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ABSTRACT 
 
 Slip effect on the peristaltic flow of a fractional second grade fluid through a cylindrical tube is analyzed. Long 
wavelength and low Reynolds number assumptions are used to linearise the governing equations. The expression for 
velocity is obtained. The expression for pressure rise, pressure gradient and friction force have been obtained. The 
expressions for fractional parameter, material constant, time, amplitude and slip parameter on the axial pressure 
gradient and friction force are discussed and illustrated graphically through a set of graphs.  
  
Keywords: Peristalsis; Fractional second grade model; Pressure; Friction force; Slip effect; Caputo’s fractional 
derivative. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Peristaltic transport is a form of material transport induced by a progressive wave of area contraction or expansion 
along the length of a distensible tube, mixing and transporting the fluid in the direction of the wave propagation. It 
plays an indispensable role in transporting many physiological fluids in the body such as movement of chime in the 
gastrointestinal tracts, the swallowing of food through esophagus and the vasomotion of small blood vessels. Many 
modern mechanical devices have been designed on the principle of peristaltic pumping for transporting fluids 
without internal moving parts. The idea of peristaltic transport in mathematical point of view was first coined by 
Latham[1]. The initial mathematical model of peristalsis obtained by train of sinusoidal waves in an infinitely long 
symmetric channel or tube has been investigated by Shapiro et.al [2] and Fung and Yah i[3] . Subba Reddy et.al [4] 
have studied on slip effects on the peristaltic motion of a Jeffrey fluid through a porous medium in an asymmetric 
channel under the effect magnetic field. Rathod and Asha [6-9]have studied the peristaltic transport of a couple 
stress fluid in a uniform and non uniform annulus, effect of couple stress fluid and an endoscope in peristaltic 
motion, effect of magnetic field and an endoscope on peristaltic motion in uniform and non-uniform annulus and 
peristaltic transport of a magnetic fluid in a uniform and non-uniform annulus. Hayat and Ali have studied on 
Peristaltic motion of a Jeffrey fluid under the effect of magnetic field in tube. Hayat et.al. have studied the slip effect 
on peristalsis. Several studies [10-13]have made on slip effect on peristaltic transport. Some authors [14-17]have 
investigated unsteady flow of viscoelastic fluids with fractional Maxwell model, fractional generalized Maxwell 
model fractional, second grade fluid, fractional Oldroyed-B model, fractional Burgers model and fractional 
generalized Burgers’ model through channel/ annulus tube and solutions for velocity field and the associated shear 
stress are obtained by using Laplace transform, Fourier transform, Weber transform, Hankal transform discrete 
Laplace transform.  Reddy and Venkataramana[18]have studied the peristaltic transport of a conducting fluid 
through a porous medium in an asymmetric vertical channel. Ebaid[19]have studied the effects of magnetic field and 
wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel 
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Fractional calculus has encountered much success in the description of viscoelastic characteristics. The starting point 
of the fractional derivative model of non-Newtonian model is usually a classical differential equation which is 
modified by replacing the time derivative of an integer order by the so called Riemann-Liouville fractional calculus 
operators. This generalization allows defining precisely non-integer order integral or derivatives. In general, 
fractional second grade model is derived from well known second grade model by replacing the ordinary time 
derivatives to fractional order time derivatives and this plays an important role to study the valuable tool of 
viscoelastic properties.   
 
Peristaltic flow of a fractional second grade fluid through a cylindrical tube has been studied by Tripathi et al.[20]. 
Some important works [21-26] such as; Numerical and analytical simulation of peristaltic flow of generalized 
Oldroyd-B fluids, mathematical model for the peristaltic flow of chyme movement in small intestine, peristaltic 
transport of fractional Maxwell fluids in uniform tubes: applications in endoscopy, peristaltic transport of a 
viscoelastic fluid in a channel, numerical study on peristaltic transport of fractional biofluids model, a mathematical 
model for swallowing of food bolus through the esophagus under the influence of heat transfer have been studied. 
Recently, Tripathi et al.[27-28] have studied the peristaltic transport of a generalized Burgers’ fluid: Application to 
the movement of chyme in small intestine and the peristaltic flow of fractional Maxwell fluids through a channel 
under long wavelength and low Reynolds number approximations by using homotophy perturbation method and 
Adomian decomposition methods and reported the slip effects on peristaltic transport of fractional Berger’s fluids 
through a channel and solution is obtained by homotophy analysis method. Rathod and Pallavi [29-31] have studied 
the peristaltic transport of dusty fluid. Rathod and Mahadev [32-36] have studied the study of ureteral peristalsis in 
cylindrical tube through porous medium, the effect of magnetic field on ureteral peristalsis in cylindrical tube, effect 
of thickness of the porous material on the peristaltic pumping of a Jeffry fluid when the tube wall is provided with 
non- erodible porous lining, peristaltic flow of Jeffrey fluid with slip effects in an inclined channel and a study of 
ureteral peristalsis with fluid flow.   
 
Rathod and Laxmi [37-40] have studied the slip effect on peristaltic transport of a conducting fluid through a porous 
medium in an asymmetric vertical channel by Adomian decomposition method, peristaltic transport of a conducting 
fluid in an asymmetric vertical channel with heat and mass transfer, effects of heat transfer on the peristaltic MHD 
flow of a Bingham fluid through a porous medium in an inclined channel and effects of heat transfer on the 
peristaltic MHD flow of a Bingham fluid through a porous medium in a channel. Rathod and Sridhar [41-44] have 
studied the peristaltic transport of couple stress fluid in uniform and non-uniform annulus through porous medium, 
Peristaltic pumping of couple stress fluid through non-erodible porous lining tube wall with thickness of porous 
material, peristaltic flow of a couple stress fluids through a porous medium in an inclined channel and effects of 
couple stress fluid and an endoscope on peristaltic transport through a porous medium.  Rathod and Anita [45-
47]have studied the effect of magnetic field on the peristaltic flow of a fractional second grade fluid through a 
cylindrical tube, peristaltic flow of a fractional second grade fluid through inclined cylindrical tube and peristaltic 
flow of a fractional second grade fluid through a cylindrical tube with heat transfer.    
 
In this paper, we study the slip effect on peristaltic flow of a fractional second grade fluid through a cylindrical tube 
under the assumptions of long wavelength and low Reynolds number has been investigated. Caputo’s definition is 
used to find fractional differentiation and numerical results of problem for different cases are discussed graphically. 
The effect of fractional parameter is material constant and time on the pressure rise friction force across one 
wavelength is discussed. This model is applied to study the movement of chyme through small intestine and also 
applicable in mechanical point of view.   
 
Caputo’s definition 
 Caputo’s definition [23] of the fractional –order derivative is defined as    
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Where, α is the order of derivative and is allowed to be real or even complex, b is the initial value of function f. For 
the Caputo’s derivative we have 
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MATHEMATICAL FORMULATION 
The constitutive equation for viscoelastic fluid with fractional second grade model is given by 
 

.
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αµ λ ∂= + ϒ ∂                                                                                              (1) 
 

Where 1, , ,t s andγ λ  is the time, shear stress, rate of shear strain and material constants respectively, µ is 
viscosity, and α is  the fractional time derivative parameters such that 0<α≤1. This model reduces to second grade 
model with α=1, and Classical Navier Stokes model is obtained by substituting λ1 =0. 
 
The governing equations of motion of viscoelastic fluid with fractional second grade model for axisymmetric flow 
are given by 
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For carrying out further analysis, we introduce the following non –dimensional parameters. 
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Where ρ is fluid density, δ is defined as wave number, λ,r.t,u,v,φ,p and Q stand for wavelength, radial coordinate, 
time, axial velocities, wave velocity, amplitude, pressure, and volume flow rate respectively in non-dimensional 
form. 
 
Introducing the non-dimensional parameters and taking long wavelength and low Reynolds number approximations, 
Eq. (2) reduce to 
 

2

1 2

1
1

p u u

x t r r r

α
α

αλ  ∂ ∂ ∂ ∂= + +  ∂ ∂ ∂ ∂  
                                                                                                       (6) 

 

0
p

r

∂ =
∂

                                                                                                                                          (7) 

 



Rathod V. P. and Anita Tuljappa                               Adv. Appl. Sci. Res., 2015, 6(3):101-111        
 _____________________________________________________________________________ 

104 
Pelagia Research Library 

( )1
0

rvu

x r r

∂∂ + =
∂ ∂                                                                                                                  (8) 

 
Boundary conditions are given by 
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Integrating Eqn (6) with respect to r and using boundary condition of Eqn (9) we get 

2

1 2

2

2

2

1

1
1

2

p u u

x t r r r

p u u
r A r

x r r

r p u u u
c Ar dr dr

x r r r

α
α

αλ  ∂ ∂ ∂ ∂= + +  ∂ ∂ ∂ ∂  

 ∂ ∂ ∂= + ∂ ∂ ∂ 

∂ ∂ ∂ ∂ + = − + ∂ ∂ ∂ ∂ 
∫ ∫

 

2

12

r p u
c Ar

x r

∂ ∂+ =
∂ ∂                                                                                                                             (11) 

 

Using boundary condition 0 0
u
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We get c1=0                                                                                                                              (12) 
 
Put eqn (12) in eqn (11) 
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Again, integrating eqn (13) with respect to r we get 
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Substituting  c2 in eqn (14) we get 
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The volume flow rate is defined as 0

2
h

Q rudr= ∫
which by virtue of eqn (15) reduces to 
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The transformations between the wave and the laboratory frames, in the dimensionless form, are given by 

21, , 1, ,X x R r U u V v q Q h= − = = − = = −                                                                             (17) 
 
Where the left side parameters are in wave frame & the right side parameters are in the laboratory frame. 
 
We further assume that the wall undergoes contraction & relaxation is mathematically formulated as 

21 cos ( )h xϕ π= −                                                                                                                       (18) 
 
The following are the existing relation between the averaged flow rate, the flow rate in the wave frame & that in the 
laboratory frame. 
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Eqn(16) in view of eqn(19) becomes 
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Using Caputo’s definition in eqn (20) we get 
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The pressure difference and friction force across one wavelength are given by
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The above integrals numerically evaluated using the MATHEMATICA software. 
 

 
 
 
 



Rathod V. P. and Anita Tuljappa                               Adv. Appl. Sci. Res., 2015, 6(3):101-111        
 _____________________________________________________________________________ 

106 
Pelagia Research Library 

RESULTS AND DISCUSSION 
 

In order to study the effect of various parameter( )α , material constant(λ ),time( )t , amplitude( )φ  and slip 

parameter(k),on pressure rire ( )p∆  and friction force per wavelength( )F ,the integrals Eqs(22) and (23) are 

solved numerically. Numerical simulation here is performed using the computational software Mathematica. 
 

 
Figure.1.Pressure verses averaged flow rate for various values of α  at 0.2, 0.4, 0.5, 1 0.1x t and kφ λ= = = = =  

 
Figure.2.Pressure verses averaged flow rate for various values ofλ at 0.2, 0.2, 0.4, 0.5 0.6x t and kα φ= = = = =  

 

Fig.1-5depict the variation of pressure( )p∆  with averaged flow rate Q  for various values of 1, , ,t and kα λ φ . It is 

observed that there is a linear relation between pressure and averaged flow rate, also increases in the averaged flow 
rate reduces the pressure and thus maximum averaged flow rate is achieved at zero pressure and occurs at zero 
averaged flow rate. 
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Figure.3.Pressure verses averaged flow rate for various values of t at 0.2, 0.2, 0.4, 1 0.6x and kα φ λ= = = = =  

 
 

Figure.4.Pressure verses averaged flow rate for various values of φ at 0.1, 0.2, 0.5, 1 0.2x t and kα λ= = = = =  

 
Figure.5.Pressure verses averaged flow rate for various values of k at 0.1, 0.2, 0.4, 0.5, 1x t andα φ λ= = = = =  
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Figue.6.Friction force verses averaged flow rate for various values of α at 10.25, 0.4, 1, 0.5, / 4x φ λ η θ π= = = = =  

 

Figure.7.Friction force verses averaged flow rate for various values of 1λ at 10.25, 0.4, 0.2, 0.5, / 3x φ α η θ π= = = = =  

 

Figure.8.Friction force verses averaged flow rate for various values of t at 10.25, 0.6, 0.2, 0.5, / 3x φ α η θ π= = = = =  

Fig.1 shows that the pressure rise p∆ with averaged flow rate Q  for various values of α 

at 0.2, 0.4, 0.5, 1 0.1x t and kφ λ= = = = = . It is observed that, pressure decreases with  increases of α for 
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pumping region( )0 ,p∆ > and as well as free- pumping( )0p∆ = and co-pumping( )0p∆ < regions with an 

increase in α .Also it can be noted that the fractional behavior of second grade fluid increases, the pressure for flow 

diminishes. The variation of pressure risep∆ with Q  for various values of λ  at 

0.2, 0.2, 0.4, 0.5 0.6x t and kα φ= = = = =  is presented in Fig.2. It is revealed that the pressure increases 

with increasingλ . This means that viscoelastic behavior of fluids increases, the pressure for flow of fluids 

decreases, i.e. the flow for second grade fluid is required more pressure than that for the flow of Newtonian 
fluids ( 0)λ → . 

 

 

Figure.9.Friction force verses averaged flow rate for various values of φ  at 10.25, 1, 0.2, 0.5, / 4x λ α η θ π= = = = =  

 

 

Fig.10.Friction force vs. averaged flow rate for various values of k at 10.25, 1, 0.2, 0.5, 0.6x λ α η φ= = = = =  

 

Figs.3 depicts the variation of pressure rise p∆ with averaged flow rate Q  for various values of t 

at 0.2, 0.2, 0.4, 1 0.6x and kα φ λ= = = = = .It is found that pressure increases with an increase in the 

magnitude of the parameter t. 
 

Figs.4 depicts the variation of pressure rise p∆ with averaged flow rate Q  for various values of φ  

at 0.1, 0.2, 0.5, 1 0.2x t and kα λ= = = = = .It is observed that, the pressure increase with increasing 
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amplitude ratio φ.  
 

Fig. 5 shows the relation between pressure rise p∆ and time averaged flux Q  for different  values of k 

with 0.1, 0.2, 0.4, 0.5, 1x t andα φ λ= = = = = .In the pumping region (p∆ >0), the time averaged flow 

rateQ  Decreases by decreasing the k. Whereas in the free pumping ( p∆ =0) and co-pumping (p∆ <0), region Q  

increases by decreasing the k. 
 

Figs.6-10 shows the variations of fractional force (F) with the averaged flow rate ( )Q under the influences of all 

emerging parameters such as, , ,t and kα λ φ . From figures, It is observed that the effects of all parameters on friction 

force are opposite behavior as compared to the pressure rise. 
 

CONCLUSION 
 

In this article, we have presented a mathematical model that describes a Slip effect on peristaltic flow of a fractional 
second grade fluid through a cylindrical tube. The governing equations of the problem were solved analytically 
under the assumption of long wavelength and low Reynolds number. The Caputo’s definition is used for 
differentiating the fractional derivatives. Closed form solutions are derived for velocity and slip parameter. We 
conclude with following observations: 
• Pressure rise decreases with an increase in fractional parameter α. 
• The quantitative behavior of , ,tλ φ on the pressure are similar. 
• It is observed that friction forces have an opposite behavior to that of pressure rise. 
• The pressure rise first decreases and then increases with increase in k. 
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