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ABSTRACT

The norm of elastic constant tensor and the norms of the irreducible parts of the elastic
constants of Magnesium, and its alloys at different percentages of Lithium, Slver, Tin,
Indium and Zinc are calculated. The relation of the scalar parts norm and the other parts
norms and the anisotropy of these alloys are presented. The norm ratios are used to study
anisotropy of these alloys.
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INTRODUCTION

The decomposition procedure and the decomposifi@tastic constant tensor is given in [1]
and in the appendix, also the definition of norrmeEpt and the norm ratios and the
relationship between the anisotropy and the notiogare given in [1] and in the appendix.
As the ratian, /N becomes close to one the material becomes mdrepsn and as the ratio

N,/N becomes close to one the material becomes masetaspic as explained in [1] and in

the appendix.

Calculations
Table 1, Elastic Constants (GPa), [2]
Magnesium alloys, Hexagonal system at different

percentages of - E Cu Ca3 Caa Crp Cia
Magnesium Element 59.3( 61.5D 16.40 25.[70 21.40
at%Li 5.10, 58.53| 60.55 16.01 25.72 21.98
10.0Q 57.24 59.21 15.68 25.10 21.03
12.0§ 56.74 58.68 1555 24.79 20.Y6
1594 5549 5742 1525 24.15 20.p2
at% Ag 0.26] 60.20, 62.0(C 16.64  26.74 22.10
0.37 59.69 61.70 16.40 26.15 21.Y0
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at%sn 043 59.8] 6240 1632 2635  22.}0
061 5964 6138 1631 2629 2189
094 5951 6177 1615 2642 2211
10q 5984 6120 1610 2694 22.%0
at%In 083 59.32] 6350 162D 26.18 _ 21.80
104 5941 6276 1620 2620  22.34
139§ 5955 6148 1625 2626 22.01
Magnesium - Zinc, MgZn, 103 | 118 | 26.20] 47.20 29.00

By using tablel, and the decomposition of the Elasinstant tensor, we have calculated the
norms and the norm ratios as shown in table2.

Table 2, the norms and norm ratios

Magnesium alloys,
Hexagonal system gt N N N N, Ny N,
different s d n N N N
percentages of - E
Magnesium Element 120.364| 3.147 4,766 120.500 0.99888 0.02611 0.03956
at%Li 5.1| 119.18 3.024 456 119.311 0.9989502536| 0.03827
10 116.481 2.974 4.486 116.606 &939 0.02551] 0.03847
12.0§ 11533l 2.92p 4.4p  115.45699892| 0.02531] 0.03884
15.94 112.73p 2.83F 4.409 112.86199892| 0.02514 0.03907
at% Ag 0.26] 122.58% 3.69% 4.397 122.419 0.9989003011| 0.03583
0.37 121.250 3305 4.766 121.38999886| 0.02722 0.03923
at% Sn 0.43 122336 2.86p 4.663 122,458 0.9990M2340| 0.03808
0.67 121.248 3291 4.613 12138 9894 | 0.02711] 0.0380(
0.94 121436 3.15f 4.789 121.%7199889| 0.02597 0.0394(
1.00 121.738 3.655 4.697 121.879 9889 | 0.02999 0.03854
at%In 0.83 121.59% 3.47% 5543 121.471 0.9989602854| 0.04552
1.02 121.916 2918 4.8718 122.049 982 | 0.02387| 0.03997
1.3 121.271 3.124 4617 121.399 988 | 0.02573 0.03803
Magnesium - Zinc,
MgzZn, 205.092| 13.76(0 22.370 206.767 0.99190 0.06p54 Q@08

CONCLUSION
We can conclude from table 2, by considering the Qs that Magnesium alloy with

0.43% of Tin is the most isotropic one, and MagmasZinc alloy is the least isotropic one,
and also we can conclude that as the percentdgéafm increases the alloy becomes more
anisotropic, also the same thing happened in the o& Silver and in the case of tin, but in
the case of Indium as the percentage of Indiuneases the alloy becomes more isotropic,
and by considering the value dil we found that the highest value is in the case of
Magnesium-Zinc alloy so we can say that Magnesiiime alloy elastically is the strongest.
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APPENDIX
|. Elastic Constant Tensor Decomposition:
The constitutive relation characterizing linearsaiopic solids is the generalized Hook’s
law [3]:
0; =Céus &

i = S0y (1)
Whereo; ande¢, are the symmetric second rank stress and strasorgrespectively,, is

the fourth-rank elastic stiffness tensor (hereaftercall it elastic constant tensor) a8, is

the elastic compliance tensor.
There are three index symmetry restrictions onethiessors. These conditions are:

Civ =Ci» Ciw =Ciji» Ciw =Cy; )

Which the first equality comes from the symmetrystkss tensor, the second one from the
symmetry of strain tensor, and the third one is tuhe presence of a deformation potential.
In general, a fourth-rank tensor has 81 elemertts. ilidex symmetry conditions (2) reduce

this number to 81.

Consequently, for most asymmetric materials (tniclsymmetry) the elastic constant tensor
has 21 independent components.

Elastic compliance tens@,,, possesses the same symmetry properties as thie etasstant
tensorC,,, and their connection is given by [4]:

im~jn in~jm

1
Cijkl Sklmn= 5(5 Ojn 0,0, )
(3)
Where g; is the Kronecker delta. The Einstein summatiorveation over repeated indices
is used and indices run from 1 to 3 unless otheraiated.

By applying the symmetry conditions (2) to the deposition results obtained for a general
fourth-rank tensor, the following reduction spentrdor the elastic constant tensor is
obtained. It contains two scalars, two deviatonsl @ne-nonor parts:

Cinw = Cigﬁil) + Ciggfz) + Cigﬁ;l) + Cigil;z) + Cigﬁfl) 4)
Where
con=1ssc 5
ik 5 ij “Kl ™~ ppaq * ( )
, 1
CiEgIVZ) = % (35”( 5j| + 35“ a-jk - 2a—ij a_kl )(3Cpqpq - Cppqq) ! (6)
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o + 93 Cipp + 8, Ciy + 51|Cipkp)

: 1
Ciglfl’l) = 5 (5ikC

—135( 3, + 0,3, Counn )
i) =15 600 0, )+ 346,
- % 5(BC 5 =4C ) % 3, (BC10p ~4C,p0.)
=2 6,(5C5p ~4Cp)~ - 64(6C.py ~4C,5)
+ 1_35 (26,8, +23,3, ~53,3, JBC g ~ 4C ) (8)
Ci) = % (Cija * Ciigi + Cige) ‘Zil[dj (Curn *+2Ci)+ 6 (Cypp + 2C )
+8(Ciop +2C 30 )+ 8,4 (Cipp +2Ciy )+ 8, (Cip + 2C )

+5,(c,, +2C

ipip

1
ibp ) ]+_10'= [(5”. 9y + 9,9 * 9, 5jk)(cppqq + 2Cpqpq) ] 9)
These parts are orthonormal to each other. Usingyt¥¥onotation [3] foiC;,, can be
expressed in 6 by 6 reduced matrix notation, wkiegematrix coefficientsc , are connected
with the tensor componen€;,, by the recalculation rules:
Cu =Cia (ij o u=1...6K o 1=1....6)
That is:
11 1,22 o 2,33 - 3,23:32 o 4,31:13 o 5,12:21<—> 6.

[I. The Norm Concept:

Generalizing the concept of the modulus of a veaterm of a Cartesian tensor (or the
modulus of a tensor) is defined as the square abtiie contracted product over all indices

with itself:
1/2
'Ti T }

, byT,, the square of the norm is expressed as [6]:

N =[T| :{T'jkl

Denoting rank-n Cartesia'ri]k'

L2 . i
N =T = = 5T = T

This definition is consistent with the reductiontloé tensor in tensor in Cartesian formulation
when all the irreducible parts are embedded irotiggnal rank-n tensor space.
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Since the norm of a Cartesian tensor is an invagaantity, we suggest the following:

Rulel. The norm of a Cartesian tensor may be used astaaiam for representing and
comparing the overall effect of a certain propesfythe same or different symmetry. The
larger the norm value, the more effective the priyps.

It is known that the anisotropy of the materials,,ithe symmetry group of the material and
the anisotropy of the measured property depictedha same materials may be quite
different. Obviously, the property, tensor mustwhat least, the symmetry of the material.
For example, a property, which is measured in aenaf can almost be isotropic but the
material symmetry group itself may have very feuneyetry elements. We know that, for
isotropic materials, the elastic compliance tertsas two irreducible parts, i.e., two scalar
parts, so the norm of the elastic compliance tefgasotropic materials depends only on the

norm of the scalar parts, ild.= N, Hence, the ratio% =1 for isotropic materials. For
anisotropic materials, the elastic constant teasilitionally contains two deviator parts and
one nonor part, so we can defiHITle\ld— for the deviator irreducible parts aﬁlrle{Iﬂ for nonor
parts. Generalizing this to irreducible tensorstaipank four, we can define the following

N N, Ny N
norm ratios: W for scalar parts,— N Y for vector partsW for deviator partsW for

N . : . :
septor parts, andN—” for nonor parts. Norm ratios of different irredoiel parts represent the

anisotropy of that particular irreducible part, theman also be used to assess the anisotropy
degree of a material property as a whole, we suglgedollowing two more rules:

Rule 2.When N is dominating among norms of irreducible parts: ¢ttoser the norm ratio

WS is to one, the closer the material property i&r¢guc.

Rule3.When N, is not dominating or not present, norms of theeptireducible parts can be

used as a criterion. But in this case the situasorverse; the larger the norm ratio value we
have, the more anisotropic the material property is
The square of the norm of the elastic complianosdeC |

IN = (e f +Z e w23 fet o) Sle 21)+z( i
-EZ( ce)+ylew) o

mn
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