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ABSTRACT

We analyze the effect of magnetic field on convective heat and mass transfer flow of a viscous electrically-conducting fluid
through a porous medium in a rectangular duct with Soret, Dufour, chemical reaction, and thermal radiation effects. The
equations governing the flow, heat and mass transfer are solved by employing the Galerkin Finite element analysis with tri-nodal
triangular elements. The temperature and concentration distributions are analyzed for different values of M, Q, Rad, &, Du and
¥. The rates of heat and mass transfer are evaluated numerically for different parametric values. The numerical results obtained
in the present paper are validated by favorable comparison with previous published results.

Keywords: Heat and Mass transfer; Rectangular duct; Hartmamnber; Soret and Dufour effect; Thermal radiati@adiation
absorption; Non-linear density-temperature relation

Nomenclature

a,b,c non-dimensional variable Tctemperatutbatold wall

C concentration Thtemperature at the warm wall
Ccconcentration on cold wall u, v velocity compots

Ch concentration on warm wall u', v’ Darcy velocities

Cp specific heat at constant pressure

o X horizontal coordinate
D™ inverse Darcy parameter

Du, Daf Dufour parameter y vertical coordinate

G Grashof number

g acceleration due to gravity Greek symbols

Ho, H strength of the magnetic field @ heat source parameter

k permeability of the porous medium Bo,f1 thermal expansion coefficients

K chemical reaction parameter £~ volume coefficient of expansion with mass fracttamcentration
kf thermal conductivity ¢ dimensionless heat generation or absorption
K1 cross diffusivity u coefficient of viscosity

M Hartmann number e magnetic permeability

N buoyancy ratio v kinematic viscosity

Ni(Rad) thermal radiation parameter 6 dimensionless temperature

Nu  Nusselt number p density of fluid

Pr Prandtl number o electrical conductivity

p' pressure Qverticity

Q radiation absorption ¥dimensionless stream function

gr radiative heat flux ¢ stream function

Ra Rayleigh number y non-linear density temperature relation
SoSoret parameter I’ condensate mass flow rate

Sc Schmidt number Subscripts

Sh Sherwood number ¢ cold wall

T' temperature h warm side wall

INTRODUCTION

Advanced studies in the convective heat and massfer in porous medium provided greater indusstahding
and generated research interest in many academieiath scientists. Equally, natural convection, gheesis of
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which is due to the effect of density differenceaimody force fluid resulted from a difference @mperature or
concentration parameters, plays a key role in widdustrial applications. Natural convection adetysaffects
local growth conditions and enhances the overatidport rate. The combination of temperature amtextration
gradients in the fluid will lead to buoyancy-drivélows. This has an important influence on the diiiation
process in a binary system. When heat and massféramccurs simultaneously, it leads to a compleid fmotion
called double-diffusive convection.

Studies related to double-diffusive MHD boundaryelaflow with heat and mass transfer over flat sces are
extremely important and have many applicationsrigireering and industrial processes. For instaheat and
mass transfer occur in processes, such as dryiagoeation at the surface of a water body, andggneansfer in a
wet cooling tower, cooling of nuclear reactors, Migbwer generators, MHD pump, chemical vapor dejoosiin
surfaces, formation and dispersion of fog, andriflistion of temperature and moisture over agrigeltfields.
Double-diffusion occurs in a wide range of sciaatffelds such as oceanography, astrophysics, ggplosiology
and chemical processes. Extensive study was madeshwchet al. [1] and Viskantaet al. [2] on this given
subject. A fundamental study of scale analysistikedato heat and mass transfer within cavities sgttlech to
horizontal combined and pure temperature and cdratém gradients was analysed by Bejan [3]. Anegipental
study has been done by Kamotahial. [4] considering natural convection in shallow @scires with horizontal
temperature and concentration gradients. Similpegmental studies on thermo-solutal convectiomeictangular
enclosures were reported by Lee and Hyun [5] aneldteal. [6] in unsteady double-diffusive convection in a
rectangular enclosure with aiding and opposing tmatfpre and concentration gradients. RanganatidivViskanta
[7], Trevisan and Bejan [8], Begheé@hal. [9] and Nishimuraet al. [10] and others extended the related numerical
studies dealing with double-diffusive natural cotti@n in cavities. Sivaiah [11] investigated doudl&usive
convective heat transfer flow of a viscous fluidotigh a porous medium with rectangular duct witbro-
diffusion by using the finite-element technique.a@Gtkha and Al-Naser [12] have investigated the hy@dmgnetic
double-diffusive convection in a rectangular engteswith opposing temperature and concentratiorligras.
Shanthiet al. [13] have investigated double-diffusive flow inrectangular cavity using Darcy model. They have
analyzed the effect of dissipation radiation ondbeble-diffusive flow of a viscous fluid in theatangular cavity.
Farhany and Tarun [14] numerically studied the dediffusive natural convective heat and mass feanis an
inclined rectangular cavity filled with porous meu.

Several applications were witnessed in the industrfluids that are electrically conducting induceyl magnetic
field. Oreper and Szekely [15] studied the effdamexternally imposed magnetic field on buoyadidyen flow in
a rectangular cavity and found that the presencea afagnetic field can suppress natural convectimneants.
Magnetic and gravitational natural convection oflta silicon-two dimensional numerical computatidos the
rate of heat transfer was studied by Ozoe and M@ Natural convection heat transfer in rectdagenclosures
with traverse magnetic field were studied by Gaedetlal. [17] and Alchaart al. [18]. The effects of magnetic
field on free convection in a rectangular enclosues studied by Rudraia al. [19]. Numerical study of laminar
natural convection in tilted enclosure with transeemagnetic field was investigated by Al-Najetal. [20]. Yu et
al. [21] numerically investigated the natural cacti@n in a rectangular cavity under different direes of uniform
magnetic field.

The study of natural convection heat transfer ieduby internal heat generation has assumed mucbriamze
over time due to several applications in geophysiegd energy-related engineering problems. Suchicaioins
include heat removal from nuclear fuel debris, ugdmund disposal of radioactive waste materialsragfe of
foodstuff, and exothermic chemical reactions inkealebed reactor. In a numerical study of two-dintemel natural
convection of air in an externally heated vertioalinclined square box containing uniformly distried internal
energy sources conducted by Acharya and Golds2@ijy if was found that the average heat flux ratang the cold
wall increased with increasing external Rayleigimbers and decreasing internal Rayleigh numbersr Thedies
also revealed two distinct flow pattern systemseteling on the ratio of the internal to the exterRaleigh
numbers. Churbanogt al. [23] investigated unsteady natural convection dfeat generating fluid in a vertical
rectangular enclosure with isothermal or adiabaticd walls. Similar related works dealing with tperature-
dependent heat generation effects were studied djsa¥elu and Nayfeh [24] and Chamkha [25]. A nuceri
investigation of the steady MHD free convectiorainectangular cavity filled with a fluid-saturatedrous medium
and with internal heat generation was studied bys&n et at. [26]. Reddy and Narasimhan [27] ingastid heat
generation effects in natural convection insideoeops annulus. The effect of magnetic field on rixenvection
heat transfer in a lid-driven square cavity waslisttl by Baker et al. [28].

Viscous dissipation, a partially irreversible prssewhich happens due to shear forces transforheatyinto fluid
flow, has been studied by many researchers foergifft geometries. Verschoeral. [29] have studied the effect of
viscous dissipation and radiation on unsteady M2 tonvection flow fast vertical plate in porousdium. They
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found that the temperature profile increases whseous dissipation increases. Barletta and Pultifd] studied
the forced convection with slug flow and viscoussibation in a rectangular duct. Van Rij et al.][Bivestigated
the effect of viscous dissipation and rarefactiorrectangular micro channel convective heat trangfadmavathi
[32] Nagaradhika [33] and Sreenivasa [34] haveyaal the connective heat transfer through a pamedium in a
rectangular cavity with heat sources and dissipatioder varied conditions. Umavathi and Odelu [§bHied the
effect of variable viscosity on free convectionarvertical rectangular duct. Umavathi and Sherd®@} further
studied the viscous dissipation and the influerfceemperature dependent conductivity of a nanofinie vertical
rectangular duct.

Thermal radiation plays a significant role in magygineering applications particularly when the teragure is
high. In the case of free convection or when thieot$ of variable properties are also included, ¢nergy
transformation can be a function of difference kestw T, and To. Radiation contributes significantly to the trasrsf
of energy in furnaces, chambers of combustion, ebpkumes, heat exchangers under high temperatuetear
reactors and the like. On the other hand, in cdssonduction and convection are suppressed, therathiation
plays an important role during heat transfers eatele@mperatures of lower degrees like in thermd#dsoand space
craft thermal control. Makinde [37] studied freengection flow with thermal radiation and mass tfengast a
moving vertical plate. Chiet al. [38] studied the mixed convection heat transfdmarizontal rectangular ducts with
radiation effects. Sakurai et al. [39] studied itheiation effects on mixed turbulent natural anatéal convection in
a horizontal channel using direct numerical simatatind found that the radiation effect changesdik&ibutions
of the temperature fluctuation intensity and thebtilent heat flux. Mahapatra et al. [40] studie@ timixed
convection flow in an inclined enclosure under netgnfield with thermal radiation and heat genenatiRecently,
Lee et al. [41] investigated the characteristicpreimature and stable critical heat flux for dowrdhvilow boiling at
low pressure in a narrow rectangular channel. ltiale[42] reviewed the near-field thermal radiatiand brought
out the recent applications in the subject. Shdddiami et al. [43] numerically studied the MHDdreonvection of
Al,Os-water nanofluid considering thermal radiation.

Heat transfer occurs through insulation materiglscbnduction, while heat loss to or gaining of héam
atmosphere occur by means of convection and radiatlaterials, which have low thermal conductiviye those,
which have a high proportion of small voids conitagnair. These voids are not big enough to trangredt by
convection or radiation and therefore the rate editiransfer reduces. The mass flux created bynpdeature
gradient and the energy flux resulted by conceomadifferences is known as thermal-diffusion (Spedfect and
diffusion-thermo (Dufour) effect respectively. Theportance of the Soret and Dufour effects areblésin many
practical applications preferably in areas suchemsciences chemical engineering etc., Cheng f4ktigated the
Soret and Dufour effects on natural convection lolauy layer flow over a vertical cone in a porousdiuen with
constant wall heat and mass fluxes. Chandtlah. [45] studied the hydromagnetic double-diffusivereection in a
rectangular enclosure with linearly heated and eotrated wall(s) in the presence of heat generatimorption
effects. Motozawat al. [46] experimentally investigated on the heat tfansharacteristics in rectangular duct flow
of a magnetic fluid under magnetic field. Umavahd Chamkha [47] studied natural convection flova ivertical
rectangular duct with isothermal wall boundary dtods. Chamkhaet al. [48] studied heat and mass transfer in a
porous medium filled rectangular duct with Soretl dbufour effects under inclined magnetic field. Apaand
Huang [49] studied the effect of magnetic obstacidluid flow and heat transfer in a rectangulactd$telian [50]
studied the MHD effects in turbulent duct flows endhe influence of transverse uniform and nonamif
magnetic fields. Recently, Srinivasacharya and Himdu [51] studied effect of magnetic field on epy
generation due to micropolar fluid flow in a reagatar duct. Kishan and Sekhar [52] applied thetEielement
analysis to study the fully developed unsteady Metidivection flow in a vertical rectangular duct witlscous
dissipation and heat source/sink. Wang [53] broumltt analytic solutions for pulsatile flow througimnular,
rectangular and sector ducts filled with a DarcyrEBman medium.

In this paper, we investigate the effect of magnééld on convective heat and mass transfer fléva @iscous
electrically-conducting fluid through a porous madiin a rectangular cavity with thermal radiatio alissipative
effects. To determine the surface porosity, a ¢yogacked porous material with respect to the stmgcof the pore
space of the porous medium is considered. The iduited with saturated porous medium, and thenflof the
working fluid was analyzed using a Darcy model vahtigkes into account buoyancy and all the remaiafferts of

the rectangular duct. The equations governingltw, fheat and mass transfer are solved by emplayied@salerkin
Finite element analysis with tri-nodal triangulderaents. The temperature and concentration distoibsl are
analyzed for different values of M, Q, Rad, So, &nudy. The rates of heat and mass transfer are evaluated
numerically for different parametric values.
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1. Problem Formulation

We consider the mixed convective heat and massfeaflow of a viscous incompressible fluid in awated
porous medium confined in the rectangular ducthasva in Fig. 1 whose base lengthaignd heighth. The heat
flux on the base and top walls is maintained corsiEhe Cartesian coordinate system O (x,y) is ehagith origin
on the central axis of the duct and its base parallx-axis.

We assume that

(a) The convective fluid and the porous medium areyaviere in local thermal equilibrium with the sofithtrix .

(b) There is no phase change of the fluid in the medium

(c) The properties of the fluid and of the porous madiare homogeneous and isotropic (uniform with astamt
porosity and permeability)

(d) The porous medium is assumed to be closely padkgtiag Darcy’s momentum law is adequate in the p®ro
medium.

(e) The effect of buoyancy force is acting on the flBo, well known Boussinesq approximation is agtle.

(H The magnetic Reynolds number is assumed to be suathat the induced magnetic field can be neglecte
compared to the applied magnetic field.

y
T=Tc . l T=T}
c=Cc c=Cy,

Ho ™1,

’ u X

Fig. 1 Schematic Diagram of the Problem

In this problem we follow Darcy model (as fluid Wois through a porous medium), in momentum equadiod

considering Boussinesq approximation with magnfiticl H . Under these assumption the momentum equations
in the x and y directions are as follows (Revniale{54])

0= (ﬂ) op _oguiHZ

oxX p’
0=—(§)v'—% HeHo (1) _ o

EIiminating the pressure p by cross differentiatid above two equations, we get
12 2
0= ()2 -2 Fetla (I, 587 05, 0 (o)
oy o Py oy o
Under these assumptions, the governing equatiorieeopresent work are based on the balanced lawsass,
momentum energy and concentration in two dimensiBoowing the assumptions of the magnetic fiesedi by
Chamkha and Al-Naser [12], the governing equatarsbe written in the form of dimensional equatiaas

ou  ov
_

APV (1)
ox oy
u’=—£(a—pj (2)
u '\ ox
2,2
k(iop , OleH
v:——[—,ng—( =)V 3)
JANGY (Ul p)
T T °T o4 a(qr) . DKy [9°%C azc
Plp| U +V | =k | g+ [+ QT -T) - =+ S
"Cp( o Wj a2 WZJ I @
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LoC . oc 9°c 9°c) DmKt[ad%T a%T) |
—+vV —, = Dl 5 + 5 + 5 + 5 |- k'C
0X oy ox'< oy Km (ox“c oy

(5)

, 1- Bo(T' =Tg) - By(T' = Ty)?
P =Py .

-B°(C'-Cy)

T. +T, C.+C

htle httc
TA=— CA =———— 6
0="—Co . (6)

where U and v are Darcy velocities alon@ - (X, y) direction. T, C, p and ¢ are the temperature, concentration,
pressure and acceleration due to gravity,dc and F, G, are the temperature and concentration on the aadd
warm side walls, respectivelp., |, v, Bo and,, are the density, coefficients of viscosity, kiraim viscosity and
thermal expansions of the fluid, k is the permeihbilf the porous medium; ks the thermal conductivity, ds the
specific heat at constant pressure, Q is the dtnesfgthe heat sourceykis the cross diffusivityp* is the volume
coefficient of expansion with mass fraction concatidn and ¢is the radiative heat fluxo is the electrical
conductivity, e is the magnetic permeability of the medium anddsthe strength of the magnetic field. This means
that solutions to the ideal MHD equations are apylicable for a limited time for a region of a gjivsize before
diffusion becomes too important to ignore.

The boundary conditions for the problem are

u=v=0 on the boundary of the duct;
T =T, C=C on the side wall to the left;
=T, C=G, on the side wall to the right; @)
aT =0, a£:Oonthe topy=0and
ay oy

Bottom U =V =0walls y = 0 which are insulated.

Invoking the Rosseland approximation for radiation
40" o14

="

3B oy
E . . , . . . 4 3T 4
xpanding T in Taylor’s series about,Bnd neglecting higher-order terms 04Tg 3Te

We now introduce the following non-dimensional ahies

X' = ax; y = by; c=bl/a
u = (v/a) u; v = (va)v; g =(vplad)pr
T=To+8(Th-T) C=C+@(Th-To) (8)

The governing equations in the non-dimensional faren

K)o
! 2'(_2j_p ©)
a“ /) ox
Kag(Bn(T.. ~To)8+ B (T, ~T)26%)  kagB" (Cy. - Cq) Y
V__L@_kag 9(Pollh ~ e 1'"h " 'c N g h~Cc)?  ougH (10)
a? oy v v2 v2 (,U/p)
AN 2 2 2 2
Pr(U%+V%J (1+—1J a—g 9 g —a6+Dy 2 g 0 ¢ (11)
ox oy ax2  dy ax ay
2 2 2
0 0 0 a 0“6 076
Sc(u—¢+v—¢j = _(p 2¢ kot &S0 —5 +— 12)
ox oy x> ay ox=  dy

In view of the equation of continuity, we introdute stream functiog as
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_64[/ ; V=——aw (13)
ay ox
Eliminating p from the Eqgs. (9) and (10) and makiisg of Eq. (11) the equations in termgaind® are
2 2
0 0 0o 0
@MH Y+ 2 = el a2y N D) (14)
0X ay oX 0x
2 2 2 2
oy 080 0oy 06 _ 4 |06, 0“0 0  0°p
Pl—=—— =2 —|=|l+— | —5+—>5|-00+Du —2=+—= 15
2 2
oy o oy o a 0 0“8 076
3:(—4” %9 _% —q’j 2+ g’ koSS T+ o (16)
dy ox 0Ox 0dy ax ay ox oy
where
3
T, -T 4 K BT, - Te)Ka 38K
ZM,Dlz—,Przpcp/kf, o =Qalk, Ra=G+p L= 2h— )R 3FRKy
2 2 1 3
\ a vV 40 Te
v Ka? DKt (T = Te) DmK¢ (Cp, = Ce) ﬁ[(Ch -Co) 5, ogulnZa®
Sc=— k=—, S9=——— ,Du= , N= M= 0
Dl Dl VI‘(m(Ch _CC) Cst(Th _TC) ﬁ(Th _TC) v

are the Grashof number, Porosity parameter, Pramuftiber (Pr=0.71), heat source parameter, Rayleighber,
radiation parameter, Schmidt number, chemical i@agiarameter, Soret parameter, Dufour parameteydncy
ratio, and the Hartmann number, respectively.

The four dimensionless boundary conditions are

oY _q0¢ _ 0y _ 0y _ _ -0 4=
I an =0on x=0, =1,¢=1 and (17)§—O,a—y—00n Xx=1,6=0,¢=0 (18)

2.Finite-Element Analysis and Problem Solution
The region is divided into a finite number of todal triangular elements, in each of which the elsnequation is
derived using the Galerkin weighted residual mettincgach element, fthe approximate solution for an unknown f

in the variational formulation is expressed asnadr combination of shape functlbq( )k = 1,2,3, which are linear

polynomials in x and y. This approximate solutidritee unknown f coincides with actual values atheagde of the
element. The variational formulation results in a3 matrix equation (stiffness matrix) for the nokvn local nodal
values of the given element. These stiffness nedtrere assembled in terms of global nodal valueg uster-

element continuity and boundary conditions resglima global matrix equation.

In each case, there are r distinct global nodékerfinite-element domain angd(p = 1,2,...... r) is the global nodal
values of any unknown f defined over the domaimthe

i
f= Z Z fn @
E pp
where the first summation denotes summation ovelesients and the second one represents summatorthmy
independent global nodes amdp = N:\l , if pis one of the local nodes say k of the elensen 0, otherwisefs are

determined from the global matrix equation. Basadhese lines, we now make a finite-element aismlysthe
given problem governed by Egs. (14) through (1®jextted to the conditions Egs. (17) and (18).

Lety', 6' andg be the approximate valuespf6 andgin an elemen,

W' =N g NG vy NG 0y (19)

6 = N'1 .ei " N'2 .eiz + .NiS.Hé (20)

=N g +Ny &+ N3 & (21)
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Substituting the approximate valyé 8 andg for g, 6 andg respectively in Eq. (13), the error

. 2, 22, T 27 2]
B =1+ o |00 08 _py O 00 W 00 —a6’+Du(a¢2}+ag) (22)
3Nq | ox dy oy 0x ox dy OX oy
2 .2 i kY
%4 o oy od oy o
gy=2 2 .00 o2 o _ou' o) kg + seso 2 ‘”I ‘ﬁ) (23)
0X dy oy o0x ox oy x ay

Under the Galerkin method, this error is made gtimal over the domain of & the respective shape functions
(weight functions) where

E' N! da =0, ELNdo =0
LB Ny LE2NK
Nk 0%g'  0%8' | oy 06' oy’ 06"

2%

ax

-af+ Du[

])dQ 0

(24)
' od oy o

1 k([ J [wi—i—"’j—a
ax ady 0x ox oy

%6 a%

+5c50( +—Jd§2:0

Using Green’s theorem, we reduce the surface iategfr Eqs. (24) and (25) without affecting thieterms and

0%

oy”
(25)

obtain
aND agi NI Agi i g i g
[“3; Ja K Ze 2 K c;@ _PrNk(a;a aaa _a(;// aaeJ
X OX y  ox X Oy
] N 1 o o
e ON aN
- a6+ Du(—X 00 Nic o9
ox 0x ay oy
og og
=] N (—"'D—) +(—+D—) (26)
ri k ax X dy y
oN! oN| , i 9 N o6 N g4
Nk{ od N od i k(aw o) o' WJ_W' soso Nk 96 Ny 06 )}dQ
ox o0x 6y ay ady 0x ox oy ox 0x oy oy
69 0 0
=1 N - ScSo—¢)nX+ (—+Sc50—"’lny @7)
[ 0x 0x oy oy
whererl| is the boundary ofie
Substituting L.H.S. of Egs. (19) through (21) §r6' andg in Egs. (26) and (27) we get
d d ,
Zj_(l ﬂ)&al\lj,_ BN—L—k—PrZ wm[aNm aNL  aNjy ON| de
1éi 3 )ox ox dy oy 1 él oy ox ox oy
aN oN!  oN! 0N
—ayé NN A, +Duzj( kK L 47 L " Kyo
ox  oX ody oy
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i a6 g 06" g i
= lj Nk (aT'f' DUOT)HX +(a—+ Duy)ny dl'l = Qk (I,mk=123 (28)
|

dy ox ox 0y

L ani onD oN 3
L, —L k)in—kngNLNLdQ:

aN aN aN aN N aN aN oN
“A(ikiL 7L7k)_5£1 mf[ m “L _9Nm LJdQ

0x ax oy
[ [
i| 06 0 04 0
N/ —+8c50i)n +(—+ScSo—¢n dri =QC (I, mk=123) (29)

. N X y

i 0x 0X oy oy
where Qli( = QLl + QLZ + QL3, QL 's being the values odg:( on the sides s = (1,2,3) of the elemgnThe sign obli(
's depends on the direction of the outward norni#i vespect to the element.

Choosing differeani( 's as weight functions and following the same pthre, we obtain the matrix equations for
i .

thr.ee enknownsQP) viz.,

(@p)(Ep) = (Q)) (30)

where(a'pk) isa3x3 matrix,(eip),(QL) are column matrices.

Repeating the above process with each of s elemeatsbtain sets of such matrix equations. Introuythe global
coordinates and global values felb and making use of inter-element continuity and lolauy conditions relevant
to the problem, the above stiffness matrices aserabled to obtain a global matrix equation. Thabgl matrix is r
X I square matrix if there are r distinct globaties in the domain of flow considered. Similarlybstitutingy',6'

andg in Eq. (12) and defining the error

. 2 2
= 1+m22 Y1 9% 2Pl v 29+ N2 31
B =MD G S Ra 20 N @31)

and following the Galerkin method, we obtain
i -
sz Ex de =0 (32)

Using Green's theorem Eq. (28) reduces to

aN! o aN d | ON, Nl N
ol a+m ) i i +Ra (9—+2y9Nk k+¢) —k
0x ay ay ox
o oy
_Jr Nk(a— Ny +Vnder +J|' NanH dF (33)

In obtaining Eq. (33), the Green's theorem is aplivith respect to derivatives @gfwithout affecting thed terms.
Using Egs. (19, 20, 21) and (22) in (33), we have

- N N aN oN! oNl
2 k m m k L
Y ¢yt diol @+ M) + dQ +Raz(ej N! @+ 2N )dQ +d Njo :N. —L do
m-m Q ox 0OXx dy oy | LIQi k ki q{ Qi [3)4
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i i
. oY o :
=.[r N|I( ? Ny +?ny dl'l +jr Nll(é?'in =|_|I( (34)

In the problem under consideration, for computatiqgrurpose, we choose uniform mesh of 10 triangel@ments
(Fig. I). The domain has vertices whose globalrdowtes are (0,0), (1,0) and (1,h) in the non-aisienal form.
Let e, &.....e0 be the ten elements and &t 0,.....8,¢ be the global values & andyy, W,...... Yo be the global
values ofy at the global nodes of the domain (Fig. II).

. /

(273, 2073y 9 @2y
?/

(13, h,3) 5 a,uy

/6

(2/3, W/3)

10 q.w)

0,0) (173, 0) (23,00 1,0
1 2 3 4

Fig. 2. Schematic Diagram of the Configuration

Shape Functions and Stiffness M atrices:

Range functions im ; i = elementj = node.
i
3 3 3 3 3 3
n=1-3x n =3x——y n =1——y n =—1+—y n =1—3x+—y n=2-3x n =—1+3x——y n -
2 h 21 h 22 h 23 h 31 32 h 33 hn
3 3 3 3
n =1——y n =-2+3Xx n = —3x+—y n =2-3x n =—1+3x——y n - n =2-3x
41 h 42 43 h 51 52 h 53 h 61
3 3 3 3 3
n :3x——y n :1+—y n :2——y n =-2+3x n :1—3x+—y n=3-3x n :—1+3x——y
6,2 6,3 h 71 h 7, 73 h 81 82 h
3
n :3x——y n :—1+—y
9,2 93 h

Substituting the above shape functions in Egs., (28) and (34) with respect to each element atehmting over
the respective triangular domain we obtain the elgnin the form Eg. (28). The 3x3 matrix equaticare

assembled using connectivity conditions to obtax& matrix equations for the global nodgs8, ande,.

The global matrix equation fd& is

AX; =B, (35)
The global matrix equation fapis
AX, =B, (36)
The global matrix equation fap is
AXs =By (37)
where
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1a a 0 0 0 0 0 0 @ 0
1,2 1,3
1k b 0 0 0 0 0 0 0 0 0 a a 0 0 0 0 0 0O 0 0
1,2 1,3 2.2 2.3
O h h 00 0 0 0 0 0 0 0 a a a a 0 0 0 0 0o 0
. o 3,2 3,3 3,4 3.5
0b h b B O 0 0 0 0 0
0 0 a a a 0 0 0 0 ® 0
3,2 33 34 35 2 a8
-1 ap a;s 0 0 0 0 0 0 0 0 v 1]?3 1},14 ql,,s t oo ° ° [} A a a a a [ ] ] 0
0 ap az 0 0 0 0 0@ 0 0 0 00 b b b b B oo 0 0 ] 0 0 l’] ;' o 0 o " 0
0 axp ax; ax a 00 0 0 0 0 <R R no = a a a
" 0 ajs a:* ajs 0 0 0o o o o m=|"0 OO0 AEp O 0 0 0 S
4 4 5 (SR 0 0 0 0 a a a a a L} 0
0 0 ass asy ass asg asy 0 0 [ 00 0 0 b b b b b o0 0 75 TE LT TE 7
- o y 00 0 0 0 0 a a a L] L]
A= |0 0 0 0 a; ag axn 0 0 L 00 0 0 0 0 h b B 0 ® 5.7 8.5 5.9
00 0 0 ajs agg ayy as an 1] ] 0 b 0 0 0 0 1” 3: 31119 Y . o0 0 0 0 0 a a a a 0
L 0 0 0 0 Ay A A 0 0 4,7 96 9,85 9,10 87 %8 88 a0
00 0 0 0 0 an A A aw 0 00 0 0 0 0 0 O b h W 0o 0 0 0 0 0 0 a a 0
000 0 0 0 0 0 0 ag a 0 e o
08 91010 00 0 0 0 0 0 8 b h b 00 0 0 0 O O 0 a a _a
[/ ] 0 0 0 1] [} 0 ape ap; -1 1,8 11,10 11,11 1,9 11,10 11,11
ar br f
1 1 1
r 7 r 1 o ar br f
8, (O] Y, 2 2 2
ar br f
g, (V) ¥, 3 3 3
% ®| | Lk f
ol I Nl B A |5 t
95 (] ¥s ar br f
x. =@ X X B;=|% Bs=| % BS = H
8 6 T 1R = s ar br f
6 oy v 7 7 7
7 7
0 ¥ bx £
8 (0] ¥
P’ ar br £
N ® Y, 9 3 3
ar br f
910 (pJ.C wlu 0 0 10
8 ar br f
LY1 | _(Pu_ ,4/11, 1 11 11

The global matrix equations are coupled and ansegalinder the following iterative procedures. At teginning of
the first iteration, the values o)) are taken to be zero and the global equations 488 (36) are solved for the
nodal values 06 and@. These obtained nodal valuét) (@and (p)) are then used to solve the global equation {87)
obtain (). In the second iteration, thesi)(values are obtained and used in Egs. (35) andid3&alculate §i) and
(g) and vice versa. The three equations are thugdalnder iteration process until two consecutigetions differ
by a pre-assigned percentage.

The domain consists three horizontal levels andsthetion for? & 6 at each level may be expressed in terms of
the nodal values as follows:

. . h
In the horizontal strip 8y <—
3
4
¥ = (BN N+ BoNY) H(1-1) =y (1-4X)+PoA(x-2 )+ W7 (2 (1-1a) (0= x<-)
h h
3 3 3 2 2 2 1 2
W= (PoN"2+ WaN73+ WeN'6) H(1-1) + (PoN2+ PN+ PN H(1- 1) (=<x<—)
3 3
4y 4y 4y 4y
= (¥22(1-2%) +W¥3 (4%-—-1)+ W6 (— ))H(1-12) +( V2 (1-— )+ V7 (1+— -4x)+ W6 (4x-1))H(1-13)
h h h h
P = (P3N WaNO+ WsN) H(1-13)+ (WaNa+ PN s+ WeN*o)H(1- 14)
2y 4y 4y 4y 2
= (Y3 (3-4x) +¥s2(2x-—-1)+ Wg (— -4x+3))H(1-15) + W3 (1-— )+ W (4%-3)+ W6 (— ))H(1- 1a) (—=x<1)
h h h h 3

. h 2h
Along the strip— <y<—
3 3

P = (WN+ PN+ WeN%) H(1-12) + (WeN s+ PN g+ WeN'g) H(1-13)

1
+( WeNs+ WsNs+ WoN%) H(1-12) (g <x<1)

W = (¥, 2(1-2%) +¥ (4%-3) + ¥ (4—hy 1)H(L-1) + ¥ (2(1—% J+ ¥y (“—hy 1)+ ¥ (1+% Ax)H(1- 1)
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4 2
£ We (A(1-X)+ W5 (Ax-— -1)+ Pe2( =L -1))H(1-15)
h h
2h
Along the strip— < y<1
3
9 9 9 2
¥ = (PsN g+ PN g+ ¥1oN"10) H(1-76) (—<x<1)
3
- y 4y
=¥y (4(1_X)+T94(X_F )+ ‘1’102(? -3))H(1-6)
4x y y 4 0y , . ,
wherety;= 4X ,1,= 2X, 13=—, 14= 4(X-=), 5= 2(X-—), 76 = — (X-—) and H represents the right side function.
3 h h 3 h

The expressions fdrare as follows:

In the horizontal strinySD
3
- y 4y
6 = [02(1-4x)+ 62 4(x-=)+ 67 (—)) H(1-1) (O=x=7)
h h

0 = (0 A2(1-2X)+0; (4x-4—hy 1)+ 6(4—:» H(1-1) + 0 2(1-4—:)+ 0 7(1+4—hy -AX)+ 0 ((Ax-1)H(1-12)

(ES XSE

3 3
2y 4y 4y 4y
06=0 3(3'4X) +20 4(2X'— '1)+ 0 6(_ '4X+3) H(l'T3) +( 0 3(1'— )+ 0 5(4X'3)+9 6(_)) H(l' ’l74)
h h h h
2
(—=<x<1)
3
h 2h
Along the strip— < y<—
3 3

0 = (0 /(2(1-2x)+0 (4x-3)+0 8(4—hy 1)) H(1-15) + (0 6(2(1-2—:)+ 0 9(4—hy 1)+ 8(1+4—hy -4%)) H(1-1)

+ 0 o(41-)+0 g(@x-Y 1)+ 05 2(2 1)) H(1-12) (t<x<?)
h h 3 3
. 2h
Along the strip— < y<1
3
y 4y 2
0 = (0s4(1-X) + 0 o4(X- =)+ 0 1o( — -3) H(1-10) (E<x<1)
h h 3
The expressions fap are
y 4y 1
¢ = [@(1-4x)+ @ 4(X'F )+ @ (7 )) H(1-t1) (& ng )
4y 4y
0= (@2(2(1-2x)+ @3 (4XT'1)+ (Pe(T)) H(1-1)
4 4 2
+cp2(1-7y ) <p7(1+7y -4%)+ @ o(Ax-1))H(1-19) és )

0= x(3-4%) +2<p4(2x-2—:-1>+ %(%-4#3) H(L-t5) + (%(1—%)+ (Ps(4x'3)+%(4—:)) H(1- 1) (2 < x<1)
3

. h 2h
Along the strip— < y<—
3 3
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0= (cp7(2(1-2x)+cp6(4x-3)+cps(4—hy 1)) H(1-t3) + (cpe(za-z—hy )+ cpg(“—hy 1)+ cps(1+4—hy -4%)) H(1-15)

+ (@AAx)+ @x-—Y 1)+ g 2(2 1)) H(1-19) Gexc?
h h 3 3
. 2h
Along the strip— < y<1
3
4 2
0= (@4(1X) +<p94(x-f )+ (plo(% -3) H(1-1o) Csxs1)

The dimensionless Nusselt number (Nu) and the Simtwaumber (Sh) on the non-insulated boundary vedilthe
rectangular duct are calculated using the formulas:

Nu = (%)Xﬂ and Sh = (%))Fl_
ox ox

The Nusselt number on the side wall x=1 in diffén@gions are given by

Nulz[glj 63+[£12) 494+(5|:13j Hs'Shlz[QJ @+[£\2J ¢4+[23j @, (0O<y<hl/3)

we=(p) o+ (p) 6(n) orsn=(n)mr(p)mr(n)e <

h/3<y< 2h/3)
Nu, = (QJXQS +(9p2jxag +({13)X910,3q3 - (QJX% +(gp2)x% +(9¢3)X% (2h/3< y<h)

The suffix ‘X’ denotes differentiation of the shajpactions with respect to ‘x’. Substituting theaple functions and
the boundary conditions, the Nusselt number anétierwood number in different regions are

Nu;=2-468; (0< y<h/3), Nu,=2-485 (h/3< y < 2h/3), Nu;=2-46, (2h/3<y<h)

The Sherwood number on the side wall x=1 in diffiéregions are:

Sh=2-4p; (0< y<h/3), Sh=2-4@; (h/3< y < 2h/3), Sh=2-4p, (2h/3<y<h)

Comparison:

In this analysis, it should be mentioned that #sults obtained herein are compared with the esdlEhanthit
al. [13] as shown in Table A in the absence of Dus®, Q=0 and the results are found to be in goodeagent.

Table A. Comparison of the present results (Du =, k=0) with Shanthi et al. [13] results
Present results Shanthi et al. [13] results

N 1 2 -0.5 -0.8 1 2 3 N 1 2 -0.5 -0.94 1 2 3
S 0.5 0.5 0.5 0.5 1 1.5 2 0S| 05 0.5 0.5 0.5 1 1.5 2
Nu 61.125 10.121 62.524 | 64.129 | 66.134 Nu | 61.125| 52.52 | 10.21 62.52 | 64.12 | 66.13
. 12 52.523 2 9.8676 9 2 30 R 1 3 4 9.867 4 9 4
Nu | 58.161 | 51.135| 11.165 | 9.8564 | 59.126 | 60.196 | 61.896 Nu 58.161 51.13 | 11.16 0.856 59.12 | 60.19 | 61.89
2 34 6 45 3 4 5 5 2 } 5 5 i 6 6 6
Nu | 54.492 | 50.202 | 11.793 55.098 | 56.289 | 57.381 Nu 50.20 | 11.79 55.09 | 56.28 | 57.38
. 13 3 5 9.8543 2 5 12 s 54.492 2 3 9.854 3 9 1
Sh | 21.944 | 20.434 | 3.3792 | 4.1352 | 15.425 | 13.126 | 11.896 Sh 3.379 1542 | 13.12 | 11.89
1 5 5 33 1 34 2 4 1 21.944] 2043 2 4135 5 6 6
Sh 21.116 | 4.6931 | 51792 | 11.169 | 19.056 | 18.809 Sh 21.11 5179 | 11.16 | 19.05 | 18.80
R 26.516 3 1 3 23 2 3 , 26.516 6 4.693 > 9 6 9
Sh 19.092 | 29.700 6.2312 | 18.176 | 17.069 | 16.124 Sh 6.007 18.17 | 17.06 | 16.12
R 2 5 6.0722 3 5 1 5 \ 19.092 | 29.7 2 6.231 6 9 4

RESULTSAND DISCUSSION

In this analysis, we investigate the effect of timm-linear density temperature variation in a cative heat and
mass transfer of an electrically-conducting viscfiuigl through a porous medium in a rectangulartduth Soret
and Dufour effects. The equations governing the #md heat and mass transfer have been solved plpgng the
Galerkin finite-element analysis with tri-nodaktnigular elements. The non-dimensional temperabyiie 6hown in
Figs. 3-22 for different values of M, Q, Rad, Sa, &ndy at different horizontal and vertical levels. Teenperature
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(6) and concentrationgy are plotted versus different levels of x and ytfee values M=5, N= Ig=2, k=0.5, Q=0.5,
Rad=0.05, Sr=2, Du=0.3, Pr=0.71, N=0y50.01, Ra=0.5 and specific variations of physjgatametric values
varies unless remain same. We follow the converttiahthe non-dimensional temperat@ris positive or negative
according to whether the actual temperate (T)ésigr or less than the temperaturg 6h the cold wall x=1.

2.1. Temperature Profiles

Figs. 3-6 preserfit with the Hartmann number M. We find that the leigkhe Lorentz force the larger the actual
temperature at y=h/3 and the vertical levels x=al@ 2/3 and reduces at the higher horizontal lgv2h/3. This is
due to the fact that the strength of flow decreasesthereby the temperature enhances in the boutader. Figs.
7-10 presen® with the radiation absorption parameter Q. Ithiserved that an increase in Q, enhances the actual
temperature at y=h/3, and x=1/3 and 2/3 levelsraddces at y=2h/3 level. As the Rosseland radiatbhsorption
parameter Q diminishes, the subsequent heat flursvand thus reduces the rate of radiative haaster to the
fluid which causes the rise in temperature. Flgs14 display with the radiation parameter Rétdis found that
the higher the thermal radiation the smaller theademperature at both the vertical levels ang=2h/3 level and
larger at y=h/3 level. This may be due to the th@rmadiation increases gradually in the fluid flosguses an
enhancement in the temperature in the boundary tzythe fluid flow. Figs. 15-18 sho®with the Soret parameter
So or the Dufour parameter Du. By increasing tHeesaf So (or decreasing Du), we notice an enhanogiin the
actual temperature at y=2h/3 level, and depreciatioy=h/3, x=1/3 and 2/3 levels. This is attrilalte the fact that
an enhancement of Soret parameter So (or decre&»a&four parameter Daf) results an increase inhiekness of
the boundary layer at the upper levels and redat&swer levels of the fluid. The effect of the rtinear density
temperature relation dhis executed in Figs. 19-22. It is found that tbial temperature enhances at y=h/3, x=1/3
and 2/3 levels, while at y=2h/3 level, the actwahperature reduces with<0.5 and enhances with>0.7. This is
due to fact that the thickness of the boundaryrifigev reduces and results the enhancement ingimpérature at
horizontal levels of the boundary layer and redubesemperature for vertical levels of the bougdayer flow.

0.006 0
0.333 0.399 0.465 0.531 0.597 0.663 0.729 0.795 0.861 0.927 0.9p3
0.005 -0.05
0.004 -0.14
: M=5,10, 15
-0.15 1
0 0.003 o
021
0.002
-0.25
0.001
M=5,10,15
-0.3 4
0
0.666 0.732 0.798 0.864 0.930 -0.35
X X
. L . 2h . o . h
Fig. 3 : Variation oB with M at y=? level Fig. 4 : Variation oB with M at y:§ level
0 0

0.qoo 0.066 0.132 0.198 0.264 0.380 0.9o0 0.066 0.132 0.198 0.264 0.330
-0.05

-0.1
-0.15
-0.2
9 -0.25 6 -0.08 q

-0.3
-0.14

-0.12

-0.14

. . . 2
Fig. 5 : Variation oB with M at xzé level Fig. 6 : Variation ob with M at x=—- level
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0.006 0
0.000 0.066 0.132 0.198 0.264 0.3B0
-0.02
0.005
-0.04
0.004
Q=051525
@ 0.003 o -
0.002
0.001 \
0
0.666 0.732 0.798 0.864 0.930 -0.16
X y
. . . 2h . _ . h
Fig. 7 : Variation o® with Q aty =? level Fig. 8 : Variation ob with Q aty =§ level
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-0.05

-0.1

-0.2

6 -0.25

-0.3

-0.35

-0.4

-0.45

-0.5

.000 0.066 0.132 0.198 0.264 0.380

Q=0515.25

Fi

g

. 9 : Variation 0B with Q atx:% level

0.900 0.066 0.132 0.198 0.264 0.330 0.396 0.462 0, 0.594 0.660

-0.14 Q=051525

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.

Rad =0.05,0.15,0.25,0.5

666 0.732 0.798 0.864 0.930

X

Fig. 10 : Variation 0B with Q at xz% level

Fig. 11: Variation oB with Rad aty :2—: level

-0.2
0.666 0.732 0.798 0.864 0.930 0.9p6
-0.22

-0.24
Rad =0.05,0.15,0.25,0.5

-0.3

-0.32

-0.34

-0.36

-0.2

-0.25

-0.4

-0.45

.00 0.066 0.132 0.198 0.264 0.380

Rad =0.05,0.15,0.25,0.5

Fig. 12 : Variation oB with Rad aty =g level

Fig. 13 : Variation 0B with Rad atx :% level

.00 0.066 0.132 0.198 0.264 0.330 0.396 0.462 0.5 .660

Rad =0.05,0.15,0.25,0.5

Fig. 14 : Variation oB with Rad atx:§ level
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0.016

0.014

0.012

0.01

9 0.008

0.006

0.004

0.002

S,=2, 15,1, 06
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Fig. 15 : Variation ob with § & dafaty :%h level
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Fig. 17 : Variation ob with & & daf at x :% level
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0.732 0.798

X

0.864

0.930

Fig. 19 : Variation oB with vy at y=2?h level
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Fig. 16 : Variation ob with § & dafat y :2 level
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Fig. 20 : Variation oB with y at y =2 level
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-0.15 0.04
0.goo 0.066 0.132 0.198 0.264 0.380

0.02 4
-0.2

Y =0.01,0.03,0.05,0.07

o

00 0.066 0.132 0.198 0.264 0.330 0.396 0.462 .650

-0.25 -0.02 4

-0.04 4
-0.3

-0.35 0.08 |

-0.4 0.1+

-0.12 4 Y =0.01,0.03,0.05,0.07

-0.45
-0.14 4

-0.5 -0.16

Fig. 21 : Variation ob with y at x :% level Fig. 22 : Variation 0B with y at x :é level

2.2. Concentration Profiles

The concentration distribution (C) is shown in Fig3-42 for different parametric values at diffarborizontal and
vertical levels. We follow the convention that tbencentration is positive or negative accordingvtwether the
actual concentration is greater or less thgrtt@ concentration on the cold wall. Figs. 23-B&spnt C with M. It is
found that the Lorentz force reduces the actuatenmmation and for further lowering of the forceadler the actual
concentration at the levels y=h/3, 2h/3, x=1/3,. A/8is is due to the fact that the strength of fldecreases and
thereby the concentration reduces in the flow nedtégs. 27-30 show C with QAn increase in the radiation
absorption parameter Q, reduces the actual comtiemtrat y=2h/3 level and enhances it at y=h/3 &3 levels.
At x=2/3 level, the actual concentration enhancethé region (0.066, 0.33) and reduces in the flegion (0.396,
0.666). As the radiation absorption increases & entire flow region the actual concentration iases in the
boundary layer fluid and decrease at the horizdetals. Figs. 31-34 show the variation of C wille tthermal
radiation parameter Rad. It is found that the dateacentration reduces with Rad at y=2h/3 and 3=drid 2/3
levels and enhances at y=h/3 level. This may betoluke thermal radiation increases gradually aftbid flow,
causes depreciation in the concentration in thbdritevels and enhances in the lower levels oflthé flow. Figs.
35-38 display C with So and Daf. It can be seemftbe profiles that increasing So (or decreasinf) Bsults in an
enhancement in the actual concentration at y=2hd3d@preciation at y=h/3 and x=1/3 levels (Figs33% This is
due to the fact that an enhancement of Soret paearSe (or decrease in Dufour parameter Daf) reguitincrease
in the thickness of the boundary layer at the upgezls and reduces at lower level of the fluid x&R/3 level, the
actual concentration reduces in the horizontap qfi<y<0.264) and enhances in the region (8y383.666) for
Sco<1.5 and for Se2, we found a depreciation in the actual conceintnain the entire region as shown in Fig. 38.
Figs. 39-42 show the variation of C with the densdttioy. The thickness of the boundary layer flow redubes to
the enhancement of concentration in the entire flegion. It can be seen from the profiles thatrtbe-linearity in
the density-temperature relation results in dept@si in the actual concentration at all levels.

0.009 -1.45 T T T T T T T T T T
0.333 0.399 0.465 0.531 0.597 0.663 0.729 0.795 0.861 0.927 0.9p3

0.008
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0.004
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M=5,10,15

0.666 0.732 0.798 0.864 0.930 -1.7

. L . h
Fig. 23 : Variation of C with M a1y=2—,: level Fig. 24 : Variation of C with M ay=3 level
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The rate of heat transfer, Nusselt number (Nu)thadate of mass transfer, Sherwood number (Shheside x=1

are shown in Tables 1-5 for different valuedvhfQ, Rad, So, Du and. With respect to the Hartmann number M,
we find that the higher the molecular diffusivitiie smaller| Nu| on the lower quadrant and larger on the middle
and upper quadrants and for further higher Loréze the Iarged Nu| on the lower quadrant and smaller on the
middle and upper quadrant. An increase in M, enhathh| on the lower and middle quadrants and reduces it o
the upper quadranﬂr Sh| experiences depreciation with an increase in Qlbthe three quadrants as shown in

Table 1.

Table1: Effect of M on Nusselt and Sherwood numbersfor Q=0.5, Rad=0.05, So=2, Du=0.3, y=0.01, X=1

Parameter M Nul Nu2 Nu3 Shil Sh2 Sh3
5 25720 2.2538 1.9356 6.84148 1.57600 -3.68944
10 1.6655 2.6081 3.5617 8.35244 2.03041 -4.2916
15 1.8391 2.2948 2.7505 8.49364 2.11208 -4.26948
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An increase in the radiation absorption parameterre(@uces| Nu| on the lower and middle quadrants and
enhances it on the upper quadra{rSh| experiences depreciation with an increase in @llotne three quadrants as
shown in Table 2.

Table 2: Effect of Q on Nusselt and Sherwood numbersfor M=0.5, Rad=0.05, So=2, Du=0.3, y =0.01, X=1

Parameter Q Nul Nu2 Nu3 Shl Sh2 Sh3

0.5 1.8391 2.2948 2.7505 8.4937 2.1121 -4.2695
15 2.5030 2.2269 1.9509 7.9952 1.8123 -4.3699
2.5 24288 2.1947 1.9607 7.981 1.8113 -4.3584

The variation of Nu with Radiation parameter Radws that the Nusselt number enhances on the lguaarant
and reduces on the upper quadrant with an increm&ad while on the middle quadrant, the Nusselt number
reduces for the condition Rad.5 and enhances for RadL.5. With respect to the radiation parameter Rafind
that the rate of mass transfer on the lower andlimiduadrants reduces for R&d5 and enhances for Ra@.5
while in the upper quadrant it reduces with Racde Variation of Sh with the buoyancy ratio of N sl$(1\hat| Sh|
reduces on all the three quadrants with an incremble 0 while the buoyancy forces are in the same doeand

for the forces acting in the opposite direction 8teerwood number on the lower and middle quadrantsinces
with | Rad| and reduces on the upper quadrant as shown i Babl

Table 3: Effect of Rad on Nusselt and Sherwood numbersfor M=0.5, Q=0.5, So=2, Du=0.3, y =0.01, X=1

Parameter Rad Nul Nu2 Nu3 Shl Sh2 Sh3

0.05 -1.510 7.506 16.522 6.3046 0.3478 -5.609
0.15 7.893 1.749 -4393 7.8725 1.7499 -4.394
0.25 7931 0.365 -4.387 7.9311 1.7717 -4.388
0.5 8.009 0.574 -4.381 8.0092 2.5848 -4.382

The variation of Nu with the Soret and Dufour paeéens (So and Du) are shown in Table 4. An incréadhe
Soret parameter 8.5 (or a decrease in the Dufour parameter Du)rumha| Nu| and reduces for $2.0 on all
the three quadrants. With respect to the Soretudur parameters (So and Du), we find that indrep$so
(So>1.5) (or decreasing Du) enhances Sh on the lowadrgnt, and reduces in the upper quadrant andofeiz, Sve
notice a depreciation ihSh| on the lower quadrant and an enhancement on ther gpiadrant] Sh| reduces with
So in the lower and middle quadrants.

Table 4: Effect of So, Du on Nusselt and Sherwood numbersfor M=0.5, Q=0.5, Rad=0.05, y =0.01, X=1

Parameter So, Du Nul Nu?2 Nu3 Shl Sh2 Sh3
2,0.3 2.5022 2.2709 2.0502 8.3344 1.7415 -4.8514
15,04 3.7744 34242 3.0653 8.6888 1.34842 -3.8328
1,0.6 3.6641 3.3475 3.2989 7.3489 1.28483 -3.962
0.6,1 3.5930 3.2870 3.0671 7.2432 1.2678 -4.851

The variation of Nu with the density ratid shows that the Nusselt number reduces Withn the lower quadrant
while on the middle and the upper quadrahxﬂ.l| reduces withr'<0.5 and enhances fat>0.7. The variation of
Sh with the density ratiy shows that| Sh| enhances on the lower and middle quadrants witmeease in,
while in the upper quadrant, it reducesY&r0.03 and enhances f#k0.05 as shown in Table 5.

Table5: Effect of y on Nusselt and Sherwood numbersfor M=0.5, Q=0.5, Rad=0.05, So=2, Du=0.3, X=1

Parametey Nul Nu2 Nu3 Shl Sh2 Sh3
0.01 25939 2.2079 19507 8.3344 1.7415 -4.8514
0.03 25934 22076 19504 8.3388 1.7443 2.5008
0.05 25928 2.2714 19501 8.3432 1.7472 -4.8487
0.07 25022 2.2719 2.0502 8.3476 1.7501 -4.8493

CONCLUSION

The problem of mixed convective flow of a viscodsctrically-conducting fluid through a porous mediun a
rectangular duct in the presence of Soret and Dufstects was investigated. The equations were esblv
numerically using the Galerkin finite-element arsgdywith tri-nodal triangular elements for the cangtion of the
flow, heat and mass transfer characteristics foioua values of the Hartmann number, strength @it lseurce,
radiation parameter, Soret number, Dufour numbertae density ratio. We considered the heat fluxtenbase
and the top walls to be constant. We assumed hieatdnvective fluid and the porous medium wereyavkere in
local thermal equilibrium and that there was nogghehange of the fluid in the medium. The propsnitthe fluid
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and the porous medium were assumed homogeneousa@napic, and the porous medium was assumed to be
closely packed so that the Darcy’s momentum law agesgjuate in the porous medium. The numerical tesudre
obtained and compared with previously reported £asailable in the open literature and they wermébto be in
good agreement. Graphical results for various patdenconditions were presented and discussed ifterent
values. The main findings are summarized as follows

» The presence of the Magnetic field M caused a fagmit effect on the heat and mass transfer rates.

* An increase in Radiation absorption parameter Qattteal temperature and actual concentration emsaat
vertical level. However, the actual temperature actdal concentration decreases at horizontaldevel

At higher values of Thermal radiation parameter ,Raualler the actual temperature at both vertieatls and at
y=2h/3 and larger at y=h/3. Furthermore, the ademlperature and actual concentration decreashs abrizontal
levels.

» An increase in Soret parameter So (or decreaseufoud parameter Du) increases the actual temperatnd

actual concentration at vertical levels. An incee@s Soret parameter So (or decrease in Dufournpetexr Du)

reduces the actual temperature and actual contiented horizontal levels.

» Presence of Non-linear-Density-temperature relafibhinfluences the actual temperature at both vdrtcal

horizontal levels. While the Non-linear-Density-Tgenature relation results depreciation in the datoacentration
at all levels.
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