
Available online at www.pelagiaresearchlibrary.com 
 

 
 

   
Pelagia Research Library 

 
Advances in Applied Science Research, 2014, 5(3):189-194     

  
 

  
 

ISSN: 0976-8610  
CODEN (USA): AASRFC 

 

189 
Pelagia Research Library 

Some remarks on the stability and boundedness of solutions of certain non-
autonomous T-period differential equations of second order 

 
Ebiendele Peter Ebosele and Okodugha Edward 

 
Department of Basic Sciences, School of General Studies, Auchi Polytechnic, Auchi- Edo State, South West Nigeria 
_________________________________________________________________________________________________ 
 
ABSTRACT 
 
This paper extends some known results on the stability and boundedness of solutions of certain T- period of non-
autonomous differential equations of second order. 
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INTRODUCTION 
 

The equation studied in this paper is of the form 
 
 ������ + ���	� + 
��� ℎ�	� = ��; �, �′�                                                 1.1 
 
where Q, g, b, h, and P are continuous which depend only on the arguments display. The symbol prime indicate 
differentiation with respect to the independent variable ‘t’ and all solutions considered here are assumed to be real. 
The derivatives of 1.1 exist and are continuous. Moreover the stability and the Boundedness of the equation 1.1 will 
be assumed. 
 
Ever since Lyapunov proposed his famous direct (or second) method on the stability of motion, numerous method 
have been proposed in the relevant literature to derive suitable Lyapunov function and hereby, in particular, many 
papers and books have been devoted to the study of stability and boundedness of solutions of certain second, third, 
fourth, fifth and sixth order nonlinear differential equations. 
 
(See for example, Anderson [2]; Antosiewict [3]; Bihari [4]; Burton [5]; Hatvani [6-8]; Iggidr [9]; Mirosanu and 
Viadimirescu [10]; Napoles [12]). So far, the most efficient tool for the study of the stability and boundedness of 
solutions of a given non-autonomous differential equations of second order is provided by Lyapunov theory. This 
theory is based on the use of positive definite functions that are non-increasing along the solutions of differential 
equation under consideration. 
 
Atkinson [1] remarks that “the autonomous case where a = b = 1, or constant independent of t ϵ f. This study shall 
adopt Burton [5] who developed a theory whereby all these properties (boundedness, stability and periodicity) been 
investigated differently and used one major theorem the Lyapunov second method. 
 
1.2 DEFINITIONS 
Let �� = ���, ��                                             (1.2) 
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Where � �  ϵ R� be a system of n coupled order equations, we shall give the following definition for completeness. 
 
DEFINITIONS 1.2.1 
A Lyapunov function V defined as �: 1 � �� → �  is said to be Complete for �  ϵ ��  
 
(i)  ���, ��  ≥ 0  (ii) ���, �� = 0, if and only if � = 0 and  (iii) �� ��, �� ≤ −"|�|, where C is any positive constant 

and |�| given by |�| = ∑ ��%&�%'( � (
& such that |�| → ∞ *+ � → ∞   

 
DEFINITION 1.2.2 
A Lyapunov function V defined as � ∶ 1 ×  �� × � is said to be Incomplete if for � ϵ R� (i) and (ii) of the above 
definition is satisfied and in addition (iii) �� ��, ��/2 ⋅ 3 ≤ −C|�|�3� where C is any positive constant and |�|�3� 
given by|�|�3�  = ∑ ��%&�%'( � (

&  such that |�|�3�  → ∞ as  X → ∞.  

 
GENERALIZED THEOREMS (BURTON [5]). 
Considered the general differential equation  
X� = f �t, x�                         1.3 
 
Equation 1.3 can be written as a linear equation  
�� = A �x� + P �t�                                    1.4 
 
Equation 1.4 can be written as homogeneous systems as  X� = A �t� x                                           1.5 
 
Where A �t�  is an n x n matrix of unknown coefficient 
P;  � →   ��  is a continuous function. 
 
The following scheme will be employed because of the use of Lyapunov functions. 
 
(i) If  f �t, 0� = 0  and if there exist a function 
V: �0, ∞� x  �� → �,  that;  
=(�|�|� ≤ V�t, X�  ≤ −=&�|�|�  and  
V� �t, X� ∕ 2 ⋅ 2 ≤ −=?�|�|�  
 
Where =@�@ = 1, 2, 3� are strictly increasing continuous function defined as =@�0, ∞� → �0, ∞� with =�+� > 0  and 
=�0� = 0 as wedges. Then the solutions of equation 1.2 is uniformly as asymptotically stable. 
 
(ii) If there exist function V: �0, ∞� x  �� → �,  such that,  
=(�|�|� ≤ V�t, X�  ≤ =&�|�|�  and 
 V� ��, �� ≤ −=?�|�|� + B�B > 0�, 
 
then the solutions of equation 1.2 are ultimately bounded and uniformly ultimately bounded 
 
(iii) If the solution of Equation 1.3 and 1.4 are unique, the Equation 1.3 has a periodic solution. 
 
We shall state without proof,  
 
THEOREM OF BURTON [5]. 
Theorem A [5]: If f is Lip Schitz  in X and periodic in t with period T and if the solutions are uniformly bounded 
and uniformly for any given bound (say) B, then equation 1.4 has a T – periodic solution. 
 
Theorem B [5]: Assume the following conditions hold. 
(i) f�t, +T, X� = f�t, X� for all t and some T > 0; 
(ii) all solutions of equation 1.3 are bounded;  
(iii) each solution of equation 1.3 is equi-asymptotically stable; 
(iv) the zero solution of the homogeneous system corresponding to equation 1.3 is uniformly asymptotically stable. 
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Then equation 1.3 has a globally stable non-autonomous solution. 
 
2.0 STATEMENT OF RESULTS 
The following results will be basic to the proofs of lemma 2.2 and 2.3. 
 
Theorem 2.2: Let g and h be continuous and also periodic with period w together, and the following conditions 
holds; 

(i). DE = F�G�HF�E�
G ≤  I ∈ 1K, � ≠ 0 *MN ℎ�0� = 0  

(ii). OE = P�Q�HP�E�
R ≤  S, T ≠  0 *MN ��0� = 0 

(iii) a�t, �, b�t�  continuous with 0 < 90 < * ≤ *��� ≤ a(, 0< 
_ < 
�t� ≤ b1 and  
(iv) |��: �, T�| ≤ B  �B = a_M+�*M��. 
 
Then Equation 1.1 has a globally stable and boundedness of periodic solution with b, as the period. 
 
3.0 SOME PRELIMINARIES 
We shall use the function V�t, x, y� defined below to prove the main theorem of this paper. 
 

Let  d2 V�t, x, y� = e
f ∝ h  H�t��∝ ab + β&��& + (

k y& +  2βl                                                                                        3.1 

 

Where D��� is defined = exP n− o a�s�dsp
q r where a, b, I, S, s > 0, �_t *uu �, � ∈ D���. 

 
Lemma 3.3 assume theorem 2.1 holds, there exist positive constants B@ �a, 
, I, S, s�, @ = 1,2 such that  
 
B@ ��& + T&� ≤ ���;  �, T� ≤ v&��& + T&�                               3.2 
 
Proof: From equation 3.1, it is clear that ���: 0, 0� ≡ 0. 
 
Equation 3.1 also gives; 

2���;  �, T� = y
zf { D��� d∝ ab�& + β&�� + (

h y�& +  (Hzh|
z y&l                                                                                   3.3 

 

2���;  �, T� = y
zf { D��� dαab�& + (Hh|

z y&l                                                                                       3.4  

 
≥ B@��& + T&�                                                                                                                                   3.5 
 

Where B@ y
~� { ∙ B@M dαab, (Hfh|

z l 

 
Therefore 2���;  �, T� ≥ B@��& + T&�. 
 

Using in equality on equation 3.1,  � T ≤ (
& ��& + T&� 

 

Gives, 2���;  �, T� ≥ y
zf { D��� d�αab�&� �& + (

z y& + S��& + T&�l                                                                          3.6 

 
implies that, 2� ≥ B& ��& + T&�                                                                                                                                 3.7 
 

where B& = y
zf { ∙ B*� d�αab + S�S + 1�, �(Hz{

z �l ∙ 
 
From equation 3.5 and 3.7, we have;  

B( 
��& + T&� ≤ ���;  �, T� ≤ B( ��& + T&�                                       3.8  
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This proves the Lemma. 
 
Lemma 3.2 Assump Theorem 2.1 holds, there exist positive constants, B� = B��*, 
, α, δ�, where �� = 3, 4� such 
that for any solution ��, T� �1 ∙ 1�. 
 

�� ��1 ∙ 1� ≡ �
�� �� �1 ∙ 1���; �, T� ≤ −B?��& + T&� + B��|�| + |T|�|���; �, T�|                                        3.9  

 
Proof; from equation 1.1, we have;  
 

�� |(.( = ��
�� + ��

�� �� + ��
�T T�  = −D������, T� + D��� ��

�� T + ��
�T �−*��T� − 
ℎ�	� + ���� 

 

Where ���, T� = d�αab + β&��& + (
~ T& + 2S�Tl 

 

⋁�, �, T ≤ s
IS D�������, T� + B&��& + T&�� 

 
B��|�| + |T|���; �, T��                              3.10  
 
Where B� = B*� �
I, IS� and B& is defined in the equation 3.8 from the definition of H(t), we have equation 3.10 
reduces to  
 
�� ��;  �, T� ≤ −B?��& + T&� + B��|�| + |T|���;  �, T�                           3.11 
 
With B? = 2B&. 
 
Equation 3.11 can be simplified to give 
 
⋁��, �, T� ≤ B?��& + T&� + B���& + T&�½ ��; �, T�                                                                                            3.12        
 
With B� = √2B 
 
This completes the proof of the Lemma. 
 
4.0 PROOF OF THE MAIN RESULTS 
Proof of Theorem 2.1 from the two proved Lemma given above, it had been established that the function ⋁��;  �, T� 
is a Lyapunov function for the system ��  = y  
 
 T� = *�����T� − 
��� ℎ��� + ��; �, T�. Hence the trivial solution from the above expression is asymptotically 
stable. 
 

From equation 3.12,  �� ��;  �, T� ≤ − B? ��& + T&� +  B� ��& + T&��
| 

 

��, �, T� and also from 3.5, we have  ��& + T&��
| ≤ �&�

�(��
|   

 
hence equation 3.12 becomes;  
 
��
�� ≤  B�� +  B� ��

| |���|                                                                                                             4.1 

 

It shall be observed that  B? ��& + T&� =  B?
�

��
 and  

 

. 

. 

. 
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��
�� ≤  B�� +  B� ��

| |���|                                                                                                                 4.2 

 

Where  B� = ��
�|

*MN B� = ��
�|

�
|
 

 
Which implies that � ≤� −  B�V +  B�½|P���| also can be written as  
 
� ≤� −  2B�V +  B�V½|P���|                  4.3 
 
when  B� = ½ B� 
 
Implies �� + B�� ≤ −B� V +  B�V½|P���|                                                                                                     4.4      
 
�� + B�� ≤  B�V½�|P���| −  BkV½�                              4.5 
 

Where  Bk = ��
��

, equation 4.5 becomes 

�� + B�� ≤  B�V (
& V�                                       4.6       

                                     
Where V� = |P���| −  BkV½                                                                                                              4.7 
 
≤ P|���|                     4.8 
 
When P|���| ≤  BkV½,  V� ≤ 0                                                                                                          4.9 
 

and when |P���| −  BkV½, V� ≤ |P���| (
��

                            4.10 

 
Substituting equation 4.10 into 4.5, we have;  
 
�� + B� V ≤ M(KV½|P���| 
 

Where M(K =  �
 �

 

This becomes VH½V + B� V½ ≤ M(K|P���|                            4.11 
 
Multiplying both sides of 4.11 by ¡½B+� we have 
 
¡½B+��VH½ � + B� �½� ≤ ¡½B+� M(K|P���|                           4.12 
 
Which implies that;  
 

� �
�� ��½ ¡½B+�� ≤ ¡½B+� M(K|P���|                            4.13 

 

Integrating both sides of equation 4.13 from to to t gives; �V½ ¡½B+���E� ≤ o ½ ¡½B+��
�E  M(K|P���|N� =

�V½���� ¡½B+� ≤ �½��_� ¡½B+�_ + (
&  M(K o |P���|�

�E  ¡½B+� ∙ N�            4.14 

 
Using equation 3.5 and 3.7 we have; 

K(��&��� + �� & ��� ≤  ¡H½B+� dB&��&��E� + x� &��E�� ¡½B+�E + (
&  M(K o |P���|�

�E  ¡½B+� N�l&                               4.15  
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 for all ≤ �E, thus;  

 �&��� + x� &��� ≤ (
 �

£ ¡H½B+� dB& �&��E� + �� &��E� ¡½B+�E + (
&  M(K o |P���|�

�E   ¡½B+� N�l&¤ ≤ d ¡½B+� d¥( +
¥& o |P���|�

�E ¦ ¡½B+� N�l&
                              4.16 

 
By substituting B� = B in equation 4.16, we have; 
 

�&��� + x� ��� ≤  ¡H½ §� d¥( + ¥& o |P���|�
�E  ¡H½ §�N�l&                                                                  4.17      

 
Equation 4.17 is the completion of the proof. 
 
REMARK: From the proof of the theorem, below corollary can be pointed out as the direct consequence of the 
theorem. 
Corollary 4.1: If P�t; �, T�  ≤ �|�| + |T|� φ���, where ©��� is a non-negative and continuous function of ��� and 

satisfies o φ�
�E �+�ª« ≤ B < ∞ *MN B, * �_+@�@�¡ a_M+�*M�.  

 
Then, there exists a constant v which depends on B, v(v&and to such that every solution ���� of equation 1.1 
satisfies |����| ≤ vK,  |�����| ≤ vK for sufficiently target. 
 
Corollary4.2: If ��; �, T� = 0, equation 4.17 becomes �&��� + �&���� ≤  ¡H½ ��¬� , 
and as � → ∞, �&��� + x� &��� → 0 which implies that the trivial solution of equation 1.1 is globally asymptotically 
stable. 
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