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ABSTRACT 
 
Computer spreadsheet is used in solving optimization problem of several variables involving four factors that are 
varied at three levels each. The fitted equation obtained from the regression analysis has an  R-Sq =98.5 and R-Sq 
(adj) = 96.9.Multivariate optimization technique of Newton Raphson is used to locate the maximum of the function 
which contains several variables, starting at an initial points (0,0,0,0), the final optimal and physically realistic 
economically acceptable combinations are found at y = f(0.2,0.1, 0.1, 0.1) 0.9684. Which clearly demonstrated that 
the principle of normal curve is depicted. Recommendations are made which include the advantage of this method in 
determining or locating the optimum in case of minimum or saddle points in the response. 
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INTRODUCTION 
 

As an important subject in the statistical design of experiments, the Response Surface Methodology (RSM) is a 
collection of mathematical and statistical techniques useful for the modeling and analysis of problems in which a 
response of interest is influenced by several variables and the objective is to optimize this response [1]. For example, 
the growth of a plant is affected by a certain amount of combination of a fertilizer like Nitrogen (N),Phosphorus 
(P),Sulphur (S) and Potassium (K). The plant can grow under any combination of a treatment. When treatments are 
from a continuous range of values, then a Response Surface Methodology is useful for developing, improving, and 
optimizing the response variable. In this case, if the  plant growth y is the response variable as a function of x1, x2 , 
x3   and x4. It can be expressed as: 
 
y = f (x1, x2, x3,x4) + e                                                                                                                                          . . . (1.0) 
 
The variables N,P,S and K are independent variables where the response y depends on the various combination of 
them. The dependent variable y is a function of x1, x2 , x3   and x4,where  x1 = N, x2 = P , x3 = S  and x4 = K , and the 
experimental error term is denoted as ‘e’. 
 
 In most RSM problems, the true response function f is unknown. In order to develop a proper approximation for f, 
usually starts with a low-order polynomial in some small region. 
 
 If the response can be defined by a linear function of independent variables, then the approximating function is a 
first-order model. A first-order model with 2 independent variables can be expressed as 
 

exxy +++= 22110 βββ                                                                                                                            . . . (2.0) 

 



A. Ahmed et al                                Adv. Appl. Sci. Res., 2013, 4(2):1-8       
 _____________________________________________________________________________ 

2 
Pelagia Research Library 

If there is a curvature in the response surface, which is clearly our own case, then a higher degree polynomial should 
be used. The approximating function with 2 variables is called a second-order model 
 

exxxxxxy ++++++= 2112
2

2222
2

111122110 ββββββ                                                                 . . . (3.0) 

 
In general all RSM problems use either one of these models. In each model, the levels of each factor are independent 
of the levels of other factors. [2]. The response surface analysis is performed by using the fitted surface. The 
response surface designs are types of designs for fitting response surface. Therefore, the objective of studying RSM 
can be accomplished by:  
 
(1) Understanding the topography of the response surface (local maximum, local minimum, ridge lines), and 
(2) Finding the region where the optimal response occurs.  
 
The goal is to move rapidly and efficiently along a path to get to a maximum or a minimum response so that the 
response is optimized. 
 
Computer spreadsheet is used throughout this work, using Newton’s Raphson multivariate optimization 
procedure.[2] 
 

METHODS 
 
Steepest Ascent method and Steepest Descent Method: 
The steepest ascent method and steepest descent method can be used to locate the maximum and the minimum 
respectively, of a function of several variables,[3] and [4]. 
 
The steepest ascent method is the most straightforward of the gradient search techniques. In this method we start 
with an initial point (x0, x0, x0, x0), at this point; we determine the direction of the steepest ascent, that is, the 
gradient. We then search along the direction of the gradient, h0, until we find a maximum. The process is then 
repeated. The same approach can be used for minimization, in which case the terminology steepest descent is used. 
Starting at (x0, x0, x0, x0) the coordinates of any point in the gradient direction can be expressed as follows: 
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where h,k,l and m are distance along the I,j,k and l axis, and f is a function of x1, x2 , x3   and x4, and y, and the 
gradient is  
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To find the maximum, we would search along the gradient direction, that is, along direction of this vector. The 
function can be expressed along the axis as; 
 

f ( ) ),,,(,,, 4321 mlkhgxxxx = .                                                                                                                   . . . (7.0) 

 
Now we have developed a function along the path of steepest ascent. How far along this path do we move?. 
 
One approach might be to move along this path until we find the maximum of this function. This is the value of the 

step that maximizes g(h,l,k,m) and hence, f(x1, 432 ,, xxx ) in the gradient direction.  
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This method is called steepest ascent when an arbitrary step size h,l,k,m are used. If a value of a single step h* is 
found that brings us directly to the maximum along the gradient direction, the method is called the optimal steepest 
ascent.[5],[6] and [7]. 
 

Whether a maximum or a minimum occurs involves not only the first partial derivatives of   f(x, 432 ,, xxx ) with 

respect to x, 432 , xandxx but also the second partial derivatives. Assuming that these derivatives are continuous 

at and near the point being evaluated, the determinant can be computed: 
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Three cases can occur: 
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3.  If  thenH ,0<  f(x, 432 ,, xxx ) has a saddle point.(a saddle point is a point where all the first partial 

derivatives of a function vanish but which is not a local maximum or minimum. 
 

The quantity H  is equal to the determinant of a matrix made up of the second derivatives: 
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, is also known as the Hessian matrix of f(x, 432 ,, xxx )                               .. . (10.0a) 

Where yij = 
ji xx

f
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RESULTS 

 
Application of Newton’s procedure for multivariate optimization 
 
The above named method is now applied to our valid and statistically fitted model as follows; 
 
Recall from our seminar II that our selected model is the following: 
 
Y = 0.975 + 0.129 X1 + 0.0859 X2 - 0.166 X3 - 0.116 X4 + 0.0367 X1

2 - 0.0694 X3
2- 0.0170 X4

2 - 0.150 X1 X2 - 
0.0416 X1 X3 - 0.0842X1 X4 - 0.0876 X2 X3  + 0.0569 X2 X4 - 0.0134 X3 X4.  
                                                                                                                                                                             . ..(11.0) 
Now  
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4
4

y
x

f =
∂
∂

= - 0.116 – 0. 0340X4 – 0.0842X1 + 0.0569X2 – 0.0134X3. 

 
Now solving these equation using matlab 7.0, we obtain 
⇒X1 = - 0.5539  
      X2 = 0.1222 
      X3 = 0.5866 
      X4 = 02.0668 
 
Since Hx = y ⇒  x = yH-1 

 
Therefore, we have our matrix as follows: 
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0.0134 - 0.1388 - 0.0876 - 0.416 -

0.0569 0.0876 - 0   0.15 -

 0.0842 - 0.416 - 0.15 - 0.0734 

                                                             . . . (13.0) 

 
Now Det (H) = 0.0012 
 
This implies that our determinant is positive. i.e. Det (H) > 0. It clearly implies that this is a case of local minimum 
since condition 1 is satisfied hence the need to apply Steepest ascent. 
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Figure 1: Plot of N and P interactions with Yield 

 



A. Ahmed et al                                Adv. Appl. Sci. Res., 2013, 4(2):1-8       
 _____________________________________________________________________________ 

5 
Pelagia Research Library 

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0.8

1

1.2

x
1

model1(x1,0,x3,0)

x3

 
Figure 2 plot of N and S interaction aganst yield. 

 

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

0.8

0.9

1

1.1

1.2

x
1

model1(x1,0,0,x4)

x
4

 
 

Figure 3: Plot of N and K agaist response Y 
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Figure 4: plot of P and S against response Y 
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Figure 5; Plot of S and K against response Y 
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Figure 6: Plot of S and K against response Y 
 

DISCUSSION 
 

This section interprets the application of the steepest ascent for the optimization of multivariate experimental 
process. In the initial iteration. The equations and procedures explained above are all translated into excel 
spreadsheet as presented in the table attached . 
 
Since the various combinations of the factors can be plotted in a single figure, the various interactions based on the 
aspect of the optimal data obtained, six combination mesh grids are plotted as presented in figures 1 – 6 below. 
 
Figure 1 clearly shows the response Y against N and P. The optimum point is at N = 0.5 and P = 0.5 also. From 
figure 2 the combination of N and S shows that they have an optimal response at N = 0.5 and S = 0.5 with the 
response at 1.0. 
 
Figure 3 clearly depicts the optimum points of the response at 0.90 at the combination of N at 0.45 and K at also 0.5. 
While, figure 4 displays the combination of P and S. These combinations displayed a good and optimum response at 
the point 1.2 with a value of 1.0 for factor P and 0.5 for factor S respectively. Figures 5 and 6 displayed the optimum 
level of response at 1.0 and 1.1 respectively due to various combinations of S and K, and P and K at points 1.0 each.  
 

CONCLUSION 
 
From the result of the analyses conducted based on the attached table and as presented in the six figures 1 – 6, we 
can clearly see that optimum level is obtained for the response at the various combinations of the factors at points 
ranging from 1.02+0.05. 
 
The optimal response for all the various combinations of N,P,S and K  settings are within the values of  0.48+0.05, 
0.83+ 0.17, 0.67+ 0.17 and 0.83+ 0.17 respectively. 
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