD {min {SD (ai=α1),….SD (ai=

jkα )},where kj is the number of 

equivalence classes in Dom(ai). 
19. Determine splitting attribute ai corresponding to the Standard deviation-
Roughness 
20. Do binary split on the splitting attribute  ai 
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21. CNC = the number of leaf nodes 
22. Go to Loop1: 
23. End 
24. Proc ParentNode (CNC) 
25. Begin 
26. Set i = 1 
27. Do until i < CNC 
28. If Avg-distance of cluster i is calculated 
29. Goto label 
30. else 
31. n = Count (Set of Elements in Cluster i).    

32. Avg-distance (i) = 2*(
1

1 1

n n

j k j

−

= = +
∑ ∑ ( Distance of relevance between objects aj and ak 

))/(n*(n -1))        
33. label :  
34. increment i  
35. Loop  
36. Determine Max (Avg-distance (i))  
37. Return (Set of Elements in cluster i) corresponding to Max (Avg-distance (i))  
38. End 
 

 
Experimental Part 
In this section we present the experimental hybrid table which the characterization of various 
animals in terms of size, animality, color and age. In later section we will show the efficiency of 
this algorithm. The experimental table is as follows: 
 

Table 1 
 

ANIMAL    NAME SIZE ANIMALITY COLOUR AGE 
A1 Small Bear Black 25 
A2 Medium Bear Black 16 
A3 Large Dog Brown 9 
A4 Small Cat Black 30 
A5 Medium Horse Black 28 
A6 Large Horse Black 5 
A7 Large Horse Brown 7 

 
Let us consider the value of k is 3 that is k=3 which mean the number of clusters will be 3. 
Initially the value of CNC is 1 and the value of the ParentNode is U which indicates, the initial 
value of ParentNode is whole table. So, we need to apply our algorithm three times to get the 
desired clusters. 
 
Computational Part 
So, initially CNC < k and CNC≠1 is false. So it will calculate the average distance of the parent 
node, but initially only one table we have so there is no need to calculate the average distance, 
directly we will calculate the roughness of each attribute relative to the rest of the attributes 
which is known as relative roughness. So, when i=1, the value of ai is ‘SIZE’ that is ai = size. 
This attribute has three distinct values ‘Small’, ‘Medium’ and ‘Large’ so considering α = ‘Small’ 
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first we get X={A1, A4} (where X is a subset of objects having one specific value α of attribute 
ai) and considering j=2(as i ≠ j) we get aj=’Animality’. So the equivalence classes of aj is {(A1, 
A2), A3, A4, (A5, A6, A7)} and the lower approximation of (

ja iX a α= )  is given by 

(
ja iX a α= )= {ϕ} and the upper approximation of (

ja iX a α= )  is given by (
ja iX a α= )  = {A1, 

A2, A4}. So, the roughness of ai (when ai =’SIZE’ and α=’Small’) is given by 
 

( /
jX iR X a α= )  = 1 - 

| ( |

| ( |

j

j

a i

a i

X a

X a

α

α

= )

= )
= 1 - 

0

3
= 1 

 
Now, by changing the value of j (when j=3, 4,) and keeping constant the value of ai (ai=’size’) 
and α (α=’Small’) we need to find the roughness of ai relative to the attributes ‘COLOR’ (when 
j=3) and ‘AGE’ (when j=4) and is given by  
 

( /
jX iR X a α= )  = 1 - 

| ( |

| ( |

j

j

a i

a i

X a

X a

α

α

= )

= )
= 1 - 

0

5
= 1 when j=3 and aj=’COLOR’ 

( /
jX iR X a α= )  = 1 - 

| ( |

| ( |

j

j

a i

a i

X a

X a

α

α

= )

= )
= 1 - 

2

2
= 0 when j=4 and aj=’AGE’ 

 
Now, to get the standard deviation of ai (ai=’size’) when α=’Small’ we need to find the mean of 

these values and is given by 
1 1 0

3

+ +
=

2

3
. And applying standard deviation formula we get the 

value 0.4714 and will be stored in a variable. 
 
This similar process will be continued by changing the value of α (for α=’Medium’ and ‘Large’) 
and keeping constant the value of ai. And lastly we will get three standard deviation values for 
each different α. And again we will store those values in a variable. After calculating the SD 
(standard deviation) of each α we will take the minimum value of those different values of α and 
will store it in another variable. 
 
The above procedure will be continued for each ai (for ai=’ANIMALITY’, ’COLOR’ and ’SIZE’ 
when i=2, 3 and 4) and the corresponding values will be stored in the variable. After completing 
the above step we will take those minimum values for next calculation. We will apply SD 
(standard deviation) to those minimum values to get the Splitting attributes. If the value of SD 
does not match with the minimum values then will we take the nearest minimum vale as the 
splitting attribute and will do the binary splitting that is we will divide this table into two 
clusters. 
 
Let after splitting we have got two cluster c1 and c2 and c1 contains 2 elements and c2 contains 
5 elements. So now we need to calculate the average distance to choose the clustering table for 
further calculation. This can be done by applying distance of relevance formula. 
 
Let us see how we calculate DR (distance of Relevance). For example let us take two tuple A4 
and A6 which is as follows 
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Table 2 
 

ANIMAL NAME SIZE ANIMALITY COLOR AGE 
A4 Small Cat Black 30 
A6 Large Horse Black 5 

 
Here B=A4 and C=A6 and DR (B, C) is defined as 
 

DR (B, C) = 
1

( , )
n

i i
i

DR b c
=
∑  

                  =DR (bsize,csize) + DR (banimality,canimality) + DR (bcolor,ccolor) + DR (bage,cage) 
 
So, DR (bsize , csize) = 0 as bsize ≠ csize 

       
      DR (banimality , canimality) = 0 as banimality ≠ canimality 

 

        DR (bcolor , ccolor) = 1 as bcolor =  ccolor 

 
But for DR (bage , cage) we need to follow some different method as ‘AGE’ is the numerical 
attribute. To calculate the DR of a numerical attribute we need to exclude that numerical attribute 
from that table and need to find the average equivalence class of all attributes. So, in this case we 
need to exclude the attribute ‘AGE’ first and then we have to find the average equivalence class. 
 
So, the average equivalence class is (3+4+2)/3 = 3. In this case we have got a integer value but 
we can get a fraction also then we need to take either its floor value or its roof value. 
 
Now we need to sort the attribute value of the attribute ‘AGE’. After sorting in ascending order 
we get {5, 7, 9, 16, 25, 28, 30}. Now we will distribute these numbers into three sets which is as 
follows 
 
Set 1 = {5, 7} 
Set 2 = {9, 16} 
Set 3 = {25, 28, 30} 
Now we will calculate DR (bage, cage). In our case bage = 30 and cage = 5. So, we will put 3 and 1 in 
place of 30 and 5 as 30 belongs to the set 3 and 5 belongs to the set 1. 
 

So, DR (bage, cage) = 
| 3 1|

_ _ _total number of sets

−
 = 

2

3
 

 
Finally, DR (B , C) = DR (bsize,csize) + DR (banimality,canimality) + DR (bcolor,ccolor) + DR (bage,cage) 

                      =            0           +                 0                 +           1               +           
2

3
 

           = 1.666667 
 
So, in this way we will calculate the average distance of C1 and C2 and the cluster having the 
larger average distance we will take that particular cluster as the input for further calculation. 
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So, in this fashion we will apply this algorithm until we get the desired number of cluster. In our 
case we will stop when we will get C3 because in our case the total number of clusters is 3. 

 
RESULTS AND DISCUSSION 

 
In this section we present the original result that is tested on ZOO dataset which was also taken 
by MMR, MMeR and SDR algorithm. 
 
The ZOO data has 18 attributes and out them 15 are Boolean attribute, 2 are numeric and 1 is 
animal name and it has 101 objects. The total objects are divided into seven classes so; we need 
to stop when we will get seven clusters. After taking the ZOO dataset as the input we have got 
the following output which is as follows: 

Table 3 
 
Cluster Number Class I Class II Class  III Class IV Class   V Class VI Class  VII Purity Ratio 

1 19 3 0 0 0 0 2 0.7916 
2 0 0 0 13 0 0 0 1 
3 0 0 0 0 0 8 0 1 
4 0 0 0 0 4 0 0 1 
5 0 0 5 0 0 0 0 1 
6 0 8 0 0 0 0 0 1 
7 22 9 0 0 0 0 8 0.5641 

Overall Purity                                                                                                                                                    0 .9079 
 

 
3.2.1 Comparison of SSDR with MMeR, MMR, SDR and Algorithms based on FUZZY Set 
Theory  
Till the development of MMR, the only algorithms which aimed at handling uncertainty in the 
clustering process were based upon fuzzy set theory[26].These algorithms based on fuzzy set 
theory include fuzzy K-modes, fuzzy centroids. The K-modes algorithm replaces the means of 
the clusters (K-means) with modes and uses a frequency based method to update the modes in 
the clustering process to minimize the clustering cost function. Fuzzy K-modes generates a fuzzy 
partition matrix from categorical data. By assigning a confidence to objects in different clusters, 
the core and boundary objects of the clusters are determined for clustering purposes. The fuzzy 
centroids algorithm uses the concept of fuzzy set theory to derive fuzzy centroids to create 
clusters of objects which have categorical attributes. But in MMR, MMeR and in SDR they have 
used rough sets concept to build those algorithms but as compared to efficiency MMeR is more 
efficient than MMR and less efficient than SDR but SSDR is much more efficient than other. 
 
3.2.2 Emperical Analysis 
The earlier algorithms for classification with uncertainty like K-modes, Fuzzy K-modes and 
Fuzzy centroid on one hand and MMR, MMeR and SDR on the other hand were applied to ZOO 
data sets. Table 4 below provides the comparison of purity for these algorithms on this datasets. 
It is observed that SSDR has a better purity than all other algorithms when applied on zoo data 
set.  
 
As mentioned earlier, all the fuzzy set based algorithms face a challenging problem that is the 
problem of stability. These algorithms require great effort to adjust the parameter, which is used 
to control the fuzziness of membership of each data point. At each value of this parameter, the 
algorithms need to be run multiple times to achieve a stable solution.  
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MMR, MMeR and SDR on the other hand have no such problem. SSDR continues to have the 
advantages of MMR, MMeR and SDR over the other algorithms as mentioned above. But it has 
higher purity than MMR, MMeR and SDR which establishes its superiority over MMR, MMeR 
and SDR. 

Table 4 
 

DATA SET K-modes Fuzzy K-modes Fuzzy centroids MMR MMeR SDR SSDR 
ZOO 0.6 0.64 0.75 0.787 0.902 0.907 0.907* 

 
*In this case we have got the same Purity ratio as compared to SDR but as standard deviation has 
better central tendency over mean or minimum it will give better result for other data sets. 
Manually it has been checked for a small data set that it is giving much better result than MMR, 
MMeR and SDR 

 
CONCLUSION 

 
In this paper, we proposed a new algorithm called SSDR, which is more efficient than most of 
the earlier algorithms including MMR, MMeR and SDR, which are recent algorithms developed 
in this direction. It handles uncertain data using rough set theory. Firstly, we have provided a 
method where both numerical and categorical data can be handled and secondly, by providing 
the distance of relevance we are getting much better results than MMR where they are choosing 
the table to be clustered, according to the number of objects. The comparison of purity ratio 
shows its superiority over MMeR. Future enhancements of this algorithm may be possible by 
considering hybrid techniques like rough-fuzzy clustering or fuzzy-rough clustering.  
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