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ABSTRACT
The object isto prove some generalisations of strong and absol ute al most convergence.
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INTRODUCTION AND NOTATIONS

Let [, be the set of all bounded real sequences(x,,) normed byl|x|| = sup|x,| . Given an infinite serie¥ a,
,denoted by ‘a’.Lek,, = a, + a, + - + a,,.Alinear functionalL on [, is said to be a Banach linjit, p 32] if it has
the properties:

(i) L(x) =20if x>0 (i.e.x, =0 for alln)

(i) L(e) = 1,wheree = (1,1,1)

(iif)y L(Dy) = L(x)

where the shift operat@ is defined byDx,, = x4,

Let B be the set of all Banach limits. Lorentz [9] defined a sequenee [, to be almost convergent to a number
s if all its Banach limits coincide at s and alsovyed that a sequeneds almost convergent to s if and only if

1
ten = tin(x) = mﬂ(:oxnﬂ' =S (1.1)
ask — oo uniformly in n.

Maddox [11] has defined € [,, to be strongly almost convergent to a number s if

tin(lx — s = ﬁﬂ-;olx”n —s| > 0as k > wuniformly inn. (1.2)

Let ¢, [¢] respectively denote the set of all almost convergequences and the set of all strongly almostergent
sequences. A sequencés said to bebsolutely almost convergent if

Yizo|tin — te—1.n| < o uniformly inn, (1.3)

249
Pelagia Research Library



Dharitri Routroy and Laxmidhar Giri Adv. Appl. Sci. Res., 2014, 5(3):249-258

wheret_; , = x4

Let denote the set of all absolutely almost convergeqgtiences (see [4],[5],[7]).

We write

dinn = Ay () = —— 21 tin (%) (1.4)
Gimn = G () = —— T dien (%) (1.5)
where

g—l,n = d—l,n(x) = t—l,n = xn—l

The following sequence spaces have been introdd€and their relative strength have been studiatktails.

u= {x:ﬁZQLO din(x —s) = 0asm - cwouniformly inn, for some s } (1.6)
[u] = {x:ﬁ reoldin(x = s)| = 0 as m - cwuniformly inn, for some s} 1.7)
[u] = {x:ﬁzzlzo din(Jx = s]) » 0 as m - wuniformly in n, for some s} g1
v= {x:ﬁﬁﬁ"‘zo Jin(x —s) = 0as m » wuniformly inn, for some s} (1.9)
[v] = {x:ﬁzzﬂolgkn(x —5)| » 0asm - ouniformly inn, for some s} 10)
[vi] = {x: ﬁZQLO Jin(Ix = s]) > 0 as m - o uniformly inn, for some s} 11
= {x: Y%-o|Gin — Gx_1n| convergent uniformly inn} (1.12)
a={x: "\ Bio| Gin = Ge—1n| < 0} (1.13)
1 m
D, = {x:m Yieo do(x) = sasm - s} (1.14)
1 m
[D,] = {x:ﬁ o ldio(x) — s| = 0asm - oo} (1.15)

Here it may be remarked that the spAg@and[D,] can be called Cesaro summable sequence spacdenfband
strongly Cesaro summable sequence of order 2cteply.

2 Introduction of New Sequence Spaces
Now we defineh,,,, as

_ 1 m

hmn _m+1 k=ogkn(x)

whereh_, = g1, =d_1n=t_1n= % , and weintroduce
1 . .
r= {x: —y Yreohin (x —s) » 0asm — wuniformlyinn, for some s },

[r]= {x: ﬁ Yreolhin(x) — s| > 0asm — cwuniformly inn, for some s },
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[r]= {x: ﬁ Yo hen lx —s| > 0asm - wuniformlyinn, for some s },
£ ={x: Yico|hkn — hi_1n| converges uniformlyinn}
? = {x: Sl:lpz|hkn - hk—l,n| < OO}
_(,. 1
E,= {x. — Yheoh 2 sasm - s} and

1
m+1

[E;] = {x:

m
Zlhko—sl —soasm - ®©
k=0

We may remark here that the spdgecan be called Cesaro summable sequences of oraied [Z,] as strongly
Cesaro summable sequences of order 2. Now we thaihthe following inclusion relations hold.

Theorem 1
@lc [flcly] c [rlcr

() lcwcwlclulcv]clrl
(¢ fct

@ lcwefclr]clE]ck
(©ucrand[w] c [r]

O vervlclrlivlcn]

Proof of (a)
[ c [f]is proved in a theorei3]

Let x € [f]and[f] —limx =s.

Then by definition

tun (Jx —s]) > 0as k — wuniforminn.

Hence its arithmetic meat),,, (|x — s|) also converges to zero
ask — couniforminn.

It follows that

ﬁ Yreodin (Ix —s]) = 0asm — o uniformly inn.
i.e.,gin (Jx —s|) » 0asm — wuniformlyinn.

Also it follows that

ﬁ Yo Jim (x —s]) » 0asm — o uniformly inn.

i.e.,hyy (Jx —s]) > 0asm — o uniformly inn.
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Again it follows that

ﬁ Yo hin (Jx —s]) » 0as m — o uniformly inn.

So,x € [ry] and[r;] —limx =s.

Thus [f] < [r]

Since
1
—7 [ Xkso huen (x = 9|

< — Ykeolhin (x — )|

m+1

1 m
) i 12 = )]
k=0

It follows that

[nlclrlcr
Since the uniform convergence of

e Tl (k=) > Oasm —

with respect ta inplies that convergence far=0 therefore it follows that c E,

Proof of (b)
ie. [c wcw] c [u]lclr]

The proof of the fact that! ¢ w < [w] is given in[4] and the proof of

[w] < [u] is givenin[10] . We only need to provet] c [r

Let x € [u]. Then by definition

— T ol din x-s5)| = 0 as m — o uniform inn, for some s.

Now

— Ykeol hin (x — 5)|

m+1

__1 1 vk

Y ’;Zlo|k+1 i=1gin(x_s)|

_ 1 m 1

T m+1 “k= 0|k+1 {z+12p o dpn(x — )}|

) ) T
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which converges to zero as o uniformly in n, for some s i.ex € [r].
Hence[u] c [r]

Proof of (c)
Let x € 7 then by definition

Yi—o|hkn — hx_1n| converges uniformly inn

Claim

sup -
n Zlhkn - l‘lk—l,n| =M
k=0

WhereM is an absolute constant not necessarily the sae@ch occurrence. As € , these exits an integer p >0
such that

Yisp|Pkn — hx—10|< 1 for alln (2.1)
Hence it is enough to show that for fixied
|Pin, = ie—1.n| < M for alln

But it follows from (2.1) that

Yisp|hin — hik—1.n|< 1 for every fixedk >p, alln (2.2)
Since
hmn - hm—l,n:ngzl k(gkn - gk—l,n) (23)
= m(m + 1)(hmn - hm—l,n):ZZ;l k (gkn - gk—l,n) (2-4)
5
Hence
(M + 1) (hn = Pn-10) = Ty k (Gen — Gieem) (2.5)
Similarly,

_ 1 om-1
(m - 1)(hmn - hm—z,n) - Z Zk:l k (gkn - gk—l,n) (2-6)

subtracting (2.6) from (2.5) we have

(m + 1)(hmn - hm—l,n)' (m - 1)(hmn - hm—Z,n): Imn — gm—l,n (27)
From (2.2) and (2.7) we can conclude that

|gmn - gm—l,nl < M(m) (28)

for every fixedm > p and for alln whereM (m) is constant depending upen. From the definition ofy,,,,,we have

1
Imn — Im-1n = mzzﬁ;lk(dkn - dk—l,n) (2.9)
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So that

(m+1) (Imn — Im-12) — M= 1) (Gm-1n — Im-2n) =dmn — dm-1n
From (2.8) and (2.10) we have

|dmn — dm_1| < M(m)

for fixedm > p and for alln, M(m) is a constant depending upan

From definition ofd,,,, we have

1
dmn - dm—l,n: mﬂnﬂ k(tkn - tk—l,n)

So that

(m+1) (dmn — dm-10) — M —1) (dn-1n — dn-20)=tmn — tm-1n
From (2.11) and (2.13) it follows that

|t — tme1n| < M(m)

For every fixedm >p and alln.

Again

— m
tmn - tm—l,n - m(m+1) v=1VAyin

Implies that

M+ 1) (twn = tmezn) = 00 = 1) (bnean — mzn)= Gen
And

|amsn| < M(m) for fixedm > p and for alh.

By choosingn = p + 1, let

K= max{(p + 1), a4, lasl, ... |ap+1|}

Then clearlyja,| < K for all v, K is independent af.
It follows from (2.14) that

|tkm — tm—1n| < M for alln,m

which implies from (2.12) that

|dmn = dm_1n| < M foralln,m

And finally it follows from (2.3) that

|Rmn = Rm—1n| < M for alln,m
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Sos?lp Z;:o'hmn - hm—l,n' =M
Hencex € +, from which it follows that

fcr

Proof of (d)

The proof of [ c # is given in[4] and the proof ofr] c

need to show

From definition of h,,,, it can be seen that

[E;] € E, is proved in 1(a). To complete the prove we

hmn - hm—l,n = m(m+1)2k 1k(gkn gk—l,n)
Hence
Z?;L=1|hmn - hm—l,n|: Z?’On 1 |m(m+1) Zk 1 k(gkn G- 1n)|
< Yo k|gin = Gr-1n| Zmek m(nllﬂ)
= Z(If:l'gkn - gk—l,n'
0 m
= ! i(d d
= Z mzl( in — di-1n)
k=1 i=1
< (1?0:1i|din l. 1n|Z

m(m+ 1)

ci)o:1|din - di—l,n'

From this follows that

wCt

To prove that c [r] we need the following lemma.

Lemma
[r] = limx = s if and only if

0] [r] — limx=s
(it) — Xkolgrn (x —

Proof :Let [r] — limx = s then obviously — limx = s

Also
mZk ol Gien(x = 5) = hyp (x — 5))|
S — Yol Grn (x = )| + —= TxZolhen(x — )|

s) — hgpn(x —s)| > 0asm — o uniformly inn
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=21+ X (say)

By hypothesi®}; = 0(1) m — o« uniformly inn.

Sincer — lim x = s impliesh,,(x —s) > 0as k —» o uniformly inn
We have

Y, =0(1)asm — wuniformlyinn

Conversely let (i) and (ii) hold. Then

1
— Zik=olgkn (x = 5)

= ﬁzinw'gkn(x —8) — g (x — )| + ﬁ Mol Ryen (x — 5|

From this it immediately follows th4t]-lim x=s and proves the lemma.

Now we proceed to prove* C [r] of the theorem 1(d).
Let xe 7 .Then by definition
Ywzo|hkn — hi—1n| converges uniformly in

This implies thath,,, = a as k = o« uniformly inn

Hence there exists somesuch thar—limx = s. In order to showe [r], we have only to show that

1

— o |gin (x —5) — hyp (x — s)| =0 asm— o uniformly inn

But

Gmn — hinn = (M + Dhyy — Mhyp_15 — Ay
=mh, + by —mhpyy 15 — Ay

=m(hpp = him-1,n)

Hence,

—— Vi Gkn (6 = ) = hn (x = 9|

= ﬁztﬁ:o k | (x = 8) = hy_y 0 (x — 5)|
Sincex € 7

Qmn = Yi=m|hkn — hi—1,| is finite for eachm andn.
But thenQ,,,, = 0 as m — o uniformly inn

Also

Qkn — Qk—l,n = |hkn - hk—l,n|
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implies that
—— T 1Gien (X = ) = Ryen(x = 5)]|
1
EZZLO k|an - Qk+1,n|

1 . .
= Blo(Qkrin = Qmian) = O(1) asm o uniformly inn.

This completes the proof.

Proof of ()
To proveu c r and[u,] < [ry]

Let x € u then by definition
ﬁZQLO dyn(x —s) > 0 as m - oo uniformly in n, for some s.

Since

m+1zh""(" 2{1(112](:‘%("_5)]

m K ,
:m1+1;{k112<rilzdpn(x—s)>}
- r= p=0

— 0 as m — oo uniformly in n, for some s

Hencex ersoucr
To prove[u,] < [ry]

Letx € [u,] ,then by definition

m

1

m_+12 din(|x —s]) > 0asm - wuniformly inn, for some s
k=0

Since

m

(1 = 1) = —

: 1i {k—ili gl = s|)}
k=0 r=0

1

Tme1 2k {k+1zr =0 |rv1 =0 dpn(|x—5|)]}

It implies thatx € [r;] and hencéu,] c [ry].

Proof of (f)
To provev c r, [v] c [rland [v,] c [ry]

Let x € v,by definition
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1 . .
EZQLO Jin(x —s) = 0 as m — oo uniformly in n, for some s .

Since
1

m 1 m 1 k
m+ 1Zh"”(x_s) Tm+ 1Z{k + 1ng(x_s)}
k=0 k=0 r=0

It follows thatx € r and hence c r

Let € [v] , by definition
ﬁf@dgkn(x —5s)| = 0 as m - o uniformly in n ,for some s .

Since
m m k

=L — 2 i

— D =) =—= > b= ) g(x = 9)
k=0 k=0 =0

It follows thatx € [r] and hencév] c [r]

Finally letx € [v,] then by definition
ﬁZQLO Iin(|x — s]) = 0 as m - oo uniformly in n, for some s

Since
m m k

=L =D =)

——= ) Ma(x=sDl=——= > == > grnllx —sl)
k=0 k=0 =0

It follows thatx € [r;].So[v,] c [ry] .
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