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ABSTRACT 
 
We analyze the effect of magnetic field on convective heat and mass transfer flow of a viscous electrically-conducting fluid 
through a porous medium in a rectangular duct with Soret, Dufour, chemical reaction, and thermal radiation effects. The 
equations governing the flow, heat and mass transfer are solved by employing the Galerkin Finite element analysis with tri-nodal 
triangular elements. The temperature and concentration distributions are analyzed for different values of M, Q, Rad, S0, Du and 
γ. The rates of heat and mass transfer are evaluated numerically for different parametric values. The numerical results obtained 
in the present paper are validated by favorable comparison with previous published results. 
 
Keywords: Heat and Mass transfer; Rectangular duct; Hartmann number; Soret and Dufour effect; Thermal radiation; Radiation 
absorption; Non-linear density-temperature relation. 
_____________________________________________________________________________________________ 
Nomenclature 
a, b, c non-dimensional variable Tc temperature at the cold wall 
C concentration Th temperature at the warm wall 
Cc concentration on cold wall u, v  velocity components 
Ch concentration on warm wall u′, v′ Darcy velocities 

Cp specific heat at constant pressure 
D-1 inverse Darcy parameter 

x horizontal coordinate 

Du, Daf Dufour parameter  y vertical coordinate 
G Grashof number  
g′ acceleration due to gravity Greek symbols 

H0, H   strength of the magnetic field α heat source parameter 

k permeability of the porous medium β0,β1 thermal expansion coefficients 
K chemical reaction parameter β*

 volume coefficient of expansion with mass fraction concentration 
kf thermal conductivity φ dimensionless heat generation  or absorption 
K11 cross diffusivity µ coefficient of  viscosity 
M Hartmann number  µe magnetic permeability 
N buoyancy ratio ν  kinematic viscosity 
N1(Rad)  thermal radiation parameter  θ dimensionless temperature   
Nu Nusselt number ρ density of fluid 
Pr Prandtl number σ  electrical conductivity 
p′ pressure Ω verticity 
Q radiation absorption Ψ dimensionless stream function 

qr radiative heat flux ψ stream function 
Ra  Rayleigh number γ non–linear density temperature relation 
So Soret parameter  Γ condensate mass flow rate 
Sc Schmidt number Subscripts 
Sh Sherwood number c cold wall 
T′ temperature h warm side wall 

  
 

INTRODUCTION 
 
Advanced studies in the convective heat and mass transfer in porous medium provided greater industrial standing 
and generated research interest in many academicians and scientists. Equally, natural convection, the genesis of 
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which is due to the effect of density difference in a body force fluid resulted from a difference in temperature or 
concentration parameters, plays a key role in wider industrial applications. Natural convection adversely affects 
local growth conditions and enhances the overall transport rate. The combination of temperature and concentration 
gradients in the fluid will lead to buoyancy-driven flows. This has an important influence on the solidification 
process in a binary system. When heat and mass transfer occurs simultaneously, it leads to a complex fluid motion 
called double-diffusive convection. 
 
Studies related to double-diffusive MHD boundary layer flow with heat and mass transfer over flat surfaces are 
extremely important and have many applications in engineering and industrial processes. For instance, heat and 
mass transfer occur in processes, such as drying, evaporation at the surface of a water body, and energy transfer in a 
wet cooling tower, cooling of nuclear reactors, MHD power generators, MHD pump, chemical vapor deposition on 
surfaces, formation and dispersion of fog, and distribution of temperature and moisture over agriculture fields. 
Double-diffusion occurs in a wide range of scientific fields such as oceanography, astrophysics, geology, biology 
and chemical processes. Extensive study was made by Ostrach et al. [1] and Viskanta et al. [2]  on this given 
subject. A fundamental study of scale analysis relative to heat and mass transfer within cavities submitted to 
horizontal combined and pure temperature and concentration gradients was analysed by Bejan [3]. An experimental 
study has been done by Kamotani et al. [4] considering natural convection in shallow enclosures with horizontal 
temperature and concentration gradients. Similar experimental studies on thermo-solutal convection in rectangular 
enclosures were reported by Lee and Hyun [5] and Lee et al. [6] in unsteady double-diffusive convection in a 
rectangular enclosure with aiding and opposing temperature and concentration gradients. Ranganathan and Viskanta 
[7], Trevisan and Bejan [8], Beghein et al. [9] and Nishimura et al. [10] and others extended the related numerical 
studies dealing with double-diffusive natural convection in cavities. Sivaiah [11] investigated double-diffusive 
convective heat transfer flow of a viscous fluid through a porous medium with rectangular duct with thermo-
diffusion by using the finite-element technique. Chamkha and Al-Naser [12] have investigated the hydromagnetic 
double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients. 
Shanthi et al. [13] have investigated double-diffusive flow in a rectangular cavity using Darcy model. They have 
analyzed the effect of dissipation radiation on the double-diffusive flow of a viscous fluid in the rectangular cavity. 
Farhany and Tarun [14] numerically studied the double-diffusive natural convective heat and mass transfer in an 
inclined rectangular cavity filled with porous medium. 
 
Several applications were witnessed in the industry of fluids that are electrically conducting induced by magnetic 
field. Oreper and Szekely [15] studied the effect of an externally imposed magnetic field on buoyancy driven flow in 
a rectangular cavity and found that the presence of a magnetic field can suppress natural convection currents. 
Magnetic and gravitational natural convection of melted silicon-two dimensional numerical computations for the 
rate of heat transfer was studied by Ozoe and Maruo [16]. Natural convection heat transfer in rectangular enclosures 
with traverse magnetic field were studied by Garandet et al. [17] and Alchaar et al. [18]. The effects of magnetic 
field on free convection in a rectangular enclosure was studied by Rudraiah et al. [19]. Numerical study of laminar 
natural convection in tilted enclosure with transverse magnetic field was investigated by Al-Najem et al. [20]. Yu et 
al. [21] numerically investigated the natural convection in a rectangular cavity under different directions of uniform 
magnetic field.  
 
The study of natural convection heat transfer induced by internal heat generation has assumed much importance 
over time due to several applications in geophysics and energy-related engineering problems. Such applications 
include heat removal from nuclear fuel debris, underground disposal of radioactive waste materials, storage of 
foodstuff, and exothermic chemical reactions in packed-bed reactor. In a numerical study of two-dimensional natural 
convection of air in an externally heated vertical or inclined square box containing uniformly distributed internal 
energy sources conducted by Acharya and Goldstein [22], it was found that the average heat flux ratio along the cold 
wall increased with increasing external Rayleigh numbers and decreasing internal Rayleigh numbers. Their studies 
also revealed two distinct flow pattern systems depending on the ratio of the internal to the external Raleigh 
numbers. Churbanov et al. [23] investigated unsteady natural convection of a heat generating fluid in a vertical 
rectangular enclosure with isothermal or adiabatic rigid walls. Similar related works dealing with temperature-
dependent heat generation effects were studied by Vajravelu and Nayfeh [24] and Chamkha [25]. A numerical 
investigation of the steady MHD free convection in a rectangular cavity filled with a fluid-saturated porous medium 
and with internal heat generation was studied by Grosan et at. [26]. Reddy and Narasimhan [27] investigated heat 
generation effects in natural convection inside a porous annulus. The effect of magnetic field on mixed convection 
heat transfer in a lid-driven square cavity was studied by Baker et al. [28]. 
 
Viscous dissipation, a partially irreversible process, which happens due to shear forces transforming heat into fluid 
flow, has been studied by many researchers for different geometries. Verschoor et al. [29] have studied the effect of 
viscous dissipation and radiation on unsteady MHD free convection flow fast vertical plate in porous medium. They 
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found that the temperature profile increases when viscous dissipation increases. Barletta and Pulvirenti [30] studied 
the forced convection with slug flow and viscous dissipation in a rectangular duct. Van Rij et al. [31] investigated 
the effect of viscous dissipation and rarefaction on rectangular micro channel convective heat transfer. Padmavathi 
[32] Nagaradhika [33] and Sreenivasa [34] have analyzed the connective heat transfer through a porous medium in a 
rectangular cavity with heat sources and dissipation under varied conditions. Umavathi and Odelu [35] studied the 
effect of variable viscosity on free convection in a vertical rectangular duct. Umavathi and Sheremet [36] further 
studied the viscous dissipation and the influence of temperature dependent conductivity of a nanofluid in a vertical 
rectangular duct.  
  
Thermal radiation plays a significant role in many engineering applications particularly when the temperature is 
high. In the case of free convection or when the effects of variable properties are also included, the energy 
transformation can be a function of difference between T1 and T0. Radiation contributes significantly to the transfer 
of energy in furnaces, chambers of combustion, rocket plumes, heat exchangers under high temperatures, nuclear 
reactors and the like. On the other hand, in case of conduction and convection are suppressed, thermal radiation 
plays an important role during heat transfers even at temperatures of lower degrees like in thermos bottles and space 
craft thermal control. Makinde [37] studied free convection flow with thermal radiation and mass transfer past a 
moving vertical plate. Chiu et al. [38] studied the mixed convection heat transfer in horizontal rectangular ducts with 
radiation effects. Sakurai et al. [39] studied the radiation effects on mixed turbulent natural and forced convection in 
a horizontal channel using direct numerical simulation and found that the radiation effect changes the distributions 
of the temperature fluctuation intensity and the turbulent heat flux. Mahapatra et al. [40] studied the mixed 
convection flow in an inclined enclosure under magnetic field with thermal radiation and heat generation. Recently, 
Lee et al. [41] investigated the characteristics of premature and stable critical heat flux for downward flow boiling at 
low pressure in a narrow rectangular channel. Liu et al. [42] reviewed the near-field thermal radiation and brought 
out the recent applications in the subject. Sheikholeslami et al. [43] numerically studied the MHD free convection of 
Al 2O3-water nanofluid considering thermal radiation. 
 
Heat transfer occurs through insulation materials by conduction, while heat loss to or gaining of heat from 
atmosphere occur by means of convection and radiation. Materials, which have low thermal conductivity, are those, 
which have a high proportion of small voids containing air. These voids are not big enough to transmit heat by 
convection or radiation and therefore the rate of heat transfer reduces. The mass flux created by a temperature 
gradient and the energy flux resulted by concentration differences is known as thermal-diffusion (Soret) effect and 
diffusion-thermo (Dufour) effect respectively. The importance of the Soret and Dufour effects are visible in many 
practical applications preferably in areas such as geosciences chemical engineering etc., Cheng [44] investigated the 
Soret and Dufour effects on natural convection boundary layer flow over a vertical cone in a porous medium with 
constant wall heat and mass fluxes. Chamkha et al. [45] studied the hydromagnetic double-diffusive convection in a 
rectangular enclosure with linearly heated and concentrated wall(s) in the presence of heat generation/absorption 
effects. Motozawa et al. [46] experimentally investigated on the heat transfer characteristics in rectangular duct flow 
of a magnetic fluid under magnetic field. Umavathi and Chamkha [47] studied natural convection flow in a vertical 
rectangular duct with isothermal wall boundary conditions. Chamkha et al. [48] studied heat and mass transfer in a 
porous medium filled rectangular duct with Soret and Dufour effects under inclined magnetic field. Zhang and 
Huang [49] studied the effect of magnetic obstacle on fluid flow and heat transfer in a rectangular duct. Stelian [50] 
studied the MHD effects in turbulent duct flows under the influence of transverse uniform and non-uniform 
magnetic fields. Recently, Srinivasacharya and Himabindu [51] studied effect of magnetic field on entropy 
generation due to micropolar fluid flow in a rectangular duct. Kishan and Sekhar [52] applied the Finite element 
analysis to study the fully developed unsteady MHD convection flow in a vertical rectangular duct with viscous 
dissipation and heat source/sink. Wang [53] brought out analytic solutions for pulsatile flow through annular, 
rectangular and sector ducts filled with a Darcy–Brinkman medium.  
 
In this paper, we investigate the effect of magnetic field on convective heat and mass transfer flow of a viscous 
electrically-conducting fluid through a porous medium in a rectangular cavity with thermal radiation and dissipative 
effects. To determine the surface porosity, a closely packed porous material with respect to the structure of the pore 
space of the porous medium is considered. The duct is filled with saturated porous medium, and the flow of the 
working fluid was analyzed using a Darcy model which takes into account buoyancy and all the remaining effects of 
the rectangular duct. The equations governing the flow, heat and mass transfer are solved by employing the Galerkin 
Finite element analysis with tri-nodal triangular elements. The temperature and concentration distributions are 
analyzed for different values of M, Q, Rad, So, Du and γ. The rates of heat and mass transfer are evaluated 
numerically for different parametric values. 
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1. Problem Formulation 
We consider the mixed convective heat and mass transfer flow of a viscous incompressible fluid in a saturated 
porous medium confined in the rectangular duct as shown in Fig. 1 whose base length is a and height b. The heat 
flux on the base and top walls is maintained constant. The Cartesian coordinate system O (x,y) is chosen with origin 
on the central axis of the duct and its base parallel to x-axis.  
 
We assume that 

(a) The convective fluid and the porous medium are everywhere in local thermal equilibrium with the solid matrix . 
(b) There is no phase change of the fluid in the medium. 
(c) The properties of the fluid and of the porous medium are homogeneous and isotropic (uniform with a constant 

porosity and permeability) 
(d) The porous medium is assumed to be closely packed so that Darcy’s momentum law is adequate in the porous 

medium. 
(e) The effect of buoyancy force is acting on the fluid. So, well known Boussinesq approximation is applicable. 
(f) The magnetic Reynolds number is assumed to be small so that the induced magnetic field can be neglected 

compared to the applied magnetic field. 

 
 

Fig. 1 Schematic Diagram of the Problem 
 
In this problem we follow Darcy model (as fluid flow is through a porous medium), in momentum equation and 

considering Boussinesq approximation with magnetic field H . Under these assumption the momentum equations 
in the x and y directions are as follows (Revnic et al. [54]) 
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where u′ and v′ are Darcy velocities along θ - (x, y) direction. T′, C, p′ and g′ are the temperature, concentration, 
pressure and acceleration due to gravity, Tc, Cc and Th, Ch are the temperature and concentration on the cold and 
warm side walls, respectively. ρ′, µ, ν, β0 and β1, are the density, coefficients of viscosity, kinematic viscosity and 
thermal expansions of the fluid, k is the permeability of the porous medium, kf is the thermal conductivity, Cp is the 
specific heat at constant pressure, Q is the strength of the heat source, k11 is the cross diffusivity, β* is the volume 
coefficient of expansion with mass fraction concentration and qr is the radiative heat flux. σ is the electrical 
conductivity, µe is the magnetic permeability of the medium and H0 is the strength of the magnetic field. This means 
that solutions to the ideal MHD equations are only applicable for a limited time for a region of a given size before 
diffusion becomes too important to ignore.  
The boundary conditions for the problem are  
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We now introduce the following non-dimensional variables 
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In view of the equation of continuity, we introduce the stream function ψ as 
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are the Grashof number, Porosity parameter, Prandtl number (Pr=0.71), heat source parameter, Rayleigh number, 
radiation parameter, Schmidt number, chemical reaction parameter, Soret parameter, Dufour parameter, buoyancy 
ratio, and the Hartmann number, respectively. 
 
The four dimensionless boundary conditions are  
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2. Finite-Element Analysis and Problem Solution 
The region is divided into a finite number of tri-nodal triangular elements, in each of which the element equation is 
derived using the Galerkin weighted residual method. In each element fi, the approximate solution for an unknown f 

in the variational formulation is expressed as a linear combination of shape function( ) ,3,2,1=k
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kN which are linear 

polynomials in x and y. This approximate solution of the unknown f coincides with actual values at each node of the 
element. The variational formulation results in a 3 x 3 matrix equation (stiffness matrix) for the unknown local nodal 
values of the given element. These stiffness matrices are assembled in terms of global nodal values using inter-
element continuity and boundary conditions resulting in a global matrix equation. 
 
In each case, there are r distinct global nodes in the finite-element domain and fp (p = 1,2,……r) is the global nodal 
values of any unknown f defined over the domain then 
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independent global nodes and ,
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p =Φ  if p is one of the local nodes say k of the element ei = 0, otherwise fp’s are 

determined from the global matrix equation.  Based on these lines, we now make a finite-element analysis of the 
given problem governed by Eqs. (14) through (16) subjected to the conditions Eqs. (17) and (18). 
 
Let ψi, θi and φi  be the approximate values of ψ, θ and φ in an element θi 
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Substituting the approximate value ψi, θi  and φi  for ψ, θ  and φ respectively in Eq. (13), the error 

)
2

2

2

2
(Pr

2

2

2

2

13

4
11

y

i

x

i
Du

y

i
  

x

i
  

x

i
  

y

i

y

i

x

i

N
iE

∂

∂+
∂

∂+−














∂
∂

∂
∂−

∂
∂

∂
∂−

∂

∂+
∂

∂













+= φφαθθψθψθθ

  

(22) 

)2

2

2

2
(      2

2

2

2

2
y

i

x

i
ScSoik

y

i

x

i

x

i

y

i
Sc

y

i

x

i
iE

∂

∂
+

∂

∂
+−

∂

∂

∂

∂
−

∂

∂

∂

∂
−

∂

∂
+

∂

∂
= 









 φφ
φ

φψφψφφ
   (23) 

 
Under the Galerkin method, this error is made orthogonal over the domain of ei to the respective shape functions 
(weight functions) where 
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Using Green’s theorem, we reduce the surface integral of Eqs. (24) and (25) without affecting the ψ terms and 
obtain 
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where ΓI is the boundary of ei.  
 
Substituting L.H.S. of Eqs. (19) through (21) for ψi, θi and φi  in Eqs. (26) and (27) we get 
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where i
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i
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i
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i
kQ ,321 ++= ’s being the values of i

kQ  on the sides s = (1,2,3) of the element ei. The sign of i
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’s depends on the direction of the outward normal with respect to the element. 
 

Choosing different i
kN ’s as weight functions and following the same procedure, we obtain the matrix equations for 

three unknowns ( i
pQ ) viz.,  
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Repeating the above process with each of s elements, we obtain sets of such matrix equations. Introducing the global 

coordinates and global values for ipθ and making use of inter-element continuity and boundary conditions relevant 
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and following the Galerkin method, we obtain 
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In obtaining Eq. (33), the Green’s theorem is applied with respect to derivatives of ψ without affecting the θ terms. 
Using Eqs. (19, 20, 21) and (22) in (33), we have 
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In the problem under consideration, for computational purpose, we choose uniform mesh of 10 triangular elements 
(Fig. II). The domain has vertices whose global coordinates are (0,0), (1,0) and (1,h) in the non-dimensional form. 
Let e1, e2…..e10 be the ten elements and let θ1, θ2,…..θ10 be the global values of θ and ψ1, ψ2,……ψ10 be the global 
values of ψ at the global nodes of the domain (Fig. II).  

 
Fig. 2. Schematic Diagram of the Configuration 

 
Shape Functions and Stiffness Matrices:  
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Substituting the above shape functions in Eqs. (28), (29) and (34) with respect to each element and integrating over 
the respective triangular domain we obtain the element in the form Eq. (28). The 3x3 matrix equations are 
assembled using connectivity conditions to obtain a 8x8 matrix equations for the global nodes ψp,θp and φp. 
 
The global matrix equation for θ is 

333 BXA =                                                          (35) 

The global matrix equation for φ is 

444 BXA =                                                           (36) 

The global matrix equation for ψ is 

555 BXA =                                                          (37) 

where 
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The global matrix equations are coupled and are solved under the following iterative procedures. At the beginning of 
the first iteration, the values of (ψi) are taken to be zero and the global equations (35) and (36) are solved for the 
nodal values of θ and φ. These obtained nodal values (θi) and (φi) are then used to solve the global equation (37) to 
obtain (ψi). In the second iteration, these (ψi) values are obtained and used in Eqs. (35) and (36) to calculate (θi) and 
(φi) and vice versa. The three equations are thus solved under iteration process until two consecutive iterations differ 
by a pre-assigned percentage. 
 
The domain consists three horizontal levels and the solution for Ψ & θ at each level may be expressed in terms of 
the nodal values as follows: 
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3

2
≤ x≤ 1) 

The expressions for φ are  

φ  = [φ1(1-4x)+ φ2 4(x-
h

y
)+ φ7  (

h

y4
)) H(1- τ1)            (0≤ x≤

3

1
 ) 

φ = (φ 2(2(1-2x)+ φ3 (4x-
h

y4
-1)+ φ 6(

h

y4
)) H(1- τ2) 

        + φ 2(1-
h

y4
)+ φ7(1+

h

y4
-4x)+ φ 6(4x-1))H(1- τ3)            (

3

1
≤ x≤

3

2
 ) 

φ = φ3(3-4x) +2 φ4(2x-
h

y2
-1)+ φ6(

h

y4
-4x+3) H(1- τ3) + ( φ3(1-

h

y4
)+ φ5(4x-3)+ φ6(

h

y4
)) H(1- τ4) (

3

2
≤ x≤1) 

Along the strip 
3

h
≤ y≤

3

2h
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φ = (φ7(2(1-2x)+ φ6(4x-3)+ φ8(
h

y4
-1)) H(1- τ3) + (φ6(2(1-

h

y2
)+ φ9(

h

y4
-1)+ φ8(1+

h

y4
-4x)) H(1- τ4) 

   + ( φ6(4(1-x)+ φ5(4x-
h

y4
-1)+ φ9 2(

h

y4
-1)) H(1- τ5)       (

3

1
≤ x≤

3

2
) 

Along the strip 
3

2h
≤ y≤1 

φ = (φ84(1-x) + φ94(x-
h

y
)+ φ10(

h

y4
-3) H(1- τ6)          (

3

2
≤ x≤ 1) 

The dimensionless Nusselt number (Nu) and the Sherwood number (Sh) on the non-insulated boundary walls of the 
rectangular duct are calculated using the formulas: 

 Nu = (
x∂

∂θ
) x=1  and   Sh = (

x∂

∂φ
) x=1. 

The Nusselt number on the side wall x=1 in different regions are given by 
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The suffix ‘x’ denotes differentiation of the shape functions with respect to ‘x’. Substituting the shape functions and 
the boundary conditions, the Nusselt number and the Sherwood number in different regions are 
Nu1=2-4θ3 ( )3/0 hy ≤≤ , Nu2=2-4θ5 ( )3/23/ hyh ≤≤ , Nu3=2-4θ7     ( )3/2 hyh ≤≤  
 
The Sherwood number on the side wall x=1 in different regions are: 
 
Sh1=2-4φ3 ( )3/0 hy ≤≤ , Sh2=2-4φ5 ( )3/23/ hyh ≤≤ , Sh3=2-4φ7     ( )3/2 hyh ≤≤  
 
Comparison:  
 
In this analysis, it should be mentioned that the results obtained herein are compared with the results of Shanthi et 
al. [13] as shown in Table A in the absence of Du=0, γ=0, Q=0 and the results are found to be in good agreement. 
 

Table A. Comparison of the present results (Du = 0, γ= 0, k=0) with Shanthi et al. [13] results 
  Present results      Shanthi et al. [13] results 
N 1 2 -0.5 -0.8 1 2 3 N 1 2 -0.5 -0.8 1 2 3 
S0 0.5 0.5 0.5 0.5 1 1.5 2 S0 0.5 0.5 0.5 0.5 1 1.5 2 
Nu

1 
61.125

12 
52.523 

10.121
2 

9.8676 
62.524

9 
64.129

4 
66.134

32 
Nu

1 
61.125

1 
52.52

3 
10.21

4 
9.867 

62.52
4 

64.12
9 

66.13
4 

Nu
2 

58.161
34 

51.135
6 

11.165
45 

9.8564
3 

59.126
4 

60.196
5 

61.896
5 

Nu
2 

58.161 
51.13

5 
11.16

5 
9.856 

59.12
6 

60.19
6 

61.89
6 

Nu
3 

54.492
13 

50.202
3 

11.793
2 

9.8543 
55.098

2 
56.289

2 
57.381

12 
Nu

3 
54.492 

50.20
2 

11.79
3 

9.854 
55.09

8 
56.28

9 
57.38

1 
Sh

1 
21.944

5 
20.434

5 
3.3792

33 
4.1352

1 
15.425

34 
13.126

2 
11.896

4 
Sh

1 
21.944 20.43 

3.379
2 

4.135 
15.42

5 
13.12

6 
11.89

6 
Sh

2 
26.516 

21.116
3 

4.6931
1 

5.1792
3 

11.169
23 

19.056
2 

18.809
3 

Sh
2 

26.516 
21.11

6 
4.693 

5.179
2 

11.16
9 

19.05
6 

18.80
9 

Sh
3 

19.092
2 

29.700
2 

6.0722 
6.2312

3 
18.176

2 
17.069

1 
16.124

2 
Sh

3 
19.092 29.7 

6.007
2 

6.231 
18.17

6 
17.06

9 
16.12

4 

 
RESULTS AND DISCUSSION 

 
In this analysis, we investigate the effect of the non-linear density temperature variation in a convective heat and 
mass transfer of an electrically-conducting viscous fluid through a porous medium in a rectangular duct with Soret 
and Dufour effects. The equations governing the flow and heat and mass transfer have been solved by employing the 
Galerkin finite-element analysis with tri-nodal triangular elements. The non-dimensional temperature (θ) is shown in 
Figs. 3-22 for different values of M, Q, Rad, So, Du and γ at different horizontal and vertical levels. The temperature 
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(θ) and concentration  (φ) are plotted versus different levels of x and y for the values M=5, N= 1, α=2, k=0.5, Q=0.5, 
Rad=0.05, Sr=2, Du=0.3, Pr=0.71, N=0.5, γ=0.01, Ra=0.5  and specific variations of physical parametric values 
varies unless remain same. We follow the convention that the non-dimensional temperature θ is positive or negative 
according to whether the actual temperate (T) is greater or less than the temperature (Tc) on the cold wall x=1.  
 
2.1. Temperature Profiles 
Figs. 3-6 present θ with the Hartmann number M.  We find that the higher the Lorentz force the larger the actual 
temperature at y=h/3 and the vertical levels x=1/3 and 2/3 and reduces at the higher horizontal level y=2h/3. This is 
due to the fact that the strength of flow decreases and thereby the temperature enhances in the boundary layer. Figs. 
7-10 present θ with the radiation absorption parameter Q. It is observed that an increase in Q, enhances the actual 
temperature at y=h/3, and x=1/3 and 2/3 levels and reduces at y=2h/3 level. As the Rosseland radiative absorption 
parameter Q diminishes, the subsequent heat flux varies and thus reduces the rate of radiative heat transfer to the 
fluid which causes the rise in temperature.  Figs. 11-14 display θ with the radiation parameter Rad. It is found that 
the higher the thermal radiation the smaller the actual temperature at both the vertical levels and at y=2h/3 level and 
larger at y=h/3 level. This may be due to the thermal radiation increases gradually in the fluid flow, causes an 
enhancement in the temperature in the boundary layer of the fluid flow. Figs. 15-18 show θ with the Soret parameter 
So or the Dufour parameter Du. By increasing the value of So (or decreasing Du), we notice an enhancement in the 
actual temperature at y=2h/3 level, and depreciation at y=h/3, x=1/3 and 2/3 levels. This is attributed to the fact that 
an enhancement of Soret parameter So (or decrease in Dufour parameter Daf) results an increase in the thickness of 
the boundary layer at the upper levels and reduces at lower levels of the fluid. The effect of the non–linear density 
temperature relation on θ is executed in Figs. 19-22. It is found that the actual temperature enhances at y=h/3, x=1/3 
and 2/3 levels, while at y=2h/3 level, the actual temperature reduces with γ ≤0.5 and enhances with γ ≥0.7. This is 
due to fact that the thickness of the boundary layer flow reduces and results the enhancement in the temperature at 
horizontal levels of the boundary layer and reduces the temperature for vertical levels of the boundary layer flow. 
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2.2. Concentration Profiles 
The concentration distribution (C) is shown in Figs. 23-42 for different parametric values at different horizontal and 
vertical levels. We follow the convention that the concentration is positive or negative according to whether the 
actual concentration is greater or less than Cc, the concentration on the cold wall. Figs. 23-26 present C with M. It is 
found that the Lorentz force reduces the actual concentration and for further lowering of the force smaller the actual 
concentration at the levels y=h/3, 2h/3, x=1/3, 2/3. This is due to the fact that the strength of flow decreases and 
thereby the concentration reduces in the flow region Figs. 27-30 show C with Q.  An increase in the radiation 
absorption parameter Q, reduces the actual concentration at y=2h/3 level and enhances it at y=h/3 and x=1/3 levels. 
At x=2/3 level, the actual concentration enhances in the region (0.066, 0.33) and reduces in the flow region (0.396, 
0.666). As the radiation absorption increases in the entire flow region the actual concentration increase in the 
boundary layer fluid and decrease at the horizontal levels. Figs. 31-34 show the variation of C with the thermal 
radiation parameter Rad. It is found that the actual concentration reduces with Rad at y=2h/3 and x=1/3 and 2/3 
levels and enhances at y=h/3 level. This may be due to the thermal radiation increases gradually in the fluid flow, 
causes depreciation in the concentration in the higher levels and enhances in the lower levels of the fluid flow. Figs. 
35-38 display C with So and Daf. It can be seen from the profiles that increasing So (or decreasing Daf) results in an 
enhancement in the actual concentration at y=2h/3 and depreciation at y=h/3 and x=1/3 levels (Figs. 36-37). This is 
due to the fact that an enhancement of Soret parameter So (or decrease in Dufour parameter Daf) results an increase 
in the thickness of the boundary layer at the upper levels and reduces at lower level of the fluid. At x=2/3 level, the 
actual concentration reduces in the horizontal strip (0 ≤y≤0.264) and enhances in the region (0.33≤y≤0.666) for 
So≤1.5 and for So≥2, we found a depreciation in the actual concentration in the entire region as shown in Fig. 38. 
Figs. 39-42 show the variation of C with the density ratio γ. The thickness of the boundary layer flow reduces due to 
the enhancement of concentration in the entire flow region. It can be seen from the profiles that the non-linearity in 
the density-temperature relation results in depreciation in the actual concentration at all levels. 
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The rate of heat transfer, Nusselt number (Nu) and the rate of mass transfer, Sherwood number (Sh), on the side x=1 
are shown in Tables 1-5 for different values of M, Q, Rad, So, Du and ϒ. With respect to the Hartmann number M, 
we find that the higher the molecular diffusivity, the smaller │Nu│ on the lower quadrant and larger on the middle 
and upper quadrants and for further higher Lorentz force the larger │Nu│ on the lower quadrant and smaller on the 
middle and upper quadrant. An increase in M, enhances │Sh│ on the lower and middle quadrants and reduces it on 
the upper quadrant. │Sh│ experiences depreciation with an increase in Q on all the three quadrants as shown in 
Table 1. 

 
Table 1: Effect of M on Nusselt and Sherwood numbers for Q=0.5, Rad=0.05, So=2, Du=0.3, γ=0.01, X=1 

 
Parameter M Nu1 Nu2 Nu3 Sh1 Sh2 Sh3 

5 2.5720 2.2538 1.9356 6.84148 1.57600 -3.68944 
10 1.6655 2.6081 3.5617 8.35244 2.03041 -4.2916 
15 1.8391 2.2948 2.7505 8.49364 2.11208 -4.26948 
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An increase in the radiation absorption parameter Q, reduces │Nu│ on the lower and middle quadrants and 
enhances it on the upper quadrant. │Sh│ experiences depreciation with an increase in Q on all the three quadrants as 
shown in Table 2. 
 

Table 2: Effect of Q on Nusselt and Sherwood numbers for M=0.5, Rad=0.05, So=2, Du=0.3, γ =0.01, X=1 
 

Parameter Q Nu1 Nu2 Nu3 Sh1 Sh2 Sh3 
0.5 1.8391 2.2948 2.7505 8.4937 2.1121 -4.2695 
1.5 2.5030 2.2269 1.9509 7.9952 1.8123 -4.3699 
2.5 2.4288 2.1947 1.9607 7.981 1.8113 -4.3584 

 
The variation of Nu with Radiation parameter Rad shows that the Nusselt number enhances on the lower quadrant 
and reduces on the upper quadrant with an increase in Rad, while on the middle quadrant, the Nusselt number 
reduces for the condition Rad≤0.5 and enhances for Rad ≥ 1.5. With respect to the radiation parameter Rad, we find 
that the rate of mass transfer on the lower and middle quadrants reduces for Rad≤0.5 and enhances for Rad ≥2.5 
while in the upper quadrant it reduces with Rad. The variation of Sh with the buoyancy ratio of N shows that │Sh│ 
reduces on all the three quadrants with an increase in N≥ 0 while the buoyancy forces are in the same direction and 
for the forces acting in the opposite direction the Sherwood number on the lower and middle quadrants enhances 
with │Rad│ and reduces on the upper quadrant as shown in Table 3. 

 
Table 3: Effect of Rad on Nusselt and Sherwood numbers for M=0.5, Q=0.5, So=2, Du=0.3, γ =0.01, X=1 

 
Parameter Rad Nu1 Nu2 Nu3 Sh1 Sh2 Sh3 

0.05 -1.510 7.506 16.522 6.3046 0.3478 -5.609 
0.15 7.893 1.749 -4.393 7.8725 1.7499 -4.394 
0.25 7.931 0.365 -4.387 7.9311 1.7717 -4.388 
0.5 8.009 0.574 -4.381 8.0092 2.5848 -4.382 

 
The variation of Nu with the Soret and Dufour parameters (So and Du) are shown in Table 4. An increase in the 
Soret parameter So≤1.5 (or a decrease in the Dufour parameter Du) enhances │Nu│ and reduces for So≥2.0 on all 
the three quadrants. With respect to the Soret and Dufour parameters (So and Du), we find that increasing So 
(So≥1.5) (or decreasing Du) enhances Sh on the lower quadrant, and reduces in the upper quadrant and for So≥2, we 
notice a depreciation in │Sh│ on the lower quadrant and an enhancement on the upper quadrant. │Sh│ reduces with 
So in the lower and middle quadrants. 

 
Table 4: Effect of So, Du on Nusselt and Sherwood numbers for M=0.5, Q=0.5, Rad=0.05, γ =0.01, X=1 

 
Parameter So, Du Nu1 Nu2 Nu3 Sh1 Sh2 Sh3 

2,0.3 2.5022 2.2709 2.0502 8.3344 1.7415 -4.8514 
1.5,0.4 3.7744 3.4242 3.0653 8.6888 1.34842 -3.8328 
1,0.6 3.6641 3.3475 3.2989 7.3489 1.28483 -3.962 
0.6,1 3.5930 3.2870 3.0671 7.2432 1.2678 -4.851 

 
The variation of Nu with the density ratio ϒ shows that the Nusselt number reduces with ϒ on the lower quadrant 
while on the middle and the upper quadrants │Nu│ reduces with ϒ≤0.5 and enhances for ϒ≥0.7.  The variation of 
Sh with the density ratio ϒ  shows that │Sh│ enhances on the lower and middle quadrants with an increase in ϒ, 
while in the upper quadrant, it reduces for ϒ≤ 0.03 and enhances for ϒ≤0.05 as shown in Table 5. 
 

Table 5: Effect of γ on Nusselt and Sherwood numbers for M=0.5, Q=0.5, Rad=0.05, So=2, Du=0.3, X=1 
 

Parameter γ Nu1 Nu2 Nu3 Sh1 Sh2 Sh3 
0.01 2.5939 2.2079 1.9507 8.3344 1.7415 -4.8514 
0.03 2.5934 2.2076 1.9504 8.3388 1.7443 2.5008 
0.05 2.5928 2.2714 1.9501 8.3432 1.7472 -4.8487 
0.07 2.5022 2.2719 2.0502 8.3476 1.7501 -4.8493 

 
CONCLUSION 

 
The problem of mixed convective flow of a viscous electrically-conducting fluid through a porous medium in a 
rectangular duct in the presence of Soret and Dufour effects was investigated. The equations were solved 
numerically using the Galerkin finite-element analysis with tri-nodal triangular elements for the computation of the 
flow, heat and mass transfer characteristics for various values of the Hartmann number, strength of heat source, 
radiation parameter, Soret number, Dufour number and the density ratio. We considered the heat flux on the base 
and the top walls to be constant. We assumed that the convective fluid and the porous medium were everywhere in 
local thermal equilibrium and that there was no phase change of the fluid in the medium. The properties of the fluid 
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and the porous medium were assumed homogeneous and isotropic, and the porous medium was assumed to be 
closely packed so that the Darcy’s momentum law was adequate in the porous medium. The numerical results were 
obtained and compared with previously reported cases available in the open literature and they were found to be in 
good agreement. Graphical results for various parametric conditions were presented and discussed for different 
values. The main findings are summarized as follows: 
 
• The presence of the Magnetic field M caused a significant effect on the heat and mass transfer rates. 
• An increase in Radiation absorption parameter Q the actual temperature and actual concentration enhances at 
vertical level. However, the actual temperature and actual concentration decreases at horizontal levels. 
• At higher values of Thermal radiation parameter Rad, smaller the actual temperature at both vertical levels and at 
y=2h/3 and larger at y=h/3. Furthermore, the actual temperature and actual concentration decreases at the horizontal 
levels. 
• An increase in Soret parameter So (or decrease in Dufour parameter Du) increases the actual temperature and 
actual concentration at vertical levels. An increase in Soret parameter So (or decrease in Dufour parameter Du) 
reduces the actual temperature and actual concentration at horizontal levels. 
• Presence of Non-linear-Density-temperature relation (ϒ) influences the actual temperature at both vertical and 
horizontal levels. While the Non-linear-Density-Temperature relation results depreciation in the actual concentration 
at all levels. 
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