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ABSTRACT

The problem of modified thermosolutal convectiothefVeronis’ and Stern’s type configurations imisidered in
the present paper. Semi -circle theorems thatqoiles upper limits for the complex growth rate afcilatory

motions of neutral or growing amplitude are derivéihe limits so obtained naturally culminate in feuiént

conditions precluding the non-existence of suchanst The results obtained herein significantly ioye upon the
earlier results derived in this direction.
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INTRODUCTION

The thermohaline convection problem has been eixysstudied in the recent past on account ofriteresting
complexities as a double diffusive phenomenon. Stuely is important because of its direct relevaimcenany
problems of practical interest in the field of osegraphy, astrophysics, geophysics, limnology, lEohanics and
chemical engineering etc. For a broad and a redent of the subject one may be referred to [1].fi@mulated a
novel way of combining the governing equations badndary conditions for each of the [3] and F@rtmohaline
configuration and derived a semi- circle theoremspribing upper limits for complex growth rate of arbitrary
oscillatory perturbation neutral or unstable.

The effects of flow parameters on the velocitydjelemperature field and concentration distributi@ve been
studied by [5] and results are presented graplicatid discussed quantitatively on the problem afcaus
dissipation effects on unsteady free convectionraads transfer flow past an accelerated verticalysoplate with
suction. [6] have investigated the problem on hgurgnetic natural convection flow of an incompressib
viscoelastic fluid between two infinite vertical ming and oscillating parallel plate The instabilppyoblem of
magnetorotatory thermosolutal convection of theovies and Stern type has been examined by [7] takinip
account the Dufour effect and semi-circle theoremesderived, that prescribe upper limits for campgirowth rate
of oscillatory motions of neutral or growing antptle. [8] has studied the effect of rotation onrthesolutal
convection in a compressible couple-stress fluisbubh porous medium and concluded that the stediligtes
gradient and rotation introduce oscillatory modethe system, which were non-existent in their abse

[9] in their investigation pointed out that theyRagh's utilization of the Boussinesq approximatioverlooks a
term in the equation of heat conduction. This tdimds its place on account of the variations incsfe heat at
constant volume due to variations in temperatuseaZonsequence of which, in the usual circumstaiaannot
be ignored if the Boussinesq approximation wereb#&o consistently and relatively more accurately iaplpl
throughout the analysis. The essential argumenttoch this term finds a place in the modified their this that it
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is the temperature differences which are of modemhounts but not necessarily the temperaturef.itSake
incorporation of this term into the calculationseqdately completes the qualitative and quantitatie@s in
Rayliegh theory.

Theorem 12 and 13 in [9] yields in case of Veraamsl Stern’s thermohaline configurations uppertbnior the

growth rate of an arbitrary oscillatory perturbatioeutral or unstable for the caé@2 = 0,which provides natural
extension of the earlier results of Banerjee ét]dlhese results are obviously not derivable byniethods adopted
by Benerjee et al whetﬁ'2 # Qon account of non-trivial coupling betweef ,¢ and w in the equation of heat

conduction. However, appropriate transformations @eercome this difficulty and can help in derivithg desired
results. [10] extended the results of [9] contaimed@heorem 12 and 13 for the modified thermohatioevection to

the case Whefx2 # 0, through the construction of an appropriate tramsftion on the solution space of the
problem and the derivation of suitable integraineates.

Motivated by these considerations, the presentrgapestigates the problem of modified thermosdlatavection
of the Veronis’ and Stern’s type configurationsen® -circle theorems that prescribe upper limitstfe complex
growth rate of oscillatory motions of neutral ooging amplitude are derived. The limits so obtaimedurally
culminate in sufficient conditions precluding th@nrexistence of such motions. The results deriveceih
significantly improve upon the results of [9] arlibse of [10] obtained for finding the upper limésd non
existence of oscillatory motions respectively.

Mathematical formulation and Analysis
Following [9], the relevant governing equations ath@ boundary conditions of the modified thermotailu
convection instability in their non-dimensionalfoare given by:

(Dz—az)(Dz—az—Epjw=RraZQ—Rsazgo , (1)

(D2 -a% - p(1-T,a,))0 - To@, R p @= ~(1-Toa, JW-Tod,Rw |, @)

(Dz—az—nga:—v—v : ®3)
T T

together with the boundary conditions

w=0=0=¢=Dw atz=0andz=1 (both boundarigisly 4)
or
w=0=0=¢= D?w atz=0andz=1 (both boundaries dyinally free) (5)
or w=0=¢=¢=Dw atz=0

w=0=0=¢=D?w atz=1. (6)

(lower boundary rigid and upper bouryddynamically free)
The meanings of symbols from physical point of vew as follows;

z is the vertical coordinate, d/dz is differeribatalong the vertical direction?as square of horizontal wave

v apd*
number,c =— is the thermal Prandtl numbeT, = o is the Lewis numberR; = %
KU

K K
4
_ 9aB,d
KU
temperature,§ is the concentration, p is the complex growth,@tgis the coefficient of specific heat due to

is the thermal

Rayleigh number,Rq is the concentration Rayleigh number, , w is thetis@ velocity, O is the

variation in temperature anﬁ2 is analogous coefficient due to variation in coriczion.
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d
In (1)—(6), z is real independent variable suctt fz<1, D = d_ is differentiation w.r.t z ,%s a constant >

P4
0 is a constantT > 0 is a constantR; and R are positive constants for the Veronis' configoraaind negative
constants for Stern's configuratid®, = ﬁ is the ratio of concentration gradient to thergiadient, p = p+ ip

is complex constant in general such thaamd p are real constants and as a consequence the eéepemadiables
w(z) = w(2z) + iw(z), B(2) = 0,(2) + 6, (2) and ¢ (2) = @,(2) + 1@, (z) are complex valued functions(and their
real and imaginary parts are real valued).

We now prove the following theorem:
Theorem 1: If (p, w, 0, ¢), p=p+ip, p>0 P; # 0 is a non -trivial solution of equations  (1)— (3)

together with one of the boundary conditions (4fth, R, >0 R >0,
r1-T,a,)>1 then

_RoBIM?-1

P 417 (1 + 0)
_ 4R0oB . _ RT@a,Rr _(_ (T<1_Toaz>_1)
where M = 27 (1 +0) o _(r(l—Toaz)—1>'B_(1 T°a2){1+ TA,Rr |

Proof: Equation (2) upon utilizing (3) can be written as

(D2 -a% - p(1-T,a,))0-T,@,Rp 7(D? - 2% Jp= -(1-Toa, )w . %
Using the transformations
W=Ww
5o r(1 Toaz) 1) ”

TOazRBT
9=9. (7
equations (1), (3) and (7) and the associated myrwbnditions (4)-(6) assume the following forms:
(Dz—az)(Dz—az—gJW:R’razé?—R’S a‘e , (8)
{D? -a% - pL-T,a,)}6 = -Bw, (9)
(Dz—az—quo:—v—v : (10)

T T

with
w=0=0=¢=Dw atz=0andz=1 (11)
or
w=0=0=¢=D?Ww atz=0andz=1 (12)
or

w=0=¢=¢=Dw atz=0
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w=0=0=¢=D*w atz=1, (13)

where

Ta,RT 7 r(1-Ty,a,)-1
er — R Tod 2R ’ R's:Rs"' R T, RT ,B:(l—TOO’Z){1+( < Ao 2> )}>0
(r(1-Tya,)-1) (r{1-Tya,)-1) T,@,R.,T

and the symbol ~ has been omitted for convenience.
Multiplying equation (8) by w* (the complex conjugaof w) and integrating the resulting equationrde vertical
range of z, we get

1 p 1 1

[wx(D? -a%) (D? ~a* -)wdz= Ria’ [ w* dz- Ra’ [ pw* dz (14)
0 o 0 0

Taking the complex conjugate of equations (9) dfJ &nd using the resulting equations in equatld), (we get

_|l.w*(D2 -a?)(D*-a® —g)wdz= —Ejé?[(D2 -a%) - p*(l—Toa2>] g* dz+

+R’a2rj({k (D? - }gp dz
(15)

Integrating equations (15) by parts a suitable remalf times, using either of the boundary condgig¢hl)-(13) and
one of the following inequalities

2
dz, (16)

2n

1
Jor
0
where,

Y=60=¢, forn=0,1any =w, forn=0, 1, 2,

([« 22w a2 fouf + o iz

'

—azi[ 0D‘9|2 +az|‘9|2)+ p*<1_T00'2>|‘9|2 Jdz
et e[ [oef el )+ 2 Lo
7)

Equating the real and imaginary parts of equatiah) équal to zero and usiy # O, we get
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J([o7o +2aou +aif oz 2] (ow « ik
_%az:[[ 0D9|2 +a2|¢9|2)+ pr<1—T00'2>|9|2 Jdz

-7 [[( |pgf +aflef) + g Jaz=0

and

—j(|Dw| +a%w” )dz+

(1 T,a,)

Multiplying equation (19) byp, and adding the resulting equation to (18), we have

iﬂ Mz +2a%/Dw|’ +a4|vv12)dz
RT

O'—-.H

Equation (19) implies that

%:[(|va|2 +a%w*)dz < R'saZJ(l;MZdz .

Since W, 8, ¢ vanish at z =0 and z = 1, therefore [11] yields
[ dzs 72 w2
0 0

[[Defdzs 72[l6f dz

0 0

[[Dd?dzs [ dz

Combining inequalities (21) and (22), we get

21 1
T4 (02 dz< R |gdz
0 0

Also upon using inequality (24), we have

Rgazi(|D¢12 +a%|¢gf’) dz= (7* + a?) R'sathzj dz

Pelagia Research Library

j|6’| dz- Ra“q&} dz=0

(18)

19§

02

(21)

(22)

(23)

(24)

(25)

(26)

il 0D6’|2 +a’lg) Jdz+ Ra* 7 [[( |Dgd” +a%l¢f") ]dz+27‘|ofj'|Dv\,12 +a’lw’)dz=0
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Combining inequalities (25) and (26), We have

h 2 2 7T2 +a?
T

0
Further, utilizing Schwartz inequality, we have
1 S5 1 1 1 1 2 1
.[GWZD dzJ'Qva]z)Edzz —I w* Dzv*/dz: I|Dw| dz> nzﬂvv]zdz
0 0 0 0 0

which on simplification yields

J(jowf )z o

(27)

(using (21))

(28)
Inequality (22) together with inequality (28) yisld
1 1
mDZMZ +2a2|Dwf* + a4|w|2jdzz (7 +a?) [|wi’ dz
0 0 9j2

Multiplying equation (9) by the complex conjugateeguation (9) and integrating the resulting equratbver the

vertical range of z, we get
1 1
D*-a%)-p(1-T,a,))0|D* -a%)- p*(1-T,a,))f*|dz= B* | ww* dz
( ) { )
0 0

Integrating the above equation by parts an appatemumber of times and using either of the giveaniary

conditions, we get

1 2 1

”(Dz—az)H‘ +2pr(1—Toazj0D6? )" +a%4 }lz+|p| (1-T,a, j|6’| dz=B j|vv1 dz
0 0

30§
Since p, =0, therefore from equation (30) , we have

2 2
[[( 02 -a? ) dz+ | @-T,a, ) [|d] dz< B?[|w’dz
0 0 0

31
Also emulating the derivation of inequalities (28)d (29) we derive the following inequality

2
[[( 02-a? Y'dz=[|D%d +20%Def + atle’dz> 2 +a*f [le a2
0 0 0 (32)

Using inequality (32) in equality (31), we get

(2 +a?|1 { M(,S—TC;]I'H' dz< B j|w1 dz @)

Now,
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—ie* (Dz—az)H‘

j|e|\ - a’ gz

e -e)

(using Schwartz inequality)

Y, 2
S;Z)B{ M} I|W|d2

floar + g he-

(7 +a (7 +a?f
(34)
(‘using inequalities (31) and (33) )
Making use of inequalities (27), (29) and (34 &ipn (20) yields
1 ' A2 1 2)2 1
(7 +a2)2.[|vx,12dz— Ra’B 1I|V\42dz+—r (e +22) [[wi”dz
° AT | c
(n.z +a2)1+ p oth2
{ (7 +a°)
2p L2
r 2
ﬁ;{ﬂ2+a)£w4dz<o (35)

Since,p, 2 0, it follows from inequality (35) that

1 ’ 2 1
(e +aeF{1 L oz B JWfdz <o

o (7 +a 1+|'o|2(1_T°a§)2 N

(7 +a?)
or
1
2
(”Uj(’?z*az)s 1+‘p‘ =T )" <R (36)
o aZB (]]'2 + a2)2 .

N (7 +a2) , 2t N
Since, minimum value oF———"— with respecta” is 4 it follows from inequality (36) that
a
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N

(T+0’j27774 1+‘p ‘2(1_1-00'2)2 <R

o ) 4B (72 +a2f

or

ol | wrBo
Tl 2o *

Therefore, we have
| <7 +a? M -1 (38)

o
Further, since 1+p—2
(72 +a)

R o Ba’
&+JWf+¥f

2
a 1
Now, the maximum value otiz)z with respect toa’ is A therefore inequality (39) yields
+a 7l

>1, therefore it follows from inequality (36) that

(7 +a%)< (39)

,\. RioB
(n2+a)<4]1'2(r+0') . (40)

Using inequality (40) in inequality (38), we get

<R BYMZ -1
art(r+o)

This completes the proof of the theorem.

Theorem 1 from the point of view of hydrodynamiatslity theory may be stated as:

The complex growth ratg = p, + ipi of an arbitrary oscillatory perturbation of growiagplitude (p, = 0) in
modified thermosolutal convection problem of Vesnipe configuration lies inside a semi- circlete right-half
of the p, P, - plane whose centre is at the origin and whoseisad

RoBVM?-1

A (r +o)
Corollary 1. If (p,w, 0, ¢), p=p+ip, p=0 p, # 0 is a non -trivial solution of equations (1)- (8pether
with one of the boundary conditions (4)-(6) wii, >0, Rs >0, T(l—TOa’z) >1 and M< 1, then
p, <0.
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Proof. Follows from Theorem 1.
Corollary 1 implies that oscillatory motions of grimg amplitude are not allowed in modified thesuolutal

4R.0 B jgl'

convection problem of Veronis type if M = ——F—
271 (r + o)

Theorem 2: If (p, w, 8, ¢), p=p+ip, p>=0 P, # 0 is a non -trivial solution of equations (1)- (Byether
with one of the boundary conditions (4)-(6)wilR, <0 Ry <0,
r(1-T,a,)>1 then
| | < |R's|0 (1—T00’2) Ml2 -1
ar* (L+o(1-Tya,))
4|R|o (1-Tya,)
2im'r(L+o(1-Tya,))

whereM , =

Proof: Replacing R; andRg, by |RF| and 1RS| respectively in equation (1) and proceeding eyaa#l in
theorem1mutatis mutandis, we get the desired result.

Corollary 2. If (p, w,0,¢), p=p+ip, p=0 p, # 0 is a non -trivial solution of equations (1)- (8yether with
one of the boundary conditions (4)-(6) wil, <0,Rg <0, T(l—Toaz) >1 andM, <1, then
p. <0.

Proof. Follows from Theorem?2.

Corollary 2 implies that oscillatory motions of grimg amplitude are not allowed in modified thesuolutal
4|RYo (1-T,a,) be1
2T+ o(1-Tya,) ~

convection problem of stern’s type Ml :{

Special case: It should be noted that results derived in Theorénasd 2 are valid for the case whéf # Oin

view of the transformation (7*). However, for these whenar, = O the governing equations (1)-(3) and boundary
conditions (4) - (6) assume the following form:

(Dz—az)(Dz—az——pjw=RraZH—RSazqﬂ , (41)
g

(D2 -a% - p(1-T,a,))o = -(L-Toa, W | (42)
(Dz—az—Ejga:—v—v : (43)

T T

together with the boundary conditions
w=0=0=¢=Dw atz=0andz=1 (both boundarigisly 44)
or
w=0=60=¢= D?w atz=0andz=1 (both boundaries dyinally free) (45)

or w=0=6=¢=Dw atz=0
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w=0=80=¢=D?w atz=1. (46)
(lower boundary rigid and upper bouyddynamically free)

fConsequently, Theorem1 and Theorem 2 and theiectisp corollaries can be easily seen to assumfliogving
orm:
Theorem 3: If (p, w, B, ¢), p=p+ip, p=0 p, # 0 is a non -trivial solution of equations (41)-3)f4ogether
with one of the boundary conditions (44)-(46)witt}, >0 Ry >0,
(1-T,a,)> 0 then
| p| < Rro (1—T00’2) M 22 -1
A1 (1 + 0) '

(47)

Theorem4: 1f (p,w, 8, ¢), p=p+ip, p>0 P, # 0 is a non -trivial solution of equations (41)— Y48gether
with one of the boundary conditions (44)-(46)wit}, <0 Ry <O,
(1-T,a,) >0 then
| | < |Rs|a (1_T0a2) M32 -1
4’ (L+o(1-Tya,))

(48)

Corollary3. If (p, w,0,¢), p=p+ip, p=0 p, # 0 is a non -trivial solution of equations (41) —3Y4ogether
with one of the boundary conditions (44)-(46) wity, >0, Rg >0, (1—Toa’2) >0 andM, <1, then
p, <0 . (49)

Corollary 4. If (p, w,0,¢), p=p +ip, p>0 P, # 0 is a non -trivial solution of equations (41) —3Y4ogether
with one of the boundary conditions (44)-(46) wity, <0, Rg < O,(l—Toa’z) >0 andM, <1, then
p, <0. (50)

The essential contents of Theorem3 and Theorend 4heeir respective corollaries are the same todh@heoreml
and Theorem?2 and their respective corollaries.

CONCLUSION

Modified thermosolutal convection problem of thepdydescribe by Veronis and Stern’s configuration is
investigated in the present paper. Semi-circlerdras are established that prescribe upper limitshHe complex
growth rate of oscillatory motions of neutral opging amplitude in such a manner that it naturalljminates in
sufficient conditions precluding the non- existerndesuch motions . The analysis made brings oaitftfiowing
main conclusions:

0] The complex growth rated = p, +ipiof an arbitrary oscillatory perturbation of growirgmplitude
(p, = 0) in modified thermosolutal convection problem da#renis’ type configuration lies inside a semi- tgrin

the right-half of the, ; - plane whose centre is at the origin and whoskeisad

RoB/M2-1
at(r+o)
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(i) The oscillatory motions of growing amplitu@ee not allowed in modified thermosolutal convettmoblem of

4R,0 B
27n“(r+a)j =t

(i) The complex growth ratep = p, +ipiof an arbitrary oscillatory perturbation of growirmgnplitude

Veronis type if M (=

(p, 2 0) in modified thermosolutal convection problem ®&r®’s type configuration lies inside a semi- crah

the right-half of thep, p; - plane whose centre is at the origin and whoskis&d

IRijo (L-Toa, WM,* -1
4 1+ o(1-T,a,))

(iv) The oscillatory motions of growing amplitudeeanot allowed in modified thermosolutal  coctien problem
4|R’s|0(1_Toa2) }<1
27T (L+ o(1-Tya,))

of Stern’s type iVl ={

REFERENCES

] Brandt A, Fernando H.J 3merican Geophysical Union, Washington.[1G96

] Banerjee M. B., Katoch D. C., Dube G.S., BaeerK.,Proc. Roy. Soc. Londof981, Ser. A 378, 301
] Stern, M.E,Tellus,1960, 12172.

] Veronis’ G,J. Marine Res1965. 23, 1.

[5] Malga Bala Siddulu, Kishan Naiko#hdvances in Applied Science Resea®fi]l, 2(6), 460.

[6] Sreekanth S, Vankatraman S, Rao Sreedhaafay&na RAdvances in Applied Science Reseaii], 2(5),
185.

[7] Mohan H, Advances in Applied Science Resea®fii?2, 3(2), 1052.

[8] Kumar P, Advances in Applied Science Resear2f]12, 3(2), 871.

[9] Banerjee M.B, Gupta J R, Shandil R.G, Shakm@, Katoch D.C,J.Math.Phy.Scj.1983, 17 ,603.
[10] Mohan H, J.Math Phy Sci 1996, 30(6), 275.

[11] Schultz M.HPrentice-Hall, Englewood CIiffiNJ, 1973

1
[2
[3
4

2222
Pelagia Research Library



