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ABSTRACT

The norm of elastic constant tensor and the norinthe irreducible parts of the elastic
constants of Tantalum, and its alloys at differpetcentages of Hydrogen, Molybdenum,
Niobium, Rhenium and Tungsten are calculated. HEtettion of the scalar parts norms and

the other parts norms and the anisotropy of thdkg/s are presented. The norm ratios are
used to study isotropy and anisotropy of theseyallo
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INTRODUCTION

The decomposition procedure and the decompositiaglagtic constant tensor are given in
[1], and in the appendix also the definition of moconcept and the norm ratios and the
relationship between the anisotropy and the notiogare given in [1] and in the appendix.
As the ratian, /N becomes close to one the material becomes mdrepsn and as the ratio

N,/N becomes close to one the material becomes masetaspic as explained in [1] and in

the appendix.

Calculations
Table 1, Elastic Constants (GPa)[2]
Tantalum alloys, Cubic system at different percgasaof - E C, Cus C,
Tantalum-Hydrogen Ta-H at%H 1.15 263.3 82.4 155.6
11 261.5 83.4 158.1
Tantalum-Molybdenum Ta-Moat % Mo 0 257.7 83.3 152.0
1.35 261.3 82.4 153.8
3.4 263.7 80.9 153.2
4.7 264.7 80.0 152.3
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Tantalum-Niobium TN at% Nb 3.9 262.1 80.1 154.7
8.25 270.5 76.9 161.0

Tantalum-Rhenium Ta-Reat % Re 2.3 266.2 83.9 154.8
3.8 271.9 84.3 156.6
5.3 276.6 84.7 157.1

Tantalum-Tungsten Wa- at% W 2.9 254.3 83.1 146.1]
4.25 270.3 82.9 157.3

By using tablel, and the decomposition of the Elasinstant tensor, we have calculated the
norms and the norm ratios as is shown in table 2.

Table 2, the norms and norm ratios

Tantalum alloys, Cubic system at N N, N N N, Ny N,
different percentages of - E s n N N N
Ta-H at%H 1.15 | 620.862| O 52.333 623.064 0.9965 0 0.0840
11| 623.500f 0| 58.107 626.201 0.995%7 @ 0.09P8
Ta-Mo at % Mo 0 | 609.217| O 55.814 611.769 0.9958 0 0.0912
1.3b 615633 P 52.516 .86% 0.9964 0 0.0850
3.4 616.364 D 47.017 .58 0.9971 0 0.0761
47 615422 D 43.6P6 .666 0.9975 0 0.0707
Ta-Nb at % Nb 3.95| 616.284| 0| 48.397 618.181 0.9949 0 0.0783
8.2b 634.0119 p 40.6p2 83B. | 0.9980 0 0.0639
Ta-Re at % Re 2.3 | 624.144| 0| 51.691 626.281 0.9946 0 0.0825
38 634029 D 48.85 689 0.9970 0 0.0768
58 640.640 p 45.734 2801 0.9975 0 0.0712
Ta-W at% W 2.2 | 595.732| 0| 53.15§ 598.099 0.9940 0 0.0889
425 632.19¢ Q@ 48.392 634.045 0.9971 0 .076B
CONCLUSION

We can conclude from table 2 by considering the s that in the Alloy Ta-H as the

N

percentage of H increases (from 1.15% to 11%)rdtie Ns decreases (isotropy of the alloy
N

decreases) and the ratth increases (anisotropy of the alloy increases),ibdihe case of
N

other alloys ( Ta-Mo, Ta-Nb, Ta-Re and Ta-W) as pibecentages of (Mo, Nb, Re, and W)
increase the ratiods increase (isotropy of the alloys increase) and rﬁiios% decrease
N

(anisotropy of the alloys decrease), also we @dite that the most isotropic alloy is Ta-Nb
at 8.25% of Nb, and the most anisotropic alloyasH at 11% of H. And by considering the
value of N as the percentages of (H, Mo, Nb, Re, and W)énailoys increase, the value of
N increases, except one case when the percentage of tle alloy Ta-Mo (increases from
3.4% of Mo to 4.7% of Mo, the value dfl decreases) so we can say that the alloy becomes
elastically strongest. And we can notice that tleyATa-W, at 2.2% of W has the smallest

value of N , so we can say that this alloy is elastically tesa®ng.
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APPENDIX

l. Elastic Constant Tensor Decomposition

The constitutive relation characterizing linearsatiopic solids is the generalized Hook’s
law [3]:

;i =Cy s & =Sj 0y

(1)

Whereo; andeg,, are the symmetric second rank stress and strasorgrespectively;, is

the fourth-rank elastic stiffness tensor (hereaftercall it elastic constant tensor) a8, is

the elastic compliance tensor.
There are three index symmetry restrictions onethiessors. These conditions are:

Civ =Cii» Ciw =Ci» Gy =Cy )
Which the first equality comes from the symmetrystess tensor, the second one from the
symmetry of strain tensor, and the third one is tduhe presence of a deformation potential.
In general, a fourth-rank tensor has 81 elemerits. iidex symmetry conditions (2) reduce
this number to 81. Consequently, for most asymmetraterials (triclinic symmetry) the
elastic constant tensor has 21 independent comfgnen
Elastic compliance tensd,,, possesses the same symmetry properties as thie etasstant

tensorC,,, and their connection is given by [4]:

im~jn in™~jm

Cijkl Simn = %(5 Ojr +0,,0; ) (3)

Where 9; is the Kronecker delta. The Einstein summatiorveation over repeated indices

is used and indices run from 1 to 3 unless otheraiated.

By applying the symmetry conditions (2) to the deposition results obtained for a general
fourth-rank tensor, the following reduction spentrdor the elastic constant tensor is
obtained. It contains two scalars, two deviatonsl @ane-nonor parts:

Cy =Ci? +Ci? +Ci +Cli? + (4)
Where
. 1
Ci](ISI'l) = 5 Jij 5kICppqql (5)
, 1
Cii? = (68,0, +30,6, 29,0, JBC g = Cipae) ©)
cty=L(sc +s.C, +3C, +5C,)
ikl T g ik~ jplp jk ~iplp il ~ jpkp jl ~ipkp
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-2(48, + 85,0 )
cl? = %5. (BCypp —4C,,,)+ % 5,5, - 4cipjp)
- % 5, (5C,, —4C,,)- % 5,(5C,,, —4C,,)
2 460,40, 20,60, -4,
+ 135 (26,8 +28,8, ~50, 3, JEC e~ ACspe) )

1
C|fkl ) - 3 (Cukl + Clkjl Clljk [ ( klpp + 2Ckplp) + 5ik (lepp + 2ijlp)

+ O-il (C + 2ijkp) + a—jk (C

ilpp

+2C,, )+ 9; (o

ikpp

+ chpkp)

jkpp

+ Jkl (Cijpp + 2Cipjp ) ] + ﬁ [(5|j a_kl + a_ik a_jI + a_iI ij )(C ppaq +2C pqpq) ] (9)

These parts are orthonormal to each other. Usingyt¥¥onotation [3] foiC;, , can be
expressed in 6 by 6 reduced matrix notation, wiiegematrix coefficients , are connected
with the tensor componen@;,, by the recalculation rules:

C :Cijkl : (ij o u=1....6,kl o A1=1....6)
That is:
111,22 2,33 3,23=32 - 4,31=13 - 5,12=21. 6.

Il. The Norm Concept
Generalizing the concept of the modulus of a veaterm of a Cartesian tensor (or the
modulus of a tensor) is defined as the square abtiie contracted product over all indices

with itself:
HTH { IJk| .......... 'Tijkl ......... }1/2

Denoting rank-n Carte5|éi'ri]k, , byT_, the square of the norm is expressed as [6]:

2 _ 2 _ (iha)l? — — (jra(
NZ =[T)" = YT =3 T T = 2T
iq (n) (n).j.a
This definition is consistent with the reductiontioé tensor in tensor in Cartesian formulation
when all the irreducible parts are embedded irotigénal rank-n tensor space.

Since the norm of a Cartesian tensor is an invagaantity, we suggest the following:

Rulel. The norm of a Cartesian tensor may be used astexiam for representing and
comparing the overall effect of a certain propesfythe same or different symmetry. The
larger the norm value, the more effective the priyps.
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It is known that the anisotropy of the materials,,ithe symmetry group of the material and
the anisotropy of the measured property depictedha same materials may be quite
different. Obviously, the property, tensor mustwhat least, the symmetry of the material.
For example, a property, which is measured in aenaf can almost be isotropic but the
material symmetry group itself may have very feuneyetry elements. We know that, for
isotropic materials, the elastic compliance tertsas two irreducible parts, i.e., two scalar
parts, so the norm of the elastic compliance tefsasotropic materials depends only on the

norm of the scalar parts, iN.= N, Hence, the ratio% =1 for isotropic materials. For
anisotropic materials, the elastic constant teasilitionally contains two deviator parts and
one nonor part, so we can defiﬁ%d— for the deviator irreducible parts an'%ll\lﬂ for nonor
parts. Generalizing this to irreducible tensorstaipank four, we can define the following

S for

N N, Ny
norm ratios: W for scalar parts;— N ¥ for vector partSW for deviator parts;

N
septor parts, aneIN—n for nonor parts. Norm ratios of different irredolei parts represent the

anisotropy of that particular irreducible part, thman also be used to assess the anisotropy
degree of a material property as a whole, we suglgegollowing two more rules:

Rule 2.When N is dominating among norms of irreducible parts: ¢ttoser the norm ratio

N, . : L
—2 is to one, the closer the material property i$rtguc.

N
Rule3.When N is not dominating or not present, norms of theeptireducible parts can be

used as a criterion. But in this case the situasorverse; the larger the norm ratio value we
have, the more anisotropic the material property is
The square of the norm of the elastic compliannedé:

INF =X (ei?) + e f + 2z e ei?)+ e mil) +Z( 2f
QZ( cled)+ Z(CS:‘;”)Z (10)

mn
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