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ABSTRACT

Based on Newton method, we derive three efficiethads of order four for solving nonlinear

equations. Per iteration each method requires thegaluations and therefore the efficiency
index of the methods is 1.587 which is better tdawton’s efficiency index 1.414. Performance
of the methods is compared with closest competitora series of numerical examples.It is
shown by way of illustration these methods are wegful in the applications requiring high

precision in computations. Moreover, theoreticalder of convergence is verified on the
examples.

Keywords: Nonlinear equations; Newton’s method; Ostrowski'#mod; Root-finding; Order of
convergence.

INTRODUCTION

In this paper, we deal with iteration methods falcalating simple root of a nonlinear equation
f(x)=0. This problem is prototype for many nonlinear nug® problems [1]. Traub [2] has
classified numerical methods into two categories Vi) one-point iteration methods with and
without memory, and (i) multipoint iteration mett® with and without memory. Kung and
Traub [3] have conjectured that multipoint iteratimethods without memory based on
evaluations has optimal ordef™. In particular, with three evaluations a methodoofrth-order
can be constructed. The famous Ostrowski’s methpis [an example of fourth-order multipoint
methods without memory which is defined as

f(x)

RN
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Ko=) T (1)
F'(x) f(x)-2f(w)
The method requires two functioh and one derivativé’ evaluations per step and is seen to be

efficientthan classical Newton’s method. Other vkelbwn example of fourth-order multipoint
methods with same number of evaluations is Kingiaify of methods [5]. This family is written

as
f(x)

f'()g) )

fw) flx)+Af(w)
Xiyg =W, — J

f(x) f0)+(A-2) f(w)
where AR is some parameter.The Ostrowski’'s method (1) easden as a particular case of
this family for A=0.

W =X -

(2)

Through this work, we contribute a little more imetdevelopment ofthe theory of iteration
methods and derive threemultipoint methods of ofder. Each methodrequirestwb and one

f' evaluations per iteration and thus the efficienujex(see [6])is same that of Ostrowski's
method. These methods are based on Newton’s matitbdonsist of two substeps, one Newton
substep followed by another generated by quadnatcpolation. For this reason we shall call
them modified Newton’s methods. We employ new mashito solve some non-linear equations
and compare it with well-known methods.

Basic definitions
Definition 1. Let f(x) be a real function with a simple rogtand le{x};y be a sequence of real
numbers that converges towanisWe say that the order of convergence of the sempisp, if

there exits @/ R" such that

lim-X1=% =cz0. A3)

o (% =a)"

If p=2 or 3, the sequence is said to have quadratic cgemee or cubic convergence,
respectively.

Definition2.Lete = x, —a is the error in théth iteration, we call the relation

8., =Ce"+0(e™), (4)
as the error equation. If we can obtain the erquagion for any iterative method, then the value
of pis its order of convergence.

Definition 3.Suppose thak,,, x andx_, are three successive iterations closer to the aoot
Then, the computational order of convergepcésee [7]) is approximated by using (4) as
In|(X41=0)/(% —2)|
O : 5
In](% )/ (%-5=)| ©)
Definition 4. Let a be the number of new pieces of information requiygch method. A ‘piece

of information’ typically is any evaluation of arfation or one of its derivatives. The efficiency
of the method is measured by the concept of effayendex [6] and is defined by

E=p'“, (6)
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where p is the order of the method.

Development of the methods
Consider the Newton scheme defined by

—y _ f(x) -
W =X — o, i20. 7
ATTR) @
In what follows, we construct the method for obiragnthe approximatiorx,, to the root by
considering the quadratic function which interpesft . Let the interpolating function be

Y(X) =a+bx+cx?, (8)
such that

y(%)= (%), 9)

y(%)=f'(x), (10)

y(w) = (w), (11)

¥(%.1) =0. 12)

With the help of (9) — (11) in (8), we can obtane tunknown parametees b andc used in (8).
Thus, introducing (9), (10) and (11) in (8), we get

f(x)=a+bx+cx’, (13)
f'(x) =b+2cx, (14)
f(w)=a+bw+cw’. (15)

From (13) — (15) and using Newton iteration (#)vig we may calculata, b andC as
a=f(x)-xf'(x)+cx,
b=f'(x)-2cx,
_ F200) f (w)
The estimate to the root,,is obtained from (8), which implies that
a+bx.,, +0x;, =0. (17)
Using (16) in (17) and solving, we ultimately olotdéine iteration formula
f(x) 2
7 , 18
F(%) 1+ 1-4 (w)/ f(x) (18)
wherew is the Newton iteration (7).
We further derive iteration formula free from sguaoot term. This can be achieved using the
approximation

c

X=X~

T o fw) L, F2w)
{ 4f()§)} L 2f(>§) 2f2(>§)’ (29)
in formula (18), which yields the iteration method
(%) 1 (20)

AT 1 T W) 06— 12w T206)°
Furthermore, the expansion
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_fw) 2w | g, Fw) o F2w)
{1 f(x) fz(x)} ) ) &)
suggests us to obtain another elegant formula.i$hubtained using (17) in (16) and is given by
Cy o 00 4 fw) o f2(w)
X4 =X f'(x){“f(x)”fzm)} (22)

Thus, we derive three modified Newton’s methodstasn the composition of two substeps,
Newton substep (7) and another obtained by quadrdgrpolation. It is straightforward to see
that per step the methods require two evaluatiéns and one off’. In order to show that the

methods (18), (20) and (22) are of order four, weve the following theorems:

Theorem 1Letf: | — Rdenote a real valued function defined on |, wheeed neighborhood of
a simple roota of f(x). Assume thatf (x) is sufficiently smooth in I, then the method defibg
(18) is of order four.

Proof.Let e be the error afiiteration, thene =x —o.. Denote

A =WK) Y @)/t (@), k=23.....
Expanding f(x) and f'(x)abouta and using the fact th&(«)=0, f'(a)#0, we have

f(x)=f'(x)[e+ Ag+ A+ Ag'+O(€)] (23)
and  f'(x)=f'()[1+2Ag +3Ag+4 A +O(€)]. (24)
Then, (4 =a- AG+2(A -~ A)e +(TAA ~4K~3A)d +O(€). (25)
Substitution of (25) in (7) yields

W—o = AE -2(A-A)E-(TAA-4K-3A)& +O(E). (26)
Expandingf (w) abouta and using (26), we obtain

f(w)= (o) Ag”~2(A - A)E ~(7TAA~5A~3A,)g +O(&))]. (27)
From (23) and (27), we have

0= AG+2A-3R)E +HBA -LOAA+IA)E +O(e). (28)
Furthermore

12

{1680 <2200 - AIF- 24K -OAATIAIGOE). (29
From (25) and (29), we get

) 2 =g +A Ag'+O(€) (30)

FOQ) 1+ -4 (w)/ £ (x) '
Thus using (30) in (18), we get the erroegs—-A,Ag'+0O(€ ). (31)
That means the method (18) is of order four. i
Theorem 2.Under the hypotheses of theorem 1, the methodedkehy (16) is of order four.
Proof. Squaring (28) yield%%: K +2A(2A~3A2 )& +O(&). (32)

From (28) and (32) it follows that
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1_%-—2 22((");‘)) =1- Ag —2(A— A& (2K -6AA+3A,)§ +O(€). (33)
Division of (25) by (33) yields
f(x) 1 e +A(A-2A)e'+O(). (34)

F'O6) 1 (w)/ F(x)— F2(w)/ F2(x)
Then, from (20) and (34) the error is given by
81=A(2K-A)g +0(€). (35)
Thus method (20) has order of convergence four. o

Theorem 3.Under the hypotheses of theorem 1, the methodedkehy (20) is of order four.
Proof.Using (28) and (32), we obtain

12005 000 21 pg+(2A - R -(4K +2AA-3A)F+O).  (36)
fx) ™~ f%(x) '
Multiplication of (25) and (36) yields
2

1 L2 0 e s A - r01E), @)
Then substitution of (37) in (22) yields the eragr

8.=A(5K-A)g'+0O(F). (38)
Therefore, the method defined by (22) has ordeoaf/ergence four. o
Notice that the computational efficiency [6] foretie methods ig*® [11.587, which is equal to
the efficiency of Ostrowski’s method. For real momethod (18) requires(w)/ f (%)< 0.25.
The binomial approximation (19) is valid only]if (w)/ f (x )< Q25 Also, the expansion (21) is
true only if | f(w)/f(x)+f2(w)/f2(x)k1l , that is, if —162<f(w)/f(x)<062 These
restrictions onf(w)/ f(x) may necessitate the use of multiple precisiorhiaétic. This is

because a¥ approaches tar, the methods involve the division of quantitiesttiare both
approaching to zero.Recall, that theOstrowski’'shoéthas similar kind of behaviour. However,
numerical experimentation indicates that there asdifficulty in applying the methods in
practice.

Numerical examples

We employ the present methods (18), (20) and (2jgdated asl,, M, andM ;, respectively

to solve some nonlinear equations and comparetit Méwton’s method (NM), and Ostrowski’s
method (OM). We accept an approximate solutionerathan the exact root, depending on the
computer precisiofi]) . The stopping criteria used for computer progréa):|x.,—x <[l (b)

| f(%..) O and so, when the stopping criterion is satisfied,is taken as the computed ramt

The test functions and root correct up to 16 decimal places are displayedlitet1l. Table 2
shows the values of initial approximatiofn chosen from both ends to the root, the number of
iterations(i) required to approximate the root and the comparati order of convergendg)
defined by (5). For numerical illustrations in w®@bP, we use fixed stopping criterion

O=0.5x10"". It is well-known that the convergence of iteratformula is guaranteed only when
the initial approximation is sufficiently near toat. In general, it may be divergent when initial
approximation is far from the root. However, we cdoserve from the numerical results that in
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almost all of the examples, the presented methpdsaa to be robust. Also the computed order
(o) agrees with the theoretical order of convergencevery test function.

In table 3, we exhibit the absolute values of th@reg calculated by costing the same total

number of function evaluations (TNFE) by all thethwels. The TNFE is counted as sum of the
number of evaluations of the function itself plir®@ number of evaluations of the derivative.

Here, TNFE used for all the methods is 12. Thatmadar NM, the erroife| is calculated at 6th
iteration, whereas for OMM,, M, andM ,, these are calculated at 4th iteration.

Table 1. Test functions

f(X) Root(a)

f(x)=x3+4x*-15 1.6319808055660635
f,(X) =sin(X)—x/2 1.8954942670339809
f,(X) =€ *+cos() 1.7461395304080124
f, (x):10xe‘x2 -1 1.6796306104284499
fo(x)=tan™ (x)-x+1 2.1322677252728851

f(0=](e" 2-et ?)dt+01  — 0.8805978315532975
0

£, (X) = J{sin(x)/ tct-05 0.7121746841816167
0

Table 2. Performance of the methods
f(x) X I o)

I\I>II I\(z Mi Mz M3 I\I>II OM Mi: Mz M3
¢ 1 6 3 3 3 4 20 416 416 41 40
! 2.5 6 3 3 3 3 2 414 417 8 4
¢ 15 6 3 3 3 4 20 408 411 40 4.0
2 2.5 5 3 3 3 3 1 4.07 41z 8 0
f -0.5 5 3 3 3 3 20 416 417 41 41
: 2.5 5 3 3 3 3 6 420 42C 6 4
f 1 5 3 3 3 3 2.0 400 4.03 39 3.9
4 2 6 3 3 4 4 0 4.0C 4.0: 7 2
; 1 5 3 3 3 3 2.1 408 4.07 40 4.0
° 3 4 3 3 3 3 0 404 404 6 2
; -1 5 3 3 3 3 1.9 398 397 39 39
¢ -0.7t 6 3 3 3 3 6 39¢ 397 7 6
; 0.5 5 3 3 3 3 20 401 401 40 4.0
! 1 5 3 3 3 3 3 401 40z 1 1
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Table 3. Accuracy using same TNFE=12 for all methad

f) X0 le [Fl% —al
NM oM M M, M3
f 1 256E— 1.33E— 4.37E—- 4.01E—- 1.68E-—
! 2.5 31 13¢€ 182 82 38
f 1.5 1.54E - 1.21E—- 357E— 3.94E- 2.84E —
2 2.E 33 127 222 82 42
f -05 155E - 3.78E— 3.58E- 259E- 9.81E —
3 2.5 61 171 172 170 16¢
. 1 8.46E — 4.88E—- 3.58E- 568E— 8.56E —
4 2 43 11€ 137 109 100
. 1 6.26E — 1.49E— 9.30E- 520E- 3.51E-—
5 3 48 133 152 111 79
.- 255E— 1.85E— 3.27E— 4.65E—  4.04E —
s 078 37 17¢ 14¢ 138 132
. 0.5 5.63E— 6.47E— 193E- 125E—- 5.31E-—
! 1 53 19: 23¢€ 225 218

It is quite understood that increasing the ordethef method leads us to obtain more precision
widening the mantissa. For this reason and forebetbmparison as well, in table 3 all
computations are done with multiprecision arithmetsing 300 significant digits. As shown in
table 3, the fourth-order metho@s!,, M,andM, is)preferable to second-order (NM) methods

in high-precision computations. Moreover, in almakthe problems we consider, thé, even
works better than OM.

CONCLUSION

In this paper, we have obtained multipoint iteratimethods of third and fourth order for finding
simple roots of nonlinear equations. The numbduonétion evaluations required per iteration is
three in both categories of the methods. Theseuatrahs involve twd and onef’, and no

higher order derivative evaluations are requirelde Two important aspects of generating new
algorithms are order of convergence and computalti@fficiency. Therefore, fourth-order
methods are the main findings of the present worleims of speed and efficiency. These facts
can be observed from theoretical analysis as wsll namerical experimentation. The
computational order of convergenge) overwhelmingly supports the theoretical order of

convergence for all the methods.

Many numerical applications use high precision it computations. In these types of
applications, numerical methods of higher orderiamgortant. The numerical results (Table 3)
show that the fourth-order methods associated avithultiprecision arithmetic floating point are
very useful, because these methods yield a clelrctien in number of iterations. Finally we
conclude that the methods presented in this paperanpetitive with other recognized efficient
equation solvers, namely Newton and Ostrowski natho
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