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ABSTRACT

Computer simulation was employed here to studyptbeess of heating in space plasmas. In the simomathe
one-dimensional particle-in-cell simulation metheds used and the Maxwell’s Equations solved ugiegHinite
Difference Time Domain (FDTD) method. The modified-dimensional Kyoto University electromagnetidipke

code with relativistic effect consideration (MATLA®rsion) was used. The simulation results obtaiseal plot of
energy, which shows heating at the beginning of dimeulation with the system reaching its thermodyica
equilibrium later in the simulation. Other resultbtained where the velocity vector space plot shgva drift

maxwellian nature, indicating collisions betweentmdes and two other Spatial Electric and Magndtds plots.
The results in the simulation showed that the Inggaith the space plasmas are caused mainly by binallisions
between the particles.

INTRODUCTION

Plasma mostly resembles ionized gas. It is oneheffour states of matter after gas (That is Solgisd-Gas-
Plasma). Most of the matter in the universe islasima state (99.996% of the universe). Howeverjwedan a small
region of the universe where matter is predomiyasillid, liquid and gas. Interest in the properidégplasma is
quite recent and has mainly been stimulated byniggortance in space physics and controlled nucfesion
(Liman, 2008).

It is generated by applying a sufficiently highattee field to a gas, which partially breaks it dowurning some
atoms or molecules into positive ions and geneagdti@e electrons (When they loses electrons fragir thutermost
shells). These free charges make the plasma elgbtrconductive, internally attractive and strongepulsive to
electromagnetic fields and surfaces (Fitzpatri€lQ7).

2.1 Plasma Simulations

For plasma with a large number of degrees of freeduarticle simulation using high-speed computens offer

insights and information that supplement those eghiby traditional experimental and theoretical apphes. The
technique follows the motion of a large assemblgludrged particles in their self-consistent elecand magnetic
fields. With proper diagnostics, these numericgleziments reveal such details as distribution fionst, linear and
nonlinear behaviour, stochastic and transport pimema, and approach to steady state. It can alssdxin the
interpretation of experiments (Dawson, 1983).
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Plasma consists of positive charged ions and negatiarged electrons. Since; M> m. (m=ionic mass, ¥
electronic mass) there are many intrinsic time scales in a plasystem even in a uniform background
environment. For time scale less than the intritisi® scales, it is hard for the plasma to reatheamodynamic
equilibrium state. Present plasma simulation cartesbe classified based on their phase spaceuties. Note
that the so-called particle-code simulation is edla multiple-fluid simulation. A simulation patgdn the particle-
code simulation is indeed a fluid element in thagghspacex(v ) (Lyu,2007).

Currently, optimum numerical schemes which are sanmodern fast CPU, large memory parallelized cdepu
systems led to a revival of kinetic codes whicledlly solve the Vlasov-equation describing collezttollisionless
plasmas. For many years due to restricted compeseurces, collisionless plasmas have been sindutaténly by
re-graining the flow of the distribution function$ phase space via introducing macro-particles prarmicle-in-cell
(PIC) approach ( Buchner, 2007).

The Vlasov equation describes the evolution ofdisé&ribution function of particles in phase spax@)( where the

particles interact with long-range forces, but vehnehortrange “collisional” forces are neglectedspgace plasma
consists of low-mass electrically charged partictesl therefore the most important long-range fomging in the
plasma are the Lorentz forces created by electroptagfields. What makes the numerical solutionhe Viasov

equation a challenging task is that the fully thd@mensional problem leads to a partial differdndiguation in the
six-dimensional phase space, plus time, makingnd even to store a discretised solution in a caerfsumemory (

Elliasson, 2002).

The fluid (continuum) approach is commonly useddionulation of plasma phenomena in electrical cltigges at
moderate to high pressures (>10’s mTorr). The rifggmn comprises governing equations for charged maeutral
species transport and energy equations for electeomd the heavy species, coupled to equations Her
electromagnetic fields. The coupling of energy frira electrostatic field to the plasma speciesasleted by the
Joule heating term which appears in the electrah laeavy species (ion) energy equations. Proper ncahe
discretization of this term is necessary for actudescription of discharge energetics; howevesgrdtization of
this term poses a special problem in the case stfuctured meshes owing to the arbitrary orientatibthe faces
enclosing each cell(Deconinek al, 2009).

—

A common approach to modeling kinetic problems lasma physics is to represent the plasma as afset o
Lagrangian macro-particles which interact throughgtrange forces. In the well-known particle-inkc@?IC)
method, the particle charges are interpolatedneesh and the fields are obtained using a fast Gwvisslver. The
advantage of this approach is that the electrastatces can be evaluated in time , where as thebeu of macro-
particles, but the scheme has difficulty resolvistgep gradients and handling nonconforming domaiisss a
sufficiently fine mesh is used(Christlieb, 2006).

How Particle-In-Cell Works

For many types of problems, methods of PIC aretively intuitive and straight- forward to implementhis
probably accounts for much of its success, pagitylfor plasma simulation, for which the methogitally
includes the following procedures:

i.Integration of the equations of motion.

ii.Interpolation of charge and current source teimthe field mesh.
iii.Computation of the fields on mesh points.
iv.Interpolation of the fields from the mesh to feeticle locations.

Models which include interaction of particles omfyough the average fields are called PM (particéssh). Those
which include direct binary interactions are PPrfpke-particle). In this method, each of the Ntjmdes potentially
interacts with every other particle, and each fqrak is equal and opposite giving N(N-1)/2 unidarces (Nocito,
2010). Models with both types of interaction arethPP-PM or PM. Since the early days, it has been recognized
the PIC method is susceptible to error from soechtliscrete particle noise (Okuda, 1972).

Super-Particle
The real system studied is often extremely largéeims of particles they contain. In order to makaulations
efficient or at all possible, so-called super-pes are used. A super-particle (or macro parficgiea computational
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particle that represents many real particles; iy imamillions of electrons or ions in the case lasma simulation,
or for instance, a vortex element in a fluid sintiola.

The Particle Mover

Even with super-particles, the number of simulapedticles is usually very large (>10s), and oftba particle
mover is the most time consuming part of PIC, sih¢as to be done for each particle separatelysTthe pusher
is required to be of high accuracy and speed anchnedffort is spent on optimizing the different sctes. The
schemes used for the particle mover can be sptittimo categories, implicit and explicit solvershifé implicit
solvers calculate the particle velocity from theeally updated fields, explicit solver use only dle: force from the
previous time step, and are therefore simpler astef, but require a small time step. In this wink,implicit Boris
scheme is used.

The Field Solver
The most commonly used methods for solving Maxwedtjuations (are more generally, partial diffeadrgguation
(PDE)) belongs to one of the following three catego

Finite Difference Methods (FDM) or Finite Differemd@ime Domain (FDTD)
Finite Element Methods (FEM)
Spectral Methods

Particle and Field Weighting

The name” particle-in-cell” originates in the wathat plasma macro-quantities (number density, ecurr
density,(etc) are assigned to simulation parti¢les particle weighting. Particles can be situaéegwhere on the
continuous domain, but macro-quantities are caledlanly on the mesh points, just as the fields Boeobtain the
macro-quantities, a given “shape” determined kg shape function ${(X) is defined. Wherex is the coordinate
of the particle and X the observation point.

The fields obtained from the field solver are detieed only on the grid points and can’'t be useédlly in the
particles mover to calculate the force acting origlas, but have to be interpolated via the fikeighting:

E(X) =X E; S(x; — X) (3.24)

Where the subscript i labels the grid point. Toueesthat the forces acting on particles are selstently
obtained, the way of calculating macro-quantitiesf particle positions on the grid points and iptéating fields
from grid points to particle positions has to bagisted too, since they both appear in Maxwell'sagigns. Above
all, the field interpolation scheme should consenamentum (Tskhakaya, 2008).

MATERIALS AND METHODS

Methodology

One-dimension electromagnetic particle code is eygal in this work. The whole plasma system is a#rgd to
have one dimensional distribution of particle witlagnetic field influence consideration. This isatigle in cell
simulation of the space plasma which is commonbdus the study of plasma behavior. The heatinggs® was
studied from the diagnostic plots in the output.

Position computation: The particle position X is computed and advancedgugelocity V,. In one time step t,
the particle position are advance twice each bglftime stepAt/2 as

POEED Gl (3.1)

Xt+At — Xt+At/2 + th+At/2§ (32)

The above iteration is obtained from the numescdlition of the equation.
dx

il (3.3)
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Velocity computation: For high enery particles with velocities close he tspeed of light, we have to solve the
relativistic equation of motion

%(mv):q(E+va) 43.
Where m=ymy, m is the rest mass, ands the Lorentz factor given by.
1
y = = (3.5)
1+ =z
We defineu y v (3.6)
c
UE Tarwe Y 37
Solving for v, we have
= °
kel (3.8)
Equation (3.4) is rewritten as
du_ q_ c
dc mO( + Je2r |2u xB) 3.9
Defining a modified magnetic field as
— c
B,= —mB (3.10)
du g
We obtalnz = mO(E +UuxRB) (3.11)
The difference form of equation (3.11) is
t+At -4t/ t+8t/, =Rt/
VT o 4 g, U0 R g (3.12)
At mo
We apply the Bunemann-Boris method as:
Step 1:
Ut = <yt (3.13)
ca-pt-2re|
Step 2:
U]I:L — Ut—At/Z + q/mo %Et (314)
Step 3:
Bt =—-__pt (3.15)
Jez+lutf?
Step 4:
Ut = Ut + Y S UL X B (3.16)
Step 5:
— gyt 2 t' t 4 At
Uz=Ur + 1+(Bﬁmi0At/2)2 Umg 2 (3.17)
Step 6:
At
Uttz= Ut + LRt 3.18)
mo 2
Step 7:
UtHAt = ¢ ptHae (3.19)
CZ—|1;H'M/2|2
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B! Is computed front/f andB:.

In the relativistic code, we initialize particleloeities so that the following distribution functids realized in the
momentum space (UUy U,)

Wi—Va)? Wi-Vay)?
F (U, U) exp (U570 Lsbauy (3.20)

Each particle is assigned with a momentum U 5z (4, U;), which is converted to velocity

V = (va VY! VZ) be

V=Uly=—ort U (3.21)

2
C2+Uy* +US+UZ

As for the diagnostics, the kinetic energy of epatticle is calculated by
Te = mé-moc? (3.22)

Te = (-1) mc? (3.23)

The sum of the kinetic energy is taken for all jpées in the simulation system and magnetic fieldrgy densities
in the system. We divide the sum by the lengtlhefsystem to obtain the averaged kinetic energggitle The
sums of the electric and magnetic field energiegtaken for all grid points forming the simulatigystem. Dividing
them by the number of grid points, we obtain theraged electric and magnetic field energy densiti¢se system.
Charge density computation: The charge density; is computed at a grid point at Xy

pi= = 257 a; W (5—X) (3.25)
Where W, is a particle shape function given by

W(x):l-%; IX | < Ax
=0 ;o IX > Ax (3.26)

Current density computation: The current density,d calculated based on charge conservation metsfysng
the continuity equations of charge

t+AL/2 G t4+At/2 _ DX, tyAt, ¢t
]x,i+1/2 Ixji-1/2 'E(Pi +p; ) (3.27)

The current densitieg and J are computed by

st = 2 GV W (g-Xiuar) (3.28)

The J computed at the half-integer grids are relocabefdlt-integer grids by

]y,i - Jyi-1/2 :]y,i+1/2 (3.29)
With the components of J, we trace the time evofutif electromagnetic fields E and B by solving MaX'’s
equations with the finite-difference time-domafirDTD) method.

Fields Computations: Electromagnetic processes in space plasma arergal/by Maxwell’s equation

VxB=pJ+~2% (3.30a)

c2 ot
_ s
VXE=-2 (3.30D)
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V.E =p/ & (3.30c)
vV.B=0O (3.30d)

Where, Jp, C, & and , are the current density, light speed, electriomiigivity and magnetic permeability
respectively.

In this simulation, we defing, andy, arbitrarily so as to satisfy the relation
1
€olo = P (331)

And hence, we adopt
€= 1, andy = C—lz (3.32)

E-Field: The initial electric field is calculated from
V.E =p/e, (3.33)

In difference form, one-dimensional equation istteri as
Exivire - Beiae = S—SAX (3)34

The electric field is advanced in time by integrgtone of the Maxwell's equations
E=dvxB-J (3.35)

The above equation, we can rewrite for one-dimeraisystem as

OEx _

%oy (3.36)
9Ey _ 0B,

—2=- 85 -3 (3.37)
0E, _ 2 0Ey

O (3.38)

These equations are integrated for one time steft of

B-Field: The magnetic field B is advanced in time by int¢éiggaone of the Maxwell’'s equations
oB _

S =-VxE (3.39)

Rewriting the one-dimensional form of the aboveatiun as
9By _ 0E,

aat ) (3.40)
0B, _ OEy
at  ox (3.41)
Since from Maxwell’s equation§¥, B =0, (3.42)
With one-dimensional form a%%: 0, B,=0 (3.43)
Input Parameters
The following input parameters are specified inphegram
* AX: Grid Spacing
* AT: Time step
* CV: Speed of light
» WC1: cyclotron frequency of species 1
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ANGLE: angle between the stati¢B taken in the X-Y plane.
* NX: Number of grid points
* N Time: number of time steps in a simulation run.
* NS: number of particle species.
* QM (i): charge -to- mass ratig/oy; of species.
* WP(i): plasma frequency of species is defined by
.q2.
Wy = ’“qul (3.44)
Where nand m, are number density charge and mass of speaiespiectively.
» VPE (i); perpendicular thermal velocity of spedies
* VPA (i); parallel thermal velocity of species i.
» VD (i): drift velocity of species i.
* PCH (i) pitch anglep (degrees) species i defining parallel and perpermati drift velocities \, andV,, (i-e
parallel and perpendicular components).
* NP (i): number of super particles for speciesthi@ simulation system.
* AJAMP: the amplitude of an external currept.,d placed at the centre of the simulation system.
» WJ: the frequency of the external current,d
» |IEX: control parameter for electrostatic option.
* NPLOT: number of diagnostics to be made througtsthmilation run.

Renormalization of Input Parameters

In order to achieve computational efficiency, itnecessary to reduce the number of operation iedoin the
difference equations of the fields and particlésc& the operations of multiplication and divisiare performed
frequently with the grid spacingX and the half-time stepit/2, we renormalize distance and timeA) and At/2
respectively.

Simulation Set Up
The system is set up as unmagnetized plasma witdryasmall thermal velocity, where the Debye lemgh is
made much smaller than the grid spacing and Cooramdition, CA t <Ax is satisfied.

The input parameters are chosen as follows:

Ax=1 At = 0.04 NX =256 NTIME =512 CV=20 WC=0ANGLE=0 NS=2
NP =4096 WP =4 QM=-1 VPA=1 VPE=1 PCH=0,60 IEX=1 AJAMP =0
WJ =0 NPLOT=256 ICOLOR =1  IPARAM =1Vyax =20 Fax =5 Bax =0.5

Grid Assignment

We define full-integer grids at  Aix (i =1,2,3,4........... N) and half integer grids at (i+ 1 Ax. The E, B, J, and
p are defined at full-integer grids, and E,, B,, J, J, at the half -integer grids. This assignment ofnl B realizes
centered difference form for the spatial derivagive Maxwell's equations. The componentsJ), J, of J must be
assigned to the same grid gs g, and E,

Time Step Chart

The equation of the field and particles are advdringime based on the leap-frog sequence methad#fine a
full — integer time Mt and a half- integer time  (n+1/2\) with a time stepAt. Basically, the electric field E at the
full-integer and the magnetic field B at the halfiteger time are integrated in time by the leagfmethod.
However, the magnetic field B is advanced twiceablalf- time stepAt/2 to obtain intermediate values for the
particles pushing field at the full-integer timehelparticle positions x at the full — integer tiara velocity v at the
half -integer time are also advance by the leag-frethod.
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Flow Chart

‘ariabia definiion
Mamary alocatan
Fiadipalicle dals infflalizafion

.

Advancing particle position and velocity

Fj = wj -+ xj
dim,w)
I_er = qj[E +v; x B]
dxy v
Grid -= particle ar i Particle == gri
| . grid
(E. B}i —=Fj (x.v)j —= [, J)i

4 E"lT increment ]

5

?HE=-E

1 8E
"I-'xB—.uD_,Hr: o

Advancing grid quantities
[ [E.Bﬁc:—[H..l}i }q—

Y

Job completion

Diagnastics

RESULTS AND DISCUSSION
The result for the “computer simulation of spacaspta heating” using one-dimensional electromagrmetiticle

code is presented. The simulation runs for a sitimaime of 20.480. It consists of four plots; Egg Velocity
vector space, Spatial Magnetic and Electric figlidgs as in figures 4.1, 4.2, 4.3 and 4.4 respeltiv
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Time: 20.480/20.480

_
100 ATf\—

0 5 10 15 >0
Time

Energy

Figure 4.1: Energy-Time Plot

-20 ¢

Figure 4.2: Velocity Vector Space Plot

Ds 1 'l

0 200 400

Figure 4.3: Spatial Magnetic Field Plot
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Figure 4.4: Spatial Electric Field Plot
CONCLUSION

In this computer experiment to study the heatingpace plasmas, Maxwell's equations were solvedenigally
with the equations of fields and particles beingated in time based on the leap-frog sequenceatieffhe
whole simulation was carried out using the Modiftede-Dimensional Kyoto University electromagnetartiele
code (MATLAB Version), with relativistic effect caideration. The system was initialised as Low-Dgnglasma
with some compromised features (Low temperatureglldbebye length, low thermal velocity).

The plasma was seen to heat up in the beginnitigeadimulation in figure 4.1 and the spherical e&jovector plot
in figure 4.2 indicates collision behaviour of thiesma particles. The spatial electric and magrietids variations
are observed to be sinusoidal as figures 4.3 ahdhtw.

Thus, the heating in the space plasmas is caus#dtelpllisions between the plasma particles amdé¢he spatial
variations in the electric and magnetic fields.

The One-Dimensional PIC method was chosen folintplgcity and convenience, not because it is plgisié real
system is a three-Dimensional system. Though itn@@e complex to simulate a Three-Dimensional system
considering the time and memory requirements, the-Dimensional PIC Plasma heating simulated in wuosk
gives the foundation for the simulation in Threar@nsional PIC and other simulation methods like Mkl
Hybrid simulation methods
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