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ABSTRACT 
 
The effects of Soret and Dufour and MHD on Darcy-Forchheimer mixed convection flow with heat and mass 
transfer from a vertical flat plate embedded in a saturated porous medium taking into the influence thermophoresis, 
viscous dissipation and radiation.  The fluid is considered in a grey medium and the Rosseland approximation is 
used to describe the radiative heat flux in the energy equation.  A similarity solution for the transformed governing 
equations is obtained. The coupled non-linear ordinary equations are linearized by using Quasi-linearization 
technique. The governing coupled ordinary differential equations are being solved by employing an implicit finite 
difference scheme.  Numerical computation are carried out for the non dimensional physical parameters.  The 
results are analyzed for the effect of different physical parameters, such as radiation R, Soret number Sr, Dufour Df, 
Viscous dissipation Ec, mixed convection parameter Rax/Pex , buoyancy ratio N, inertia parameter Λ, magnetic field 
parameter Ha, Prandtl number Pr, Lewis number Le, Schmidt number Sc and thermophoretic parameter τ. 
 
Keywords: Soret and Dufour, Darcy-Forchheimer, Radiation, MHD, Finite difference method and mixed 
convection.  
_____________________________________________________________________________________________ 

 
INTRODUCTION 

 
Mixed convective heat and mass transfer flow is very important in manufacturing industries for the design of 
reliable equipment, nuclear plants, gas turbines, and various propulsion devices for aircraft, missiles, satellites, and 
space vehicles. In light of these various applications, the unsteady MHD combined convection over a moving 
vertical sheet in a fluid saturated porous medium with uniform surface heat flux was studied by El-Kabeira et.al [1]. 
Mixed convection on bodies embedded in a non-Darcian porous medium have been extensively studied and reported 
for flow driven by temperature variations only [2,3,4,5,].  The problem of Darcy–Forchheimer mixed convection 
heat and mass transfer in fluid-saturated porous media was studied by Rami et al. [6]. Goren [7] was one of the first 
to study the role of thermophoresis in the laminar flow of a viscous and incompressible fluid. Most previous studies 
of the same problem neglected viscous dissipation and thermophoresis. But Gebhart [8] has shown that the viscous 
dissipation effect plays an important role in natural convection in various devices that are subjected to large 
variations of gravitational force or that operate at high rotational speeds. Motivated by the above  investigations and 
possible applications. 
     
Small particles, such as dust, when suspended in a gaseous medium possessing a temperature gradient, it will move 
in the direction opposite to the temperature gradient.  This motion is known as thermophoresis, occurs because gas 
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molecules colliding on one side of particle have different average velocities from those on the other side due to the 
temperature gradient.  The studies in aerosol deposition have become more and more important for engineering 
applications. The factors that influence particle deposition include convection, Brownian diffusion, sedimentation, 
inertial effect, thermophoresis and surface geometry, respectively. Aerosol particles are likely to be generated during 
a severe core melt accident at a nuclear power plant. If these particles strike and attach to the walls of the heat 
exchanger, they can impair heat transfer and lead to potentially high temperatures and pressures. The force 
experienced by a small aerosol particle in the presence of a temperature gradient is known as the thermophoretic 
force.   This phenomenon has been the subject of considerable study in the past.  Goldsmith and May [9] first 
studied the thermophoretic transport involved in a simple one-dimensional flow for the measurement of the 
thermophoretic velocity. Selim et al. [10] studied the effect of surface mass flux on mixed convective flow past a 
heated vertical flat permeable plate with thermophoresis. Chamkha and Pop looked to the effect of thermophoresis 
particle deposition in free convection boundary layer from a vertical flat plate embedded in a porous medium; the 
steady free convection over an isothermal vertical circular cylinder embedded in a fluid-saturated porous medium in 
the presence of the thermophoresis particle deposition effect was analyzed by Chamka et al. [11]. Hossain and 
Takhar [12] analyzed the effect of radiation using the Rosseland diffusion approximation on mixed convection along 
a vertical plate with uniform free stream velocity and surface temperature. Damesh et al. [13] studied the effect of 
radiation and heat transfer in different geometry for various flow conditions. 
     
The Dufour and Soret effects were neglected in many reported research studies, since they are of a smaller order of 
magnitude than the effects described by Fourier’s and Fick’s laws. The energy flux can be generated  by the 
temperature gradients and  the composition gradients. The mass transfer caused by the temperature gradient is called 
the Soret effect, while the heat transfer caused by the concentration gradient is called the Dufour effect. However, 
such effects become crucial when the density difference exists in the flow regimes. The Soret effect, for instance, 
has been utilized for isotope separation. In a mixture between gases with very light molecular weight (He, H2) and 
medium molecular weight (N2, air), the Dufour effect was found to be of considerable magnitude such that it cannot 
be neglected (Eckert and Drak [14]). The Dufour and Soret effects were studied by many researchers. Eldabe et al. 
[15], studied the flow in boundary layer  effects. D. Srinivasacharya et al. [16] presented the effect of   Soret and 
Dufour  on mixed convection in a non-Darcy porous medium saturated with micropolar fluid.  
 
Most previous applications  Kishan and Srinivas [17] studied the influence of MHD on mixed convection flow, heat 
and mass transfer along a vertical flat plate embedded in a fluid saturated porous medium with the viscous 
dissipation and thermophoresis effects.  
 
The aim of the present investigation of the simultaneous effects of  Soret and Dufour of MHD mixed convection 
flow with heat and mass transfer over  a vertical porous plate embedded in a saturated porous medium subject to a  
thermal radiation and viscous dissipation.  The governing coupled equations are solved by using implicit finite 
difference scheme with C-programming code. 
 
 MATHEMATICAL FORMULATION 
We consider the steady flow of an incompressible viscous, radiating, hydromagnetic fluid bounded by a vertical flat 
plate embedded in a fluid-saturated porous medium.  The x-coordinate is measured along the plate from its leading 
edge and the y-coordinate is normal to it.  Assumed  the fluid to be Newtonian, electrically conductive, wall 
temperature  as Tw and concentration  as Cw which is embedded in a fluid saturated porous medium of ambient 
temperature T∞ and concentration C∞ , where   Tw >  T∞ and Cw > C∞ respectively. The density variations and the 
effects of buoyancy are taken into account in the momentum equation (Boussinesq approximation [18] and the 
Rosseland approximation [19] is used to describe the radiative heat flux in the energy equation. A uniform 
transverse magnetic field of strength βo is applied parallel to the y axis.  Under the above assumption, the governing 
equation for this problem can be written as:  
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The boundary conditions are given by    
 
 = 0, 7 = 78 	, 4 = 	48 		as				; = 0 
� = �<,					7 = 	7<,										4 = 	 4<		as		; → ∞                                                                                                             (5)   
     
Where u and v are the velocity components along the x and y directions, respectively, T and C are, respectively, the 
temperature and the concentration, cf  is the Forchheimer coefficient, K1 is the Darcy permeability, g is the 
acceleration due to gravity, ν is the kinematic viscosity, βT is the coefficient of thermal expansion, βC is the 
coefficient of concentration expansion, αm is the thermal diffusivity of the fluid-saturated porous medium, cp is the 
specific heat of the fluid at constant pressure, qr is the radiative heat flux and Dm  is the mass diffusivity.  In Eq. (2), 
the plus sign corresponds to the  case where the buoyancy force has a component “aiding” the forced flow, and the 
minus sign refers to the “opposing” case. By using  the Rosseland approximation for radiation [20] and following 
Raptis [21], the radiative heat flux  qr  is given by  
 

qr = 
A)B���CD

E�F
		����                                                                                                                                                            (6) 

 
where G1 is the Stefan-Boltzmann constant, ke the mean absorption coefficient  and 7< the temperature of the 
ambient fluid.  With using Eq. (6) and Eq. (3) gives  
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Now we define the following dimensionless variables for mixed convection: 

H = �IJ� 	
;
K 		 , L = 	!�IJ�M2H5, 

N2H5 = 27 − 7<5/27P −	7<5,			 
Q2H5 = 24 −	4<5/	248 −	4<5                                                                                                                                   (8)                                 
 
Where ψ is the stream function that satisfies the continuity equation and η is the dimensionless similarity variable.  
With these changes of variables, Eq. (1) is identically satisfied and Eqs. (2), (4) and (7) are transformed to  

 21 + RST5M" + 2WMXM" = ±%YZ[\][
& 2NX + ^QX5                                                                                                          (9) 

 

N" %1 + _
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T MNX + IabcM"	T + 1dQ" 				 = 				0                                                                                                     (10)    

                                            

Q" + )
T eJMQX − fgc�NXQX + 	Q	N"� + eJgaN"	0                                                                                                        (11)                                                                                  

 
The correposnding boundary conditions take the form  
 
f(η) = 0, θ(η) = 1, Q(η) =1 on η = 0 
MX2H5 → 1, N2H5 → 0, Q2H5 → 0	as		H → ∞                                                                                                               (12) 
 
Where the primes denote differentiation with respect to η, Sc = h 1"⁄  is the Schmidt number, N = �#248 − 4<5/
��278 − 7<5  is the  buoyancy ratio parameter, Rax  = 2K)gβm5278 − 7<5K/!h    is the thermal  Rayleigh number,   
Pex =	�<K/!"  is the  local Peclet number, Λ = cd�n)	�</h is the inertia parameter,  HaT = p�qTr/sh  is the 
magnetic parameter, R = rrt 4p)7<E⁄  is the radiation parameter ( k is the thermal conductivity) and Le = !" 1"⁄  is 
the Lewis number, Ec= �∞T/cv278 − 7∞5 is the Eckert number, 	1d 	= 1"r�248 − 4<5 !"4w4v278 − 7<5⁄ 		is     
the Dufour number and  the Sore number  is  gx 	 = 1"r�278 − 7<5 !"7"24< − 4<5⁄ 			 
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3.  NUMERICAL SOLUTIONS 
In order to get physical insight, we integrate the system of ordinary differential equations, Eqs.(9)-(11), with the 
boundary conditions in Eq. (12) numerically by means of implicit finite difference method. Applying the Quasi-
linearization technique , Bellman and Kalaba [22] to the non-linear equation (9) we obtain as 
 

(1 + RST + 2 λ	yX5M" + 2 λ	F"	MX  = 	± %YZ[\][
& 2NX + 	^QX5+2 λ	y"	yX                                                                         (13)    

 
Where assumed F is the value of  f  at nth iteration and  f  is at (n+1)th iteration. The convergence criterion is fixed as 
⃒F- f⃒	<	10-5	 
 
Using an implicit finite difference scheme for the equation (13),(10) and (11), we obtain 
a [i] f[i-1] +b [i] f[i] + c[i] f[i+1]=d[i]                                                                                                       (14) 
 
a1[i] θ[i-1] +b 1[i] θ[i] + c1[i] θ[i+1] = d 1[i]                                                                                                (15)                         
 
a2[i] Q[i-1] +b2[i] Q[i] + c2[i] Q[i+1] = d 2[i]                                                                                              (16)                          
 
where 
 a[i] =   1 + RST + 2 λ F1[i]  – 0.5*h*2 λF2[i] 
 
b[i] = -2* ( 1 + RST + 2 λ F1[i] ) 
 
c[i] =   =   1 + RST + 2 λ F1[i]   + 0.5*h*2 λF2[i] 

d[i] = h*h* ±%YZ[\][
& 2θ) + ^Q)5+2 λF2[i]F 1[i] 

 
a1[i] =  1+(4/3F) – 0.5*h*0.5*f[i]  
 
b1[i] = -2 *(1+(4/3R))  

 
c1[i] = 1+(4/3R)+ 0.5*h*0.5*f[i]  
 
d1[i] = h*h*- Pr Ec f 2[i]*f 2[i]  - D fQ2[i] 
 
a2[i]= 1  –  0.5*h*( 0.5*f[i]*Le – τScθ1[i]) 
 
b2[i] = -2  - h*h* τScθ2[i] 
 
c2[i] =1+ 0.5*h*( 0.5*f[i]*Le – τScθ1[i]) 
 
d2[i] = h*h*-LeS rθ2[i]          and 
 
A[i] = =   1 + RST + 2 λ F1[i]    
 
B[i] = 2 λF2[i] 
 

D[i] = ±%YZ[\][
& 2θ) + ^Q)5+2 λF2[i]F 1[i] 

 
A1[i] = 1 +(4/3R) 
 
B1[i] =0.5*f[i]  
 
D1[i] = - Pr Ec f 2[i]*f 2[i] - D fQ2[i] 
 
A2[i] =1,     B2[i] = 0.5*f[i]*Le – τScθ1[i],     
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C2[i] = – τScθ2[i]   D 2[i] =-LeS rθ2[i] 
 
The set of equations (14)-(16) are coupled equations, which are solved by using the Gauss Seidel iteration method 
by using the C-programming code.  The iterative procedure is initiated by the solution of concentration equation 
followed by energy equation and momentum equation which is continued until convergence is achieved.  To get a 
converged solution and it was set to 10-5 for dependent variable ƒ', θ,  Q.  
 

 RESULTS AND DISCUSSION 
      
The governing boundary layer equations (1)-(4) are coupled non-linear partial differential equations be solved under 
the boundary conditions (5).  However, exact or approximate solutions are not possible for this set of equations.  
Hence the coupled non-linear partial equations are transformed to ordinary differential equations by using the 
similarity transformation.  To linearize the non-linear ordinary differential equations we used the Quasi-linearization 
technique[22].  The linearized coupled ordinary differential equations (9)-(11) with boundary conditions (12) are 
solved by using the implicit finite difference method. 
  

 

 
 
 
 
 
 
 
 



S. Jagadha and Naikoti Kishan                                Adv. Appl. Sci. Res., 2015, 6(8): 67-81       
 _____________________________________________________________________________ 

72 
Pelagia Research Library 

 
 

Fig. 1  Effects of magnetic parameter Ha for  Rax/Pex =1,R = 0.5,  Λ = 0.1,  Pr = 0.73, Le = 2, Sr =2, Df = 0.03, Sc = 1, τ = 0.5, N = 2 
,Ec=0.5on (a) Velocity profile(b) Temperature profile   (c ) Concentration profile 

 
The computations have been carried for various values of magnetic parameter Ha, mixed convection parameter 
Rax/Pex , radiation parameter R, inertia parameter Λ, Prandtl number Pr, Lewis number Le, Soretnumber Sr, Dufour 
number Df, Schmidt number Sc, thermophoretic number τ and buoyancy ratio parameter N. In addition, the edge of 
the boundary layer  η→∞  was approximated by ηmax = 6, which was sufficiently large for velocity to approach the 
relevant stream velocity.  In order to illustrate the results graphically, the numerical values are plotted in figures 1 to 
10.  These figures depict the velocity profile, temperature profile and concentration profiles. The values of Prandtl 
number Pr are chosen Pr=0.73 which corresponds to air. The values of other parameters fixed as Rax/Pex =1, R = 
0.5,  Λ = 0.1, Ec=0.5, Pr = 0.73, Le = 2, Sr= 2, Df=0.03, Sc = 1, τ = 0.5, N = 2.  Fig.1 reference the effect of 
magnetic parameter Ha on the velocity, temperature and concentration profiles.  It is evident from  the figure the 
velocity profile ƒ' decreases with the increase of magnetic parameter Ha.  The temperature and concentration 
profiles increase with the increase of magnetic parameter Ha.  It is because that applications of transverse magnetic 
field will result  a resistive type of force (Lorentz force) similar to drag force which tends to resist the fluid flow and 
thus reducing its velocity. 
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Fig.2  Effects of mixed parameter Rax/Pex   for Λ = 0.1, R = 0.5,  N = 2, Pr = 0.73, Le = 2, Sr =2, Df = 0.03, Sc = 1, τ = 0.5,  Ha = 0 , Ec=0.5   

on (a) Velocity profile  (b)  Temperature   profile (c ) concentration profile 
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Fig. 3 Effects of Radiation parameter R for Λ = 0.1, Rax/Pex = 1,  N = 2, Pr = 0.73,   Le = 2, Sr =2, Df = 0.03, Sc = 1, τ = 0.5, Ha = 0 and 
Ec=0.5 on ( a) Velocity profile (b) Temperature profile  (c ) Concentration profile 

 
Figure (2) illustrates the influence of the mixed convection parameter Rax/Pex on velocity, temperature and 
concentration profiles respectively.  In fact, the mixed convection parameter    Rax/Pex  is chosen as Rax/Pex  ≫ 1 
flow is dominated by natural convection whereas Rax/Pex  ≪ 1 the flow is leading forced convection when Rax/Pex = 
1, the effects of natural and forced convection are of equal importance, and the flow is truly under mixed 
convection.  From fig.(2) it is noticed that with the increasing Rax/Pex , the velocity profile ƒ' increase while 
temperature and concentration profiles decreases. 
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Fig. 4 Effects of inertia parameter Λ  for Rax/Pex =1,  F = 0.5,  N = 2, Pr = 0.73,  Le = 2, Sr =2,  Df = 0.03, Sc = 1, τ = 0.5, Ha = 0 and 
Ec=0.5on  (a) Velocity profile (b)  Temperature profile  (c ) Concentration profile 

 
Figure (3) is drawn for the effects of Radiation parameter R on velocity, temperature and concentration profiles.  An 
increase in the radiation parameter R leads to decrease the velocity profiles ƒ' , temperature profiles θ within the 
boundary layer as well as thickness of the velocity and temperature boundary layer.  This is because for large value 
of radiation parameter corresponds to an increased dominance of conduction over radiation, thereby decreasing 
buoyancy force and the thickness of the thermal and the momentum boundary layers.  The effect of radiation 
parameter R is very meagre on concentration profile. 
 
Figure (4) depicts the effect of inertia parameter Λ on velocity, temperature and concentration profiles.  As shown in 
the figure the velocity profile decrease with increasing inertia parameter Λ, whereas temperature and concentration 
profiles increases. 
      
The effect of buoyancy ratio parameter N is shown in figure(5)   It is found from figure 5(a) the velocity profile ƒ'  
increases with increasing the buoyancy ratio parameter N, while the temperature and concentration profiles 
decreases with the effect of N is observed from figures 5(b) and 5(c ).  This is because the effect of buoyancy ratio N 
is to increase the surface heat and mass transfer rates.  It can be observed from figure (6) the velocity distribution ƒ'   
and concentration profile Q decreases with the increasing of thermophoretic parameter  τ. 
     
The effect of Soret and Dufour is shown in figure (7).  From figure 7(a)and 7(b) the velocity and temperature 
profiles increase with the increase of Dufour number (or decrease of Soret number) whereas reverse phenomena is 
obsrved in  concentration profile showed in fig.7(c ). 
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Fig.5  Effects of buoyancy ratio parameter  N for Rax/Pex =1, F = 0.5,  Λ = 0.1,  Pr = 0.73, Le = 2, Sr =2, Df = 0.03,  Sc = 1, τ = 0.5,   Ha = 
0and Ec=0.5 on  (a)Velocity profile  (b)Temperature profile  (c )Concentration profile 

 

The effect of Lewis number Le for the velocity and concentration profile inside the boundary layer region displayed 
in the figure (8).  It can be noticed form the figure that the velocity and concentration profiles decreases with the 
increase of Lewis number Le. 
     
Figure (9) concerns with the effect of Schmidt number Sc on the concentration profile.  The concentration profile 
decrease with an increase Sc.  Physically it is true, since the increase of Sc means decrease of molecular diffusivity 
that results in decrease of concentration boundary layer.  Hence, the concentration of species is higher for small 
values of Sc and lower for higher values of Sc. 
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Fig.6 Effects of thermophoresis τ for Rax/Pex =1, R = 0.5,  Λ = 0.1,  Pr = 0.73, Le = 2, Ha = 0, Sr =2, Df = 0.03, Sc = 1,  N = 2and Ec=0.5 on 
(a) Velocity profile  (b)  Concentration profile 

 

Figure (10) displayed the effect of Eckert number on the velocity, temperature and concentration profiles.  It can be 
founded from figure velocity, temperature and concentration   profiles increase with the increase of Eckert number 
Ec.  This is because the Eckert number is the ratio of kinetic energy of the flow to the boundary layer enthalpy 
difference, The effect of viscous dissipation and flow fixed is to increase the energy, yielding a greater fluid 
temperature and as a consequence greater buoyancy force.  The increasing buoyancy force due to an increase in the 
dissipation parameter enhances the temperature. 
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Fig.7 Effects of Soret  and Dufour  for Rax/Pex =1,  R = 0.5,  Λ = 0.1,  Pr = 0.73, Le = 2, Ha = 0, Sc = 1, N = 2and Ec=0.5  on (a) Velocity 
profile  (b)Temperature profile (c)  Concentration profile 
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Fig. 8 Effects of Lewis number for  Rax/Pex =1, R = 0.5,  Λ = 0.1,  Pr = 0.73,  Sc = 1,  Ha = 0, =2, Sr =2,  Df = 0.03 ,τ = 0.5,  N = 2 and Ec=0.5 
on (a) Velocity profile   (b)  Concentration profile 

 

 
 

Fig. 9 Effects of Schmidt number Sc for  Rax/Pex =1, R = 0.5,   Λ = 0.1,  Pr = 0.73,   Le = 2, Ha = 0, Sr =2, Df = 0.03, τ = 0.5,  N = 2 and 
Ec=0.5 on  Concentration profile 
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Fig. 10  Effects of Eckert number  for   Rax/Pex =1,  F = 0.5,  Λ = 0.1,  Pr = 0.73,   Le = 2, Ha = 0, Sc = 1, τ = 0.5, N = 2,, Sr =2,  Df = 0.03   on  
(a) Velocity profile  (b)  Temperature profile   (c ) Concentration profile 
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