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ABSTRACT 
The norm of elastic constant tensor and the norms of the irreducible parts of the elastic 
constants of Magnesium, and its alloys at different percentages of Lithium, Silver, Tin, 
Indium and Zinc are calculated. The relation of the scalar parts norm and the other parts 
norms and the anisotropy of these alloys are presented. The norm ratios are used to study 
anisotropy of these alloys. 
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INTRODUCTION 

 
The decomposition procedure and the decomposition of elastic constant tensor is given in [1] 
and in the appendix, also the definition of norm concept and the norm ratios and the 
relationship between the anisotropy and the norm ratios are given in [1] and in the appendix. 
As the ratio  becomes close to one the material becomes more isotropic, and as the ratio 

 becomes close to one the material becomes more anisotropic as explained in [1] and in 

the appendix. 
 
Calculations 
 

Table 1, Elastic Constants (GPa), [2] 
 

Magnesium alloys, Hexagonal system at different 
percentages of - E 11c  33c  44c  12c  13c  
Magnesium Element 59.30 61.50 16.40 25.70 21.40 

at % Li    5.10 58.53 60.55 16.01 25.72 21.58 
               10.00 57.24 59.21 15.68 25.10 21.03 
               12.05 56.72 58.68 15.55 24.79 20.76 
               15.94 55.49 57.42 15.25 24.15 20.22 
at % Ag   0.26 60.20 62.00 16.64 26.74 22.10 
                 0.37 59.69 61.70 16.40 26.15 21.70 
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at % Sn   0.43 59.81 62.40 16.32 26.35 22.40 
                0.67 59.64 61.38 16.31 26.29 21.89 
                0.94 59.51 61.77 16.15 26.42 22.11 
               1.00 59.82 61.20 16.10 26.94 22.20 
at % In   0.83 59.32 63.50 16.20 26.18 21.80 
               1.02 59.41 62.76 16.20 26.20 22.34 
               1.35 59.55 61.48 16.25 26.26 22.01 

Magnesium  - Zinc,  2MgZn  103 118 26.20 47.20 29.00 

 
By using table1, and the decomposition of the elastic constant tensor, we have calculated the 
norms and the norm ratios as shown in table2.

 
Table 2, the norms and norm ratios 

 
Magnesium alloys, 
Hexagonal system at 
different 
percentages of - E 

sN  dN  nN  N  
N

N s  
N

N d  
N

N n  

Magnesium Element  120.364 3.147 4.766 120.500 0.99888 0.02611 0.03956 
at % Li    5.1 119.185 3.026 4.567 119.311 0.99895 0.02536 0.03827 
                10 116.481 2.974 4.486 116.606 0.99893 0.02551 0.03847 

                12.05 115.331 2.922 4.49 115.456 0.99892 0.02531 0.03889 
                15.94 112.739 2.837 4.409 112.861 0.99892 0.02514 0.03907 
at % Ag   0.26 122.585 3.695 4.397 122.719 0.99890 0.03011 0.03583 
                0.37 121.250 3.305 4.766 121.389 0.99886 0.02722 0.03923 
at% Sn    0.43 122.336 2.865 4.663 122.458 0.99900 0.02340 0.03808 
                0.67 121.248 3.291 4.613 121.38 0.99891 0.02711 0.03800 
                0.94 121.436 3.157 4.789 121.571 0.99889 0.02597 0.03940 
               1.00 121.733 3.655 4.697 121.879 0.99881 0.02999 0.03854 
at % In   0.83 121.595 3.475 5.543 121.771 0.99856 0.02854 0.04552 
               1.02 121.916 2.913 4.878 122.049 0.99892 0.02387 0.03997 
               1.35 121.271 3.124 4.617 121.399 0.99895 0.02573 0.03803 

Magnesium  - Zinc,  

2MgZn  
205.092 13.760 22.370 206.767 0.99190 0.06654 0.10820 

 
CONCLUSION 

We can conclude from table 2, by considering the ratio 
N

Ns  that Magnesium  alloy with 

0.43% of Tin is the most isotropic one, and Magnesium-Zinc  alloy is the least isotropic one, 
and also we can conclude that as the percentage of Lithium increases the alloy becomes  more 
anisotropic, also the same thing happened in the case of  Silver and in the case of tin, but in 
the case of Indium as the percentage of Indium increases the alloy becomes more isotropic, 
and by considering the value of N we found that the highest value is in the case of 
Magnesium-Zinc  alloy  so we can say that Magnesium-Zinc  alloy elastically is the strongest.  
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APPENDIX 

I. Elastic Constant Tensor Decomposition: 
The constitutive relation characterizing linear anisotropic solids is the generalized Hook’s 
law [3]: 

klijklij C εσ = , klijklij S σε =                    (1) 

Where ijσ  and klε are the symmetric second rank stress and strain tensors, respectively ijklC is 

the fourth-rank elastic stiffness tensor (hereafter we call it elastic constant tensor) and ijklS  is 

the elastic compliance tensor. 
There are three index symmetry restrictions on these tensors. These conditions are: 
                                                     
 jiklijkl CC = , ijlkijkl CC = , klijijkl CC =

                                                                                      (2)
 

 
Which the first equality comes from the symmetry of stress tensor, the second one from the 
symmetry of strain tensor, and the third one is due to the presence of a deformation potential. 
In general, a fourth-rank tensor has 81 elements. The index symmetry conditions (2) reduce 
this number to 81.  
 
Consequently, for most asymmetric materials (triclinic symmetry) the elastic constant tensor 
has 21 independent components.  
 
Elastic compliance tensor ijklS  possesses the same symmetry properties as the elastic constant 

tensor ijklC  and their connection is given by [4]: 

klmnijkl SC = ( )jminjnim δδδδ +
2

1
            

 (3) 
Where ijδ  is the Kronecker delta. The Einstein summation convention over repeated indices 

is used and indices run from 1 to 3 unless otherwise stated. 
 
By applying the symmetry conditions (2) to the decomposition results obtained for a general 
fourth-rank tensor, the following reduction spectrum for the elastic constant tensor is 
obtained. It contains two scalars, two deviators, and one-nonor parts: 
 

( ) ( ) ( ) ( ) ( )1;42;21;22;01;0
ijklijklijklijklijklijkl CCCCCC ++++=                                                                              (4) 

Where 
( )

ppqqklijijkl CC δδ
9

11;0 = ,                                 (5) 

( ) ( )( )ppqqpqpqklijjkiljlikijkl CCC −−+= 3233
90

12;0 δδδδδδ ,                                              (6)  
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( ) ( )ipkpjljpkpiliplpjkjplpikijkl CCCCC δδδδ +++=
5

11;2                                         

                            

                                                                             ( ) pqpqjkiljlik Cδδδδ +−
15

2
                            (7)      

( ) ( ) ( )ipjpijppklkplpklppijijkl CCCCC 45
7

1
45

7

12;2 −+−= δδ  

                                                        

                                  ( ) ( )ipkpikppjljplpjlppik CCCC 45
35

2
45

35

2 −−−− δδ  

 

                                   ( ) ( )iplpilppjkiplpjkppil CCCC 45
35

2
45

35

2 −−−− δδ         

 

( )( )pqpqppqqklijjlikiljk CC 45522
105

2 −−++ δδδδδδ                                                                    (8) 

 
( ) ( ) ( )[ jplpjlppikkplpklppijiljkikjlijklijkl CCCCCCCC 22

21

1
)(

3

11;4 +++−++= δδ  

 
                              ( ) ( ) ( )ipkpikppjliplpilppjkjpkpjkppil CCCCCC 222 ++++++ δδδ  

 
                         
(9) 
  

These parts are orthonormal to each other. Using Voigt’s notation [3] for ijklC , can be 

expressed in 6 by 6 reduced matrix notation, where the matrix coefficients µλc are connected 

with the tensor components ijklC  by the recalculation rules: 

ijklCc =µλ ;              )6,....,1,6,....,1( =↔=↔ λµ klij  

That is: 
111↔ , 222↔ , 333↔ , 43223 ↔= , 51331 ↔= , 62112 ↔= . 

 
II. The Norm Concept: 

 

Generalizing the concept of the modulus of a vector, norm of a Cartesian tensor (or the 
modulus of a tensor) is defined as the square root of the contracted product over all indices 
with itself: 

                                      { } 2/1
..................... ijklijkl TTTN ==  

Denoting rank-n Cartesian ..........ijklT , by nT , the square of the norm is expressed as [6]: 

( )
( ) ( ) ( )

( )
( )
( )

( )( )
∑ ∑∑ ====

n qjn

qj
n

qj
nnn

qj

qj TTTTTTN
,,

,;2

,

;22 . 

This definition is consistent with the reduction of the tensor in tensor in Cartesian formulation 
when all the irreducible parts are embedded in the original rank-n tensor space. 
 

( ) ] ( )[ ( ) ]pqpqppqqjkiljlikklijipjpijppkl CCCC 2
105

1
2 ++++++ δδδδδδδ
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Since the norm of a Cartesian tensor is an invariant quantity, we suggest the following: 
 
Rule1. The norm of a Cartesian tensor may be used as a criterion for representing and 
comparing the overall effect of a certain property of the same or different symmetry. The 
larger the norm value, the more effective the property is. 
 
It is known that the anisotropy of the materials, i.e., the symmetry group of the material and 
the anisotropy of the measured property depicted in the same materials may be quite 
different. Obviously, the property, tensor must show, at least, the symmetry of the material. 
For example, a property, which is measured in a material, can almost be isotropic but the 
material symmetry group itself may have very few symmetry elements. We know that, for 
isotropic materials, the elastic compliance tensor has two irreducible parts, i.e., two scalar 
parts, so the norm of the elastic compliance tensor for isotropic materials depends only on the 

norm of the scalar parts, i.e. sNN = , Hence, the ratio 1=
N

Ns  for isotropic materials. For 

anisotropic materials, the elastic constant tensor additionally contains two deviator parts and 

one nonor part, so we can define 
N

Nd  for the deviator irreducible parts and 
N

Nn  for nonor 

parts. Generalizing this to irreducible tensors up to rank four, we can define the following 

norm ratios: 
N

Ns  for scalar parts, 
N

Nv for vector parts, 
N

Nd  for deviator parts, 
N

N sc  for 

septor parts, and 
N

Nn  for nonor parts. Norm ratios of different irreducible parts represent the 

anisotropy of that particular irreducible part, they can also be used to assess the anisotropy 
degree of a material property as a whole, we suggest the following two more rules: 
 
Rule 2. When sN  is dominating among norms of irreducible parts: the closer the norm ratio 

N

Ns  is to one, the closer the material property is isotropic. 

 
Rule3. When sN  is not dominating or not present, norms of the other irreducible parts can be 

used as a criterion. But in this case the situation is reverse; the larger the norm ratio value we 
have, the more anisotropic the material property is. 
The square of the norm of the elastic compliance tensor mnC  is: 

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )∑ ∑ ∑ ∑ ∑++++=
mn mn nm mn mn

mnmnmnmnmnmn CCCCCCN
,

22;221;22;01;022;021;02
.2                            

                                                                                + ( ) ( )( ) ( )( )21;42;21;2 .2 ∑∑ +
mn

mn
mn

mnmn CCC              (10)                                                                                          

 


