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ABSTRACT        
 
The problem of modified thermosolutal convection of the Veronis’ and Stern’s type configurations is considered in 
the present paper.  Semi -circle theorems that prescribe upper limits for the complex growth rate of oscillatory 
motions of neutral or growing amplitude are derived. The limits so obtained naturally culminate in sufficient 
conditions precluding the non-existence of such motions. The results obtained herein significantly improve upon the 
earlier results derived in this direction.  
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INTRODUCTION 
 

The thermohaline convection problem has been extensively studied in the recent past on account of its interesting 
complexities as a double diffusive phenomenon. The study is important because of its direct relevance in many 
problems of practical interest in the field of oceanography, astrophysics, geophysics, limnology, biomechanics and 
chemical engineering etc. For a broad and a recent view of the subject one may be referred to [1]. [2] formulated a 
novel way of combining the governing equations and boundary conditions for each of the   [3] and [4] thermohaline 
configuration and derived a semi- circle theorem prescribing upper limits for complex growth rate of an arbitrary 
oscillatory perturbation neutral or unstable.  
 
The effects of flow parameters on the velocity field, temperature field and concentration distribution have been 
studied by [5] and results are presented graphically and discussed quantitatively on the problem of viscous 
dissipation effects on unsteady free convection and mass transfer flow past an accelerated vertical porous plate with 
suction. [6] have investigated the problem on hydromagnetic natural convection flow of an incompressible 
viscoelastic fluid between two infinite vertical moving and oscillating parallel plate The instability problem of 
magnetorotatory thermosolutal convection of the Veronis and Stern type has been examined by [7] taking in to 
account the Dufour effect and  semi-circle theorems are derived, that prescribe upper limits for complex growth rate 
of oscillatory motions of  neutral or growing amplitude. [8] has studied the effect of rotation on thermosolutal 
convection in a compressible couple-stress fluid through porous medium and concluded that the stable salute 
gradient and rotation introduce oscillatory modes in the system, which were non-existent in their absence. 
 
 [9] in their investigation pointed out that the Rayleigh’s utilization of the Boussinesq approximation overlooks a 
term in the equation of heat conduction. This term finds its place on account of the variations in specific heat at 
constant volume due to variations in temperature. As a consequence of which, in the usual circumstances it cannot 
be ignored if the Boussinesq approximation were to be consistently and relatively more accurately applied 
throughout the analysis. The essential argument on which this term finds a place in the modified theory is this that it 
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is the temperature differences which are of moderate amounts but not necessarily the temperature itself. The 
incorporation of this term into the calculations adequately completes the qualitative and quantitative gaps in 
Rayliegh theory. 
 
Theorem  12 and 13 in [9] yields in case of Veronis and Stern’s thermohaline configurations upper limits for the 

growth rate of an arbitrary oscillatory perturbation neutral or unstable for the case 0ˆ2 =α ,which provides  natural 
extension of the earlier results of Banerjee et al[2] These results are obviously not derivable by the methods adopted 

by Benerjee et al when 0ˆ2 ≠α on account of non-trivial coupling between  wandφθ ,  in the equation of heat 

conduction. However, appropriate transformations can overcome this difficulty and can help in deriving the desired 
results. [10] extended the results of [9] contained in Theorem 12 and 13 for the modified thermohaline convection to 

the case when 0ˆ2 ≠α , through the construction of an appropriate transformation on the solution space of the 

problem and the derivation of suitable integral estimates. 
 
Motivated by these considerations, the present paper investigates the problem of modified thermosolutal convection 
of the Veronis’ and Stern’s type configurations.  Semi -circle theorems that prescribe upper limits for the complex 
growth rate of oscillatory motions of neutral or growing amplitude are derived. The limits so obtained naturally 
culminate in sufficient conditions precluding the non-existence of such motions. The results derived herein 
significantly improve upon the results of [9] and those of [10] obtained for finding the upper limits and non 
existence of oscillatory motions respectively.               
 
Mathematical formulation and Analysis 
Following [9], the relevant governing equations and the boundary conditions of the modified thermosolutal 
convection instability in their non-dimensional form are given by: 

( ) φθ
σ

222222 aRaRw
p

aDaD ST −=






 −−−   ,                                                          (1) 

( ) ( ) wRTwTpRTTpaD 3202032020
22 ˆ1ˆ1 ααφαθα −−−=−−−−   ,                             (2) 

τ
φ

τ
wp

aD −=






 −− 22   ,                                                                                               (3) 

 
together with the boundary conditions  
 

Dww ==== φθ0      at z =0 and z =1            (both boundaries rigid)                                       (4) 

or                                          

 wDw 20 ==== φθ      at z =0 and z =1         (both boundaries dynamically free)                    (5) 

or         Dww ==== φθ0      at z =0                                                                

           wDw 20 ==== φθ      at z =1 .                                                                                        (6) 

            ( lower boundary rigid and upper boundary dynamically free) 
 
The meanings of symbols from physical point of view are as follows; 
 
z is the vertical  coordinate, d/dz is differentiation along the vertical direction, a2 is square of horizontal  wave 

number, σ 
κ
υ=  is the thermal Prandtl number, τ

κ
η0=  is the Lewis number, 

κυ
αβ 4

1dg
RT =  is the thermal 

Rayleigh number, 
κυ

αβ 4
2dg

RS = is the concentration Rayleigh number, , w is the vertical velocity, θ  is the 

temperature, φ  is the concentration, p is the complex growth rate, 2α  is the coefficient of specific heat due to 

variation in temperature and 2α̂ is analogous coefficient due to variation in concentration.  
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In (1)–(6), z is real independent variable such that 0 ≤ z ≤ 1, 
dz

d
D =  is differentiation w.r.t z , a2 is a constant, σ > 

0 is a constant, τ  > 0 is a constant, TR and RS are positive constants for the Veronis' configuration and negative 

constants for Stern's configuration,
β
β ′

=3R  is the ratio of concentration gradient to thermal gradient,  p = pr + ipi 

is complex constant in general such that pr and pi are real constants and as a consequence the dependent variables 

w(z) = wr(z) + iwi(z), θ (z) = rθ (z) + iiθ (z) and φ (z) = rφ (z) + iiφ (z) are complex valued functions(and their 

real and imaginary parts are real valued).  
 
We now prove the following theorem:  
 

Theorem 1: If (p, w, θ , φ ),  p = pr + ipi, pr ≥ 0 0≠ip  is a non -trivial solution of equations           (1)–  (3) 

together with one of the boundary conditions (4)-(6)with, 0>TR  0>SR , 

( ) 11 20 >− ατ T  then 

)(4

1
2

2

στπ
σ

+
−′

< MBR
p T , 

where   
)(27

4
4 στπ

σ
+

′
=

BR
M T , ( ) 11

ˆ

20

320

−−
=′

ατ
τα

T

RTR
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T , B=( ) ( )






 −−

+−
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ατ
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320

20
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RT

T
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Proof:  Equation (2) upon utilizing (3) can be written as  
 

( ) ( ) ( )wTaDpRTTpaD 20
22

32020
22 1ˆ1 αφταθα −−=−−−−−   .                            (7)       

Using the transformations 
 

ww =~  

( )
φθ

τα
ατ

θ +
−−

=
320

20

ˆ

11~

RT

T
 

φφ =~
,                                                                                                                                             (7*) 

                                                                                                           
equations (1), (3) and (7) and the associated boundary conditions (4)-(6) assume the following forms:  

( ) φθ
σ

222222 aRaRw
p

aDaD ST ′−′=






 −−−   ,                                                       (8) 

( ){ } BwTpaD −=−−− θα 20
22 1 ,                                                                                            (9)  

τ
φ

τ
wp

aD −=






 −− 22   ,                                                                                     (10)  

with  

Dww ==== φθ0      at z =0 and z =1                                                                                     (11) 

or 

wDw 20 ==== φθ      at z =0 and z =1                                                                                   (12) 

or 
Dww ==== φθ0      at z =0 
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wDw 20 ==== φθ      at z =1 ,                                                                                               (13) 

where 

( ) 11

ˆ

20

320

−−
=′

ατ
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T

RTR
R T

T , SR′ = +SR ( ) 11

ˆ

20

320

−− ατ
τα

T

RTRT , B=( ) ( )






 −−

+−
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ατ
α

320

20
20 ˆ

11
11

RT

T
T >0  

and the symbol ~ has been omitted for convenience. 
 
Multiplying equation (8) by w* (the complex conjugate of w) and integrating the resulting equation over the vertical 
range of z, we get 
 

 ∫∫∫ ′−′=−−−
1

0

2
1

0

22222
1

0

.**)()(* dzwaRdzwaRdzw
p

aDaDw ST φθ
σ

                    (14) 

 
Taking the complex conjugate of equations (9) and (10) and using the resulting equations in equation (14), we get 
 
 

[ ]∫∫ +−−−
′
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1
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20
22
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2222

1

0
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B

aR
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σ
 

                                                            ∫ 




 −−′+
1

0

22
2

2 .*
*

)( dz
p

aDkaRS φ
τ

φτ                                                                                   

                                                                                                                                                           (15) 
 
Integrating equations (15) by parts a suitable number of times, using either of the boundary conditions (11)-(13) and 
one of the following inequalities 
 

dzDdzD nnn

21

0

1

0

2 )1(*∫ ∫−= ψψψ ,                                                                                          (16) 

where, 
 

,φθψ ==  for n = 0, 1 and ,w=ψ  for n = 0, 1, 2, 

 
we have 
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                        ([ ]∫ ++′−
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                                                                                                                                                         (17) 
 

Equating the real and imaginary parts of equation (17) equal to zero and using 0≠ip , we get 
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and   
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                                                                                                                                                        (19) 

Multiplying equation (19) by rp and adding the resulting equation to (18), we have 
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                                                                                                                                                       (20) 
Equation (19) implies that 
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 .                                                                            (21) 

Since  φθ ,,w  vanish at z = 0 and z = 1, therefore [11] yields 
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Combining inequalities (21) and (22), we get 
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Also upon using inequality (24), we have 
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Combining inequalities (25) and (26), we have 

( ) ∫∫
+≥+′

1
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221
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2222 dzw
a

dzaDaRS σ
πφφ

                                                                     (27) 

Further, utilizing Schwartz inequality, we have 
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                           (using (21)) 

which on simplification yields 

∫∫ ≥






1

0
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22 wwD π
                                                                                                               (28) 

Inequality (22) together with inequality (28) yields 

( ) ∫∫ +≥




 ++

1

0

2222
1

0

242222 2 dzwadzwaDwawD π
                                                 (29) 

Multiplying equation (9) by the complex conjugate of equation (9) and integrating the resulting equation over the 

vertical range of z, we get 

( )( ) ( )( )[ ] ∫∫ =−−−−−−
1

0

2
1

0

20
22

20
22 **1*1 dzwwBdzTpaDTpaD θαθα

 

Integrating the above equation by parts an appropriate number of times and using either of the given boundary 

conditions, we get 
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0
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20
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0
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                                                                                                                                                        (30) 

Since 0≥rp , therefore from equation (30) , we have 
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22 1 dzwBdzTpdzaD θαθ                                                                         

                                                                                                                                                        (31) 
Also emulating the derivation of inequalities (28) and (29) we derive the following inequality 
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Using inequality (32) in equality (31), we get 
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Now,  
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                                                            ( using inequalities (31) and (33) ) 
 
 Making use of inequalities (27), (29) and (34), equation (20) yields 
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Since, 0≥rp , it follows from inequality (35) that 

( )
( ) ( )

( )

0

1
1

1
1

0

2
1

0 2

1

222

2
20

2

22

2
2222 <















+

−
++

′
−







 ++ ∫∫ dzw

a

Tp
a

BaR
dzwa T

π

α
π

σ
τπ  

or   

( ) ( )
( ) TR

a

Tp

Ba

a ′<














+

−
++








 +
2

1

222

2
20

2

2

322 1
1

π

απ
σ

στ
.                                                            (36) 

Since, minimum value of  
( )
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 with respect  2a   is ,

4

27 4π
 it follows from inequality (36) that  
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Therefore, we have                    
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, therefore inequality (39) yields 

           ( ) ( )στπ
σπ

+
′

<+
2

22

4

BR
a T    .                                                                                            (40) 

Using inequality (40) in inequality (38), we get 
  

               ( )στπ
σ

+
−′

<
2

2

4

1MBR
p T . 

 
This completes the proof of the theorem. 
 
Theorem 1 from the point of view of hydrodynamic stability theory may be stated as: 
 

 The complex growth rate ir ippp += of an arbitrary oscillatory perturbation of growing amplitude ( 0≥rp ) in 

modified thermosolutal convection problem of Veronis’ type configuration lies inside a semi- circle in the right-half 

of the ir pp - plane whose centre is at the origin and whose radius is 

 

                          ( )στπ
σ

+
−′

2

2

4

1MBRT . 

Corollary 1.  If (p, w, θ , φ ),  p = pr + ipi, pr ≥ 0 0≠ip  is a non -trivial solution of equations (1)–  (3) together 

with one of the boundary conditions (4)-(6) with, 0>TR ,           0>SR , ( ) 11 20 >− ατ T  and M 1≤ , then 

                                              0<rp  . 
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Proof.  Follows from Theorem 1. 
Corollary 1 implies that oscillatory motions of growing amplitude are not allowed in modified   thermosolutal 

convection problem of Veronis type if M  ( )
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′

=
στπ

σ
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4 BRT  1≤  . 

 

Theorem 2: If (p, w, θ , φ ),  p = pr + ipi, pr ≥ 0 0≠ip  is a non -trivial solution of equations  (1)–  (3) together 

with one of the boundary conditions (4)-(6)with, 0<TR  0<SR , 

      ( ) 11 20 >− ατ T  then 
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2
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MTR
p S
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)11(27

14
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20
1 αστπ
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T

TR
M S

−+
−′

= . 

 

Proof: Replacing TR and SR , by - TR  and - SR  respectively in equation (1) and proceeding exactly as in 

theorem1, mutatis mutandis, we get the desired result. 
 
Corollary 2. If (p, w,θ ,φ ),  p = pr + ipi, pr ≥ 0 0≠ip  is a non -trivial solution of equations (1)–  (3) together with 

one of the boundary conditions (4)-(6) with, 0<TR , 0<SR , ( ) 11 20 >− ατ T  and 1M 1≤ , then 

                                              0<rp  . 

 
Proof.  Follows from Theorem2. 
 
Corollary 2 implies that oscillatory motions of growing amplitude are not allowed in modified   thermosolutal 

convection problem of stern’s type if { ( ) } 1
)11(27

14

20
4

20
1 ≤

−+
−′

=
αστπ

ασ
T

TR
M S

. 

 
Special case: It should be noted that results derived in Theorems 1 and 2 are valid for the case when 0ˆ2 ≠α in 

view of the transformation (7*). However, for the case when 02 =α  the governing equations (1)-(3) and boundary 
conditions (4) - (6) assume the following form: 
 

         ( ) φθ
σ

222222 aRaRw
p

aDaD ST −=






 −−−   ,                                                              (41) 

      ( ) ( )wTTpaD 2020
22 11 αθα −−=−−−   ,                                                                            (42)  

τ
φ

τ
wp

aD −=






 −− 22   ,                                                                                                                   (43) 

together with the boundary conditions  
 

Dww ==== φθ0      at z =0 and z =1            (both boundaries rigid)                                             (44) 

or                                          

 wDw 20 ==== φθ      at z =0 and z =1         (both boundaries dynamically free)                         (45) 

or         Dww ==== φθ0      at z =0                                                                
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           wDw 20 ==== φθ      at z =1 .                                                                                             (46) 

            ( lower boundary rigid and upper boundary dynamically free) 
 
Consequently, Theorem1 and Theorem 2 and their respective corollaries can be easily seen to assume the following 
form: 
 

Theorem 3: If (p, w, θ , φ ),  p = pr + ipi, pr ≥ 0 0≠ip  is a non -trivial solution of equations  (41)–  (43) together 

with one of the boundary conditions (44)-(46)with, 0>TR  0>SR , 

      ( ) 01 20 >− αT  then 

                                                
( )

)(4

11
2

2
220

στπ
ασ

+
−−

<
MTR

p T
.                                                        (47) 

 

Theorem 4 : If (p, w, θ , φ ),  p = pr + ipi, pr ≥ 0 0≠ip  is a non -trivial solution of equations (41)–  (43) together 

with one of the boundary conditions (44)-(46)with, 0<TR  0<SR , 

      ( ) 01 20 >− αT  then 

                                                
( )

)11(4

11

20
2

2
320

ασπ
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T

MTR
p S

−+
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< .                                                      (48) 

 

Corollary3.  If (p, w,θ ,φ ), p = pr + ipi, pr ≥ 0 0≠ip  is a non -trivial solution of equations (41) –  (43) together 

with one of the boundary conditions (44)-(46) with, 0>TR ,  0>SR , ( ) 01 20 >− αT  and 2M 1≤ , then 

                                              0<rp  .                                                                                                     (49) 

 

Corollary 4. If (p, w,θ ,φ ), p = pr + ipi, pr ≥ 0 0≠ip  is a non -trivial solution of equations (41) –  (43) together 

with one of the boundary conditions (44)-(46) with, 0<TR ,  0<SR , ( ) 01 20 >− αT  and 13 ≤M , then 

                                              0<rp  .                                                                                                     (50) 

 
The essential contents of Theorem3 and Theorem 4 and their respective corollaries are the same to that of Theorem1 
and Theorem2 and their respective corollaries. 
 

CONCLUSION 
 

Modified thermosolutal convection problem of the type describe by Veronis and Stern’s configuration is 
investigated in the present paper. Semi-circle theorems are established that prescribe upper limits for the complex 
growth rate of oscillatory motions of neutral or growing amplitude in such a manner that it naturally culminates in 
sufficient conditions precluding the non- existence of such motions .  The analysis made brings out the following 
main conclusions: 
 

(i)    The complex growth rate ir ippp += of an arbitrary oscillatory perturbation of growing amplitude 

( 0≥rp ) in modified thermosolutal convection problem of Veronis’ type configuration lies inside a semi- circle in 

the right-half of the ir pp - plane whose centre is at the origin and whose radius is 
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(ii)  The oscillatory motions of growing amplitude are not allowed in modified thermosolutal convection problem of 

Veronis type if M  ( )
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 (iii)    The complex growth rate ir ippp += of an arbitrary oscillatory perturbation of growing amplitude 

( 0≥rp ) in modified thermosolutal convection problem of Stern’s type configuration lies inside a semi- circle in 

the right-half of the ir pp - plane whose centre is at the origin and whose radius is 
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(iv) The oscillatory motions of growing amplitude are not allowed in modified thermosolutal      convection problem 

of Stern’s type if { ( ) } 1
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