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ABSTRACT

This paper extends some known results on the stability and boundedness of solutions of certain T- period of non-
autonomous differential equations of second order.
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INTRODUCTION
The equation studied in this paper is of the form
x"(t)+ g'(w) + b(t) h(w) = P(t;x,x") 11.

where Q, g, b, h, and P are continuous which depehgd on the arguments display. The symbol pringicate
differentiation with respect to the independentialale ‘t' and all solutions considered here areuas=d to be real.
The derivatives of 1.1 exist and are continuousrdduer the stability and the Boundedness of thegu 1.1 will
be assumed.

Ever since Lyapunoproposed his famous direct (or second) method ersthbility of motion, numerous method
have been proposed in the relevant literature tivelesuitable Lyapunov function and hereby, in jgatar, many
papers and books have been devoted to the stustalifity and boundedness of solutions of certaitoad, third,
fourth, fifth and sixth order nonlinear differertéguations.

(See for example, Anderson [2]; Antosiewict [3];hBri [4]; Burton [5]; Hatvani [6-8]; Iggidr [9]; Mbsanu and
Viadimirescu [10]; Napoles [12]). So far, the meéficient tool for the study of the stability andundedness of
solutions of a given non-autonomous differentialiagpns of second order is provided by LyapunowiheThis
theory is based on the use of positive definitecfiams that are non-increasing along the solutioindifferential
equation under consideration.

Atkinson [1] remarks that “the autonomous case wter b = 1, or constant independent offt This study shall
adopt Burton [5] who developed a theory wherebytabke properties (boundedness, stability and gieiig) been
investigated differently and used one major theottegr_yapunov second method.

1.2DEFINITIONS
LetX = £(t,x) (1.2)
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WhereX eR" be a system of n coupled order equations, we ghalthe following definition for completeness.

DEFINITIONS1.2.1
A Lyapunov function V defined as 1 X R™ — R is said to be Complete far € R™

@) V(t,X) =0 (i) V(t,X) =0, ifand only ifX = 0 and (iii) V(t,X) < —C|X|, where C is any positive constant
and|X| given by|X| = ?:1(761’2)% such thatX| - oas X — o

DEFINITION 1.2.2
A Lyapunov function V defined ag : 1 X R™ X R is said to be Incomplete if fof e R” (i) and (ii) of the above
definition is satisfied and in addition (iily(t,X)/2-3 < —C|X|y where C is any positive constant aji r,

given byX| ) = ?=1(xi2)% such thatX|y — coas X — oo,

GENERALIZED THEOREMS (BURTON [5]).
Considered the general differential equation

X=f(tx) 1.3

Equation 1.3 can be written as a linear equation

X=AX+P (% 1.4
Equation 1.4 can be written as homogeneous sysieris= A (t) x 15

WhereA (t) is ann x n matrix of unknown coefficient
P; R - R™ is a continuous function.

The following scheme will be employed because efubke of Lyapunov functions.

@) If f(t,0) =0 and if there exist a function
V:(0,)x R™ - R, that;

wi(IX]) < V(£ X) < -w,(IX]) and

V(tX) /22 < —ws(IX])

Wherewi(i = 1, 2, 3) are strictly increasing continuous function defireswi(0, «0) — (0, ) with w(s) > 0 and
w(0) = 0 as wedges. Then the solutions of equation 1.2ifsumly as asymptotically stable.

(ii) If there exist functiorV: (0, ) x R™ - R, such that,
wi(IX]) < V(£ X) <w,(|X]) and
V(t, X) < —w3(IX]) + M(M > 0),

then the solutions of equation 1.2 are ultimate@yrmed and uniformly ultimately bounded
(iii) If the solution of Equation 1.3 and 1.4 aneique, the Equation 1.3 has a periodic solution.
We shall state without proof,

THEOREM OF BURTON [5].
Theorem A [5]: If fis Lip Schitz in X and periodic in t withgriod T and if the solutions are uniformly bounded
and uniformly for any given bound (say) B, thena&tipn 1.4 has a T — periodic solution.

Theorem B [5]: Assume the following conditions hold.

(i) f(t, +T,X) = f(t,X) for all t and som& > 0;

(ii) all solutions of equation 1.3 are bounded;

(iii) each solution of equation 1.3 is equi-asyntjglly stable;

(iv) the zero solution of the homogeneous systermresponding to equation 1.3 is uniformly asymptticstable.
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Then equation 1.3 has a globally stable non-aut@usnsolution.

20STATEMENT OF RESULTS
The following results will be basic to the proofdemma 2.2 and 2.3.

Theorem 2.2: Let g and h be continuous and also periodic withiod w together, and the following conditions

holds;

(i) Hy ="222 < ¢ €15, x # 0 and h(0) = 0

(i). G, =22 < gy = 0and g(0) =0
(iii) a(t,),b(t) continuous with0 < 90 < a < a(t) < a;, 0< bo < b(t) < bl and
@iv) |P(t:x,y)| <M (M = constant).

Then Equation 1.1 has a globally stable and boumekelof periodic solution witl, as the period.

3.0SOME PRELIMINARIES
We shall use the functidé(t, x, y) defined below to prove the main theorem of thigsgra

Let {2V(tx,y) = a%ﬁ H(O)(ex ab + B2)x? +2y? + 2B} 3.1

WhereH (t) is defined =exP (— f:a(s)ds) where a, be, 8,8 > 0, for all x,t € H(t).

Lemma 3.3 assume theorem 2.1 holds, there exigtygosonstantd/i (a, b, a, 8,8),i = 1,2 such that

Mi (x* + y*) < V(t; x,y) < Ko (x? + y?) 3.2
Proof: From equation 3.1, it is clear tHaft: 0,0) = 0.

Equation 3.1 also gives;

_ 2
2V (t; x,y) = 2 H(®) {oc abx? + B2(x + %y)2 + =£ yZ} 3.3
_R2
2V(t; x,y) = ﬁH(t) {ocabx2 + %yz} 3.4
> Mi(x% + y?) 35
— 2
WhereMi - - Min {oab, =%}
aa B a

Therefore2V (t; x,y) = Mi(x? + y?).
Using in equality on equation 3.k,y < %(x2 +y2)
Gives,2V(t; x,y) = ﬁH(t) {(aabe) X2 4+ iyz + B2+ yz)} 36

implies that2V = M, (x2 + y?) 3.7

whereM, = 2=+ Max {(aab + B(8 + 1), (=D}

a

From equation 3.5 and 3.7, we have;
u (x2+y?) <V(t; x,y) < M, (x? + y?) 3.8
1

191
Pelagia Research Library



Ebiendele Peter Ebosele and Okodugha Edward Adv. Appl. Sci. Res., 2014, 5(3):189-194

This proves the Lemma.

Lemma 3.2 Assump Theorem 2.1 holds, there existipesonstantsM; = M;(a, b, o, 5), where(j = 3,4) such
that for any solutiorfx, y) (1-1).

B d
VI A-D =V A D(E6xy) < —Ms(x +y?) + My(Ix] + lyDIp(6 x, ) 3.9

Proof; from equation 1.1, we have;

dv OJv 0

. . V. v dv
Vha =g+ 555 +3,7 = ~HORGY) + HO 7y +55(=a9() = bh(w) +p(0)

WhereR(x,y) = {(aab + BH)x% + %yz + Z,Bxy}

Vt,x,y < %H(t){R(x, y) + My(x? + y2)}

My(lx| + [yDP (& x,¥)} 3.10

WhereM, = Max (ba, af8) andM, is defined in the equation 3.8 from the definitmfrH(t), we have equation 3.10
reduces to

V(t x,y) < —M3(x* +y*) + My(Ix| + [yDP (& x,¥) 311

Equation 3.11 can be simplified to give

V(t,x,y) < Mg(x2 +y2) + M,(x2 + y2)% P(t;x,y) 3.12
With M, = V2M

This completes the proof of the Lemma.

4.0PROOF OF THE MAIN RESULTS
Proof of Theorem 2.1 from the two proved Lemma giabove, it had been established that the funétian x, y)
is a Lyapunov function for the systeir y

y=a(t)g(y) —b(t) h(x) + P(t; x,y). Hence the trivial solution from the above expressis asymptotically
stable.

/ 1
From equation 3.12V (t; x,y) < — My (x% + y?) + M, (x* + y?)2
1 1
P(t,x,y) and also from 3.5, we havec? + y?)z < (%)3
hence equation 3.12 becomes;
dv 1
o= MgV + M, V2 |P(¢t)] »

It shall be observed thall; (x2 + y?) = M, KL and
1
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dv 1
I < MV + M,Vz|P(t)]

M: M,
Where My = M—3and M, = —
) 1
M2

Which implies thaV '<— MV + M,%|P(t)| also can be written as
V'<— 2MgV + M,V*|P(t)|

when Mg = % Mg

ImpliesV + MgV < —Mg V + M,V*|P(¢t)|
V+ MgV < M,V2{|P(t)| — MyV*}
Where My = Z—‘; equation 4.5 becomes
V+ MgV < M7V%Vb

WhereV, = [P(t)| = MgV*

< P[(D)]

WhenP|(t)| < MgV*, V, <0

and whenP(t)| — MoV%,V, < |p(t)|Mig

Substituting equation 4.10 into 4.5, we have;
V + MgV < M;,V%|P(t)|

WhereM,, = %
9
This become¥ ~*V + Mg V¥ < M;,|P(t)|

Multiplying both sides of 4.11 bg**Mst we have
e”Mst{V™"V + Mg V4} < e”Mst My, |P(t)|

Which implies that;

6%{V1/2 e”Mst} < e”Mst M,o|P(t)]

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

4.13

Integrating both sides of equation 4.13 fromto t gives; {V” e”Mst}, Sfttal/zel/zMSt M, |P(0)|dt =

{V%(t)} e”Mst < Vi:(to) e”Msto +% M, fttalP(t)I e”Mst - dt 4.14
Using equation 3.5 and 3.7 we have;
2
Ky (x2(t) + %2 (t) < e "Mst {M2 (x2(t,) + X2 (t,)) € Mst, +~ My, [ |P(6)] e%Mst dt} 4.15
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for all < t,, thus;
2
x2() + X3(t) < Mi{ e “Mst {MZ x%(t,) + x2(t,) e Mst, +% M, fttOIP(t)I e”Mst dt} } < {el/zMst {Al +
1

t 1 2
Ay JIP©)I} e*Mst dt) 4.16
By substitutingM; = M in equation 4.16, we have;

2
x2(6) + %(6) < e %4 (A, + A, [} [P(6)] e~ Hedt} 4.17
Equation 4.17 is the completion of the proof.

REMARK: From the proof of the theorem, below corollary ¢enpointed out as the direct consequence of the
theorem.
Corollary 4.1: IfP(t; x,y) < (Ix| + |y]) @(t), wheregp(t) is a nPn negative and continuous function(of and

satlsflesf @ (S)NS £ M < oo and M, a positive constant.

Then, there exists a constakitwhich depends oM, K, K,and to such that every solutior(t) of equation 1.1
satisfies|x(t)| < Ky, [X(t)| < K, for sufficiently target.

Corollary4.2: IfP(t; x,y) = 0, equation 4.17 become$(t) + x2(f) < e %MtA1
and ast - o, x2(t) + x2(t) —» 0 which implies that the trivial solution of equatid.1 is globally asymptotically
stable.
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