

Pelagia Research Library

Advances in Applied Science Research, 2011, 2 (1): 235-239

Some properties of Tantalum alloys at different percentages of Hydrogen, Molybdenum, Niobium, Rhenium and Tungsten

Fae'q A. A. Radwan

Faculty of Engineering, Near East University, KKTC – Lefkosa: P.O. Box: 670, Mersin 10 – TURKEY

ABSTRACT

The norm of elastic constant tensor and the norms of the irreducible parts of the elastic constants of Tantalum, and its alloys at different percentages of Hydrogen, Molybdenum, Niobium, Rhenium and Tungsten are calculated. The relation of the scalar parts norms and the other parts norms and the anisotropy of these alloys are presented. The norm ratios are used to study isotropy and anisotropy of these alloys.

Key words: Tantalum, Hydrogen, Molybdenum, Niobium, Rhenium, Tungsten, Alloys, Isotropy, Norm, Anisotropy, and Elastic Constants.

INTRODUCTION

The decomposition procedure and the decomposition of elastic constant tensor are given in [1], and in the appendix also the definition of norm concept and the norm ratios and the relationship between the anisotropy and the norm ratios are given in [1] and in the appendix. As the ratio N_s/N becomes close to one the material becomes more isotropic, and as the ratio

 N_n/N becomes close to one the material becomes more anisotropic as explained in [1] and in the appendix.

Calculations

Table 1, Elastic Constants (GPa), [2]

Tantalum alloys, Cubic system at	c_{11}	$c_{_{44}}$	c_{12}			
Tantalum-Hydrogen	Та-Н	at % H	1.15	263.3	82.4	155.6
11				261.5	83.4	158.1
Tantalum-Molybdenum	Ta-Mo	at % Mo	0	257.7	83.3	152.0
1.35				261.3	82.4	153.8
3.4				263.7	80.9	153.2
4.7				264.7	80.0	152.3

Tantalum-Niobium		Ta-Nb	at % Nb	3.95	262.1	80.1	154.7
	8.25				270.5	76.9	161.0
Tantalum-Rhenium		Ta-Re	at % Re	2.3	266.2	83.9	154.8
	3.8				271.9	84.3	156.6
	5.3				276.6	84.7	157.1
Tantalum-Tungsten		Ta-W	at % W	2.2	254.3	83.1	146.1
	4.25				270.3	82.9	157.3

By using table1, and the decomposition of the elastic constant tensor, we have calculated the norms and the norm ratios as is shown in table 2.

 $N_{\underline{n}}$ N_{s} Tantalum alloys, Cubic system at N_d N_d N_{s} N_n N different percentages of - E N N N Ta-H at % H 1.15 620.862 0 623.064 0.9965 0 0.0840 52.333 11 623.500 0 58.107 626.201 0.9957 0 0.0928 Ta-Mo at % Mo 0 609.217 611.769 0.9958 0 0.0912 0 55.816 1.35 0 52.516 617.869 0.9964 0 0.0850 615.633 3.4 0 616.364 0 47.017 618.154 0.9971 0.0761 4.7 615.422 0 43.626 616.966 0.9975 0 0.0707 3.95 616.284 48.392 0.9969 0 0.0783 Ta-Nb at % Nb 0 618.181 8.25 0 634.019 0 40.602 635.318 0.9980 0.0639 Ta-Re at % Re 2.3 624.144 0 51.691 626.281 0.9966 0 0.08250 0.9970 0 3.8 634.029 48.85 635.909 0.0768 5.3 640.670 0 45.734 642.301 0.9975 0 0.0712 Ta-W at % W 2.2 595.732 0 598.099 0.9960 0 0.0889 53.158 4.25 632.196 0 48.392 634.045 0.9971 0 0.0763

Table 2, the norms and norm ratios

CONCLUSION

We can conclude from table 2 by considering the ratio $\frac{N_s}{N}$ that in the Alloy Ta-H as the percentage of H increases (from 1.15% to 11%), the ratio $\frac{N_s}{N}$ decreases (isotropy of the alloy decreases) and the ratio $\frac{N_n}{N}$ increases (anisotropy of the alloy increases), but in the case of other alloys (Ta-Mo, Ta-Nb, Ta-Re and Ta-W) as the percentages of (Mo, Nb, Re, and W) increase the ratios $\frac{N_s}{N}$ increase (isotropy of the alloys increase) and the ratios $\frac{N_n}{N}$ decrease (anisotropy of the alloys decrease), also we can notice that the most isotropic alloy is Ta-Nb at 8.25% of Nb, and the most anisotropic alloy is Ta-H at 11% of H. And by considering the value of N as the percentages of (H, Mo, Nb, Re, and W) in the alloys increase, the value of N increases, except one case when the percentage of Mo in the alloy Ta-Mo (increases from 3.4% of Mo to 4.7% of Mo, the value of N decreases) so we can say that the alloy becomes elastically strongest. And we can notice that the Alloy Ta-W, at 2.2% of W has the smallest value of N, so we can say that this alloy is elastically least strong.

REFERENCES

[1] Radwan, Fae'q A. A, "Norm Ratios and Anisotropy Degree", *Pak. J. Appl. Sci.*Vol. 1, (3), **2001**, 301-304.

- [2] Landolt-Börnstein, Group III, "Crystal and Solid State Physics", Volume, 11, Springer-Verlag.
- [3] Nye, J. F, "Physical Properties of Crystals, Their Representation by Tensors and Matrices", (Oxford University Press, **1964**, pp131-149).
- [4] Teodosio, C, "Elastic Model of Crystal Defects", (Springer-Verlag, Berlin, 1982, pp 57).
- [5] Schouten, J. A, "Tensor Analysis for Physicists", (Clarenden Press, 1954, pp 157).
- [6] Jerphagnon, J., Chemla, D. S., and Bonnevile, R., (1978), "The Description of Condensed Matter Using Irreducible Tensors", *Adv. Phys*, 11, 1003-1017.

APPENDIX

I. Elastic Constant Tensor Decomposition

The constitutive relation characterizing linear anisotropic solids is the generalized Hook's law [3]:

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}, \ \varepsilon_{ij} = S_{ijkl} \sigma_{kl}$$

Where σ_{ij} and ε_{kl} are the symmetric second rank stress and strain tensors, respectively C_{ijkl} is the fourth-rank elastic stiffness tensor (hereafter we call it elastic constant tensor) and S_{ijkl} is the elastic compliance tensor.

There are three index symmetry restrictions on these tensors. These conditions are:

$$C_{ijkl} = C_{jikl}, C_{ijkl} = C_{ijlk}, C_{ijkl} = C_{klij}$$
 (2)

Which the first equality comes from the symmetry of stress tensor, the second one from the symmetry of strain tensor, and the third one is due to the presence of a deformation potential. In general, a fourth-rank tensor has 81 elements. The index symmetry conditions (2) reduce this number to 81. Consequently, for most asymmetric materials (triclinic symmetry) the elastic constant tensor has 21 independent components.

Elastic compliance tensor S_{ijkl} possesses the same symmetry properties as the elastic constant tensor C_{ijkl} and their connection is given by [4]:

$$C_{ijkl}S_{klmn} = \frac{1}{2} \left(\delta_{im} \delta_{jn} + \delta_{in} \delta_{jm} \right) \tag{3}$$

Where δ_{ij} is the Kronecker delta. The Einstein summation convention over repeated indices is used and indices run from 1 to 3 unless otherwise stated.

By applying the symmetry conditions (2) to the decomposition results obtained for a general fourth-rank tensor, the following reduction spectrum for the elastic constant tensor is obtained. It contains two scalars, two deviators, and one-nonor parts:

$$C_{ijkl} = C_{ijkl}^{(0;1)} + C_{ijkl}^{(0;2)} + C_{ijkl}^{(2;1)} + C_{ijkl}^{(2;2)} + C_{ijkl}^{(4;1)}$$

$$\tag{4}$$

Where

$$C_{ijkl}^{(0;1)} = \frac{1}{9} \delta_{ij} \delta_{kl} C_{ppqq}, \tag{5}$$

$$C_{ijkl}^{(0;2)} = \frac{1}{90} \left(3\delta_{ik}\delta_{jl} + 3\delta_{il}\delta_{jk} - 2\delta_{ij}\delta_{kl} \right) \left(3C_{pqpq} - C_{ppqq} \right), \tag{6}$$

$$C_{ijkl}^{(2;1)} = \frac{1}{5} \left(\delta_{ik} C_{jplp} + \delta_{jk} C_{iplp} + \delta_{il} C_{jpkp} + \delta_{jl} C_{ipkp} \right)$$

$$-\frac{2}{15} \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) C_{pqpq}$$

$$C_{ijkl}^{(2;2)} = \frac{1}{7} \delta_{ij} \left(5C_{klpp} - 4C_{kplp} \right) + \frac{1}{7} \delta_{kl} \left(5C_{ijpp} - 4C_{ipjp} \right)$$

$$-\frac{2}{35} \delta_{ik} \left(5C_{jlpp} - 4C_{jplp} \right) - \frac{2}{35} \delta_{jl} \left(5C_{ikpp} - 4C_{ipkp} \right)$$

$$-\frac{2}{35} \delta_{ik} \left(5C_{jkpp} - 4C_{iplp} \right) - \frac{2}{35} \delta_{jk} \left(5C_{ikpp} - 4C_{iplp} \right)$$

$$+\frac{2}{105} \left(2\delta_{jk} \delta_{il} + 2\delta_{ik} \delta_{jl} - 5\delta_{ij} \delta_{kl} \right) \left(5C_{ppqq} - 4C_{pqpq} \right)$$

$$+\delta_{il} \left(C_{ijkl} + C_{ikjl} + C_{iljk} \right) - \frac{1}{21} \left[\delta_{ij} \left(C_{klpp} + 2C_{kplp} \right) + \delta_{ik} \left(C_{jlpp} + 2C_{jplp} \right) + \delta_{jl} \left(C_{ikpp} + 2C_{iplp} \right) + \delta_{jl} \left(C_{ikpp} + 2C_{iplp} \right) \right]$$

$$+\delta_{kl} \left(C_{ijpp} + 2C_{ipjp} \right) \right] + \frac{1}{105} \left[\left(\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) \left(C_{ppqq} + 2C_{pqpq} \right) \right]$$

$$(9)$$

These parts are orthonormal to each other. Using Voigt's notation [3] for C_{ijkl} , can be expressed in 6 by 6 reduced matrix notation, where the matrix coefficients $c_{\mu\lambda}$ are connected with the tensor components C_{ijkl} by the recalculation rules:

$$c_{\mu\lambda} = C_{ijkl}$$
; $(ij \leftrightarrow \mu = 1,...,6, kl \leftrightarrow \lambda = 1,...,6)$

That is:

$$11 \leftrightarrow 1, 22 \leftrightarrow 2, 33 \leftrightarrow 3, 23 = 32 \leftrightarrow 4, 31 = 13 \leftrightarrow 5, 12 = 21 \leftrightarrow 6$$
.

II. The Norm Concept

Generalizing the concept of the modulus of a vector, norm of a Cartesian tensor (or the modulus of a tensor) is defined as the square root of the contracted product over all indices with itself:

$$N = ||T|| = \{T_{ijkl.....}, T_{ijkl...}\}^{1/2}$$

Denoting rank-n Cartesian $T_{ijkl, \dots, n}$, by T_n , the square of the norm is expressed as [6]:

$$N^{2} = ||T||^{2} = \sum_{j,q} ||T^{(j;q)}||^{2} = \sum_{(n)} T_{(n)} T_{(n)} = \sum_{(n),j,q} T_{(n)}^{(j;q)} T_{(n)}^{(j,q)}.$$

This definition is consistent with the reduction of the tensor in tensor in Cartesian formulation when all the irreducible parts are embedded in the original rank-n tensor space.

Since the norm of a Cartesian tensor is an invariant quantity, we suggest the following:

<u>Rule1</u>. The norm of a Cartesian tensor may be used as a criterion for representing and comparing the overall effect of a certain property of the same or different symmetry. The larger the norm value, the more effective the property is.

It is known that the anisotropy of the materials, i.e., the symmetry group of the material and the anisotropy of the measured property depicted in the same materials may be quite different. Obviously, the property, tensor must show, at least, the symmetry of the material. For example, a property, which is measured in a material, can almost be isotropic but the material symmetry group itself may have very few symmetry elements. We know that, for isotropic materials, the elastic compliance tensor has two irreducible parts, i.e., two scalar parts, so the norm of the elastic compliance tensor for isotropic materials depends only on the norm of the scalar parts, i.e. $N = N_s$, Hence, the ratio $\frac{N_s}{N} = 1$ for isotropic materials. For anisotropic materials, the elastic constant tensor additionally contains two deviator parts and one nonor part, so we can define $\frac{N_d}{N}$ for the deviator irreducible parts and $\frac{N_n}{N}$ for nonor parts. Generalizing this to irreducible tensors up to rank four, we can define the following norm ratios: $\frac{N_s}{N}$ for scalar parts, $\frac{N_v}{N}$ for vector parts, $\frac{N_d}{N}$ for deviator parts, $\frac{N_{sc}}{N}$ for septor parts, and $\frac{N_n}{N}$ for nonor parts. Norm ratios of different irreducible parts represent the anisotropy of that particular irreducible part, they can also be used to assess the anisotropy

Rule 2. When N_s is dominating among norms of irreducible parts: the closer the norm ratio $\frac{N_s}{N}$ is to one, the closer the material property is isotropic.

degree of a material property as a whole, we suggest the following two more rules:

Rule3. When N_s is not dominating or not present, norms of the other irreducible parts can be used as a criterion. But in this case the situation is reverse; the larger the norm ratio value we have, the more anisotropic the material property is.

The square of the norm of the elastic compliance tensor C_{mn} is:

$$||N||^{2} = \sum_{mn} (C_{mn}^{(0;1)})^{2} + \sum_{mn} (C_{mn}^{(0;2)})^{2} + 2\sum_{m,n} (C_{mn}^{(0;1)}.C_{mn}^{(0;2)}) + \sum_{mn} (C_{mn}^{(2;1)})^{2} + \sum_{mn} (C_{mn}^{(2;2)})^{2} + 2\sum_{mn} (C_{mn}^{(2;1)}.C_{mn}^{(2;2)}) + \sum_{mn} (C_{mn}^{(4;1)})^{2}$$

$$+ 2\sum_{mn} (C_{mn}^{(2;1)}.C_{mn}^{(2;2)}) + \sum_{mn} (C_{mn}^{(4;1)})^{2}$$

$$(10)$$