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ABSTRACT 
 
The unsteady, two dimensional, mixed convection flow of an viscous incompressible electrically conducting 
micropolar fluid over a vertical and impermeable stretching surface in the presence of MHD and second order slip 
flow when the buoyancy force assists or opposes the flow has been studied. Using the similarity transformations, the 
governing equations have been transformed into a system of ordinary differential equations. These differential 
equations are highly nonlinear which cannot be solved analytically. Therefore, bvp4c MATLAB solver has been 
used for solving it. Numerical results are obtained for the skin-friction coefficient, the couple wall stress and the 
local Nusselt number as well as the velocity, microrotation and temperature profiles for different values of the 
governing parameters, namely, material parameter, magnetic parameter, first order velocity slip parameter, second 
order velocity slip parameter and Eckert number.  
 
Keywords: Unsteady Flow, Mixed Convection, Heat Transfer, Micropolar Fluid, MHD, Stretching Surface, Second 
order Slip Flow, Viscous Dissipation. 
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INTRODUCTION 
 
Micropolar fluids are fluids of microstructure. They represent fluids consisting of rigid, randomly oriented, or 
spherical particles suspended in a viscous medium, where deformation of fluids particles is ignored. The dynamics 
of micropolar fluids, originated from the theory of Eringen [1-3], has been a popular area of research due to its 
application in a number of processes that occur in industry. Such applications include polymeric fluids, real fluids 
with suspensions, liquid crystal, animal blood, and exotic lubricants. Extensive reviews of theory of micropolar 
fluids and its applications can be found in review articles by Ariman et al. [4, 5] and recent books by Łukaszewicz 
[6] and Eringen [7]. 
 
According to most of the previous studies, the MHD flow has received the attention of many researchers due to its 
engineering applications. In metallurgy, for example, some processes involve the cooling of many continuous strips 
by drawing them through an electrically conducting fluid subject to a magnetic field (Kandasamy and Muhaimin 
[8]).This allows the rate of cooling to be controlled and final product with the desired characteristics to be obtained. 
Another important application of hydromagnetic flow in metallurgy is in the purification of molten metal’s from 
nonmetallic inclusions through the application of a magnetic field. Research has also been carried out by previous 
researchers on the flow and heat transfer effects of electrically conducting fluids such as liquid metals, water mixed 
with a little acid and other equivalent substance in the presence of a magnetic field. The studies have involved 
different geometries and different boundary conditions. Herdricha et al. [9] studied MHD flow control for plasma 
technology applications. They identified potential applications for magnetically controlled plasmas in the fields of 
space technology as well as in plasma technology. Seddeek et al. [10] investigated the similarity solution in MHD 
flow and heat transfer over a wedge taking into account variable viscosity and thermal conductivities. The 
magnetohydrodynamic (MHD) forced convection boundary layer flow of nanofluid over a horizontal stretching 
plate was investigated by Nourazar et al. [11] using homotopy perturbation method (HPM).  
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Unsteady free convection flows of dissipative fluids past an infinite plate have received a little attention because of 
non-linearity of the governing equations. Bhaskar Reddy and Bathaiah [12] studied the magnetohydrodynamic flow 
of a viscous incompressible fluid between a parallel flat wall and a long wavy wall. Neeraja and Bhaskar Reddy [13] 
investigated the MHD unsteady free convection flow past a vertical porous plate with viscous dissipation. Recently, 
El-Aziz [14] studied the mixed convection flow of a micropolar fluid from an unsteady stretching surface with 
viscous dissipation. Gangadhar [15] conclude that the local skin friction coefficient increases and local Nusselt 
number coefficient decreases in the presence of viscous dissipation. Aydin and Kaya [16] studied MHD mixed 
convection of a viscous dissipating fluid about a permeable vertical flat plate and found that the value of Richardson 
number determines the effect of the magnetic parameter on the momentum and heat transfer. 
 
The non-adherence of the fluid to a solid boundary, also known as velocity slip, is a phenomenon that has been 
observed under certain circumstances (Yoshimura and Prudhomme [17]). It is a well-known fact that, a viscous fluid 
normally sticks to the boundary. But, there are many fluids, e.g. particulate fluids, rarefied gas etc., where there may 
be a slip between the fluid and the boundary (Shidlovskiy [18]). Beavers and Joseph [19] proposed a slip flow 
condition at the boundary. Andersson [20] considered the slip flow of a Newtonian fluid past a linearly stretching 
sheet. Ariel [21] investigated the laminar flow of an elastic-viscous fluid impinging normally upon a wall with 
partial slip of the fluid at the wall. Wang [22] undertook the study of the flow of a Newtonian fluid past a stretching 
sheet with partial slip and purportedly gave an exact solution. He reported that the partial slip between the fluid and 
the moving surface may occur in particulate fluid situations such as emulsions, suspensions, foams and polymer 
solutions. Fang et al [23] investigated the magnetohydrodynamic (MHD) flow under slip condition over a permeable 
stretching surface. Fang and Aziz [24] conclude that the combined effects of the two slips and mass transfer 
parameters greatly influence the fluid flow and shear stresses on the wall and in the fluid. Nandeppanavar et al. [25] 
analyze the second order slip flow and heat transfer over a stretching sheet. Sajid et al. [26] analyzed the stretching 
flow with general slip condition. Sahoo and Poncet [27] studied the Non-Newtonian boundary layer flow and heat 
transfer over an exponentially stretching sheet with partial slip boundary condition. Noghrehabadi et al. [28] 
analyzed the effect of partial slip on the flow and heat transfer of nanofluids past a stretching sheet. Zheng et al. [29] 
investigated the magnetohydrodynamic (MHD) flow and heat transfer over a stretching sheet with velocity slip and 
temperature jump. Sharma et al. [30] considered the velocity and temperature slip on the boundary. Sharma and 
Ishak [31] considered the Second order velocity slip flow model instead of no-slip at the boundary. 
 
The present study investigates the unsteady mixed convection flow of a viscous incompressible electrically 
conducting micropolar fluid on a vertical and impermeable stretching sheet in the presence of MHD and second 
order slip flow. Using the similarity transformations, the governing equations have been transformed into a set of 
ordinary differential equations, which are nonlinear and cannot be solved analytically, therefore, bvp4c MATLAB 
solver has been used for solving it. The results for velocity, microrotation and temperature functions are carried out 
for the wide range of important parameters namely; material parameter, magnetic parameter, Eckert number and first 
order slip velocity parameter and second order velocity slip parameter. The skin friction, the couple wall stress and 
the rate of heat transfer have also been computed. 
 
2. MATHEMATICAL FORMULATION 
Consider an unsteady two dimensional, mixed convection boundary layer flow of a viscous incompressible 
micropolar fluid over an elastic, vertical and impermeable stretching sheet which emerges vertically in the upward 
direction from a narrow slot with velocity [32] 
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−    
                           (2.1) 

 
where both a and α are positive constants with dimension per time. The positive x coordinate is measured along the 
stretching sheet with the slot as the origin and the positive y coordinate is measured normal to the sheet in the 

outward direction toward the fluid. The surface temperature wT  of the stretching sheet varies with the distance x 

from the slot and time t as  
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where b is constant with dimension temperature over length and υ is the kinematic viscosity of the ambient fluid. It 

is apt to note here that, the expressions for ( , )wu x t and ( , )wT x t in Equations. (2.1) and (2.2) are valid only for 

time 
1

0t α −< unless 0 0α = . Expression (2.1) for the velocity of the sheet ( , )wu x t  reflects that the elastic sheet 
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which is fixed at the origin is stretched by applying a force in the positive x - direction and the effective stretching 

rate 
( )1

a

tα−
 increases with time. With the same analogy the expression for the surface temperature ( , )wT x t  

given by Equation (2.2) represents a situation in which the sheet temperature increases (reduces) if b is positive 

(negative) from T∞ at the slot in proportion to x and such that the amount of temperature and concentration increase 

(reduction) along the sheet increases with time. A uniform magnetic field of strength B0 is assumed to be applied in 
the positive y-direction normal to the plate. The magnetic Reynolds number of the flow is taken to be small enough 
so that the induced magnetic field is negligible. It is assumed that the radiation and Dufour effects are neglected in 
the energy equation. It is further assumed that the fluid properties are taken to be constant except for the density 
variation with the temperature in the buoyancy terms. Under the usual boundary layer approximation, the governing 
equations are  
   
Continuity equation 

0
u v

x y

∂ ∂+ =
∂ ∂

                                                                                       (2.3) 

 
Linear momentum equation 
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Angular momentum equation 
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Energy equation 
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The boundary conditions for the velocity, Angular Velocity and temperature fields are 

, 0, 0,w Slip wu u U v N T T= + = = =        at    0y =  

0, 0,u N T T∞→ → →        as   y → ∞                   (2.7) 

 

Where slipU  is the slip velocity at the wall. The Wu’s Slip velocity model (Valid for arbitrary Kundsen number’s) is 

used and is given as follows 
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Where u and v are the velocity components in the x - and y - directions, respectively, T is the fluid temperature in the 
boundary layer, N is the component of the microrotation vector normal to the x-y plane, σ is the spin-gradient 

viscosity and 1( / )pk cα ρ=  is the thermal diffusivity with k is the fluid thermal conductivity, pc  is the heat 

capacity pressure, respectively. 
The continuity equation (2.3) is satisfied by the Cauchy Riemann equations 
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u
y

ψ∂=
∂   and  v x

ψ∂= −
∂                        (2.9) 

 
where ( , )x yψ  is the stream function. 
In order to transform equations (2.4), (2.5) (2.6) and (2.7) into a set of ordinary differential equations, the following 
similarity transformations and dimensionless variables are introduced. 
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where ( )f η is the dimensionless stream function, θ is the dimensionless temperature, η is the similarity variable, A 

is the unsteadiness parameter, M is the magnetic parameter, Ec is the Eckert number, xGr  is the thermal Grashof 

number, ζ  is the thermal buoyancy parameter,0λ  and B are the dimensionless parameters, Rex  is the local 

Reynolds number, Pr is the Prandtl number.       
  
In view of equations (2.9) and (2.10), the equations (2.4), (2.5) and (2.6) transform into  

( ) ( )2
(1 ) ' ' ' 2 ' '' 0

2

A
K f ff f Kh Mf f fη ζθ′′′ ′′+ + − + − − + + =                        (2.11) 

( )0 '' ' ' (2 '') 3 ' 0
2

A
h fh f h KB h f h hλ η+ − − + − + =                       (2.12) 

( ) ( ) ( )21
" ' ' 4 ' 1 '' 0

Pr 2

A
f f Ec K fθ θ θ θ ηθ+ − − + + + =                             (2.13)  

 
The corresponding boundary conditions are 

(0) 0, '(0) 1 ''(0) '''(0), (0) 0, (0) 1f f f f hγ δ θ= = + + = =                         

' 0f h θ= = =                        as            η → ∞                                             (2.15) 

where the primes denote differentiation with respect to η and the ( )
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velocity slip parameter, ( )
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 is the second order velocity slip parameter  

 

The physical quantities of interest are the skin friction coefficient fxC , the local couple wall stress wxM  and the 

local Nusselt number xNu  which are defined as 
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Our main aim is to investigate how the values of f ′′(0), '(0)h  and '(0)θ− vary in terms of the various parameters. 

 
3 SOLUTION OF THE PROBLEM 
The set of equations (2.11) to (2.13) were reduced to a system of first-order differential equations and solved using a 
MATLAB boundary value problem solver called bvp4c. This program solves boundary value problems for ordinary 

differential equations of the form ( )' , , ,y f x y p a x b= ≤ ≤ , by implementing a collocation method subject to 

general nonlinear, two-point boundary conditions( )( ), ( ),g y a y b p . Here p is a vector of unknown parameters. 

Boundary value problems (BVPs) arise in most diverse forms. Just about any BVP can be formulated for solution 
with bvp4c. The first step is to write the ODEs as a system of first order ordinary differential equations. The details 
of the solution method are presented in Shampine and Kierzenka[33]. 
  

RESULTS AND DISCUSSION 
 
The governing equations (2.11) - (2.13) subject to the boundary conditions (2.14) are integrated as described in 
section 3. In order to get a clear insight of the physical problem, the velocity, angular velocity, temperature and 
concentration have been discussed by assigning numerical values to the parameters encountered in the problem.  
 

Table.1 Comparison for the values of '(0)θ− for ∆=Ec=γ=δ=0 and various values of A, ζ and Pr with Ishak et al.[34] 

 

A ζ  Pr '(0)θ−
 

Ishak et al.[34] 

'(0)θ−  

Present results 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
0 
0 
0 
1 
2 
3 
0 
1 

-0.5 
0.5 

0.72 
1 
3 
10 
100 
1 
1 
1 
1 
1 
10 
10 

0.8086 
1.0000 
1.9237 
3.7207 
12.294 
1.0873 
1.1423 
1.1853 
1.6820 
1.7039 
5.5585 
5.5690 

0.8087 
1.0000 
1.9237 
3.7207 
12.2941 
1.0873 
1.1423 
1.1853 
1.6820 
1.7039 
5.5585 
5.5690 

 
Physically  0ζ > means heating of the fluid or cooling of the surface (assisting flow), 0ζ < means cooling of the 

fluid or heating of the surface (opposing flow) and 0ζ = means the absence of free convection currents (forced 

convection flow).  Figs. 1-3 illustrate the axial velocity, angular velocity and temperature fields for different values 

of the magnetic parameter (M). It is observed that for both positive (assisting flow) and negative (opposing flow) ζ  

that the axial velocity ( )'f η  and angular velocity ( )h η  decrease while the temperature ( )θ η  increases with an 

increase in the magnetic parameter. The magnetic parameter is found to retard the velocity at all points of the flow 
field. It is because that the application of transverse magnetic field will result in a resistive type force (Lorentz force) 
similar to drag force which tends to resist the fluid flow and thus reducing its velocity.   
 
The axial velocity, angular velocity and temperature profiles in the case of assisting and opposing flows and various 
values of the first order velocity slip parameter γ and the second order velocity slip parameter δ are presented in 
Figs. 4-9. It is found that for both positive (assisting flow) and negative (opposing flow) ζ , the present findings are 
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similar to  results reported by Sharma and Ishak [31] that is axial velocity ( )'f η  decrease while the temperature 

( )θ η  increases with an increase in the γ and Further angular velocity ( )h η  decreases with γ and δ.  

 
Fig.1 Velocity for different values of M 

 
Fig.2 Angular velocity for different values of M 

 
Representative axial velocity, angular velocity, temperature and concentration profiles in the case of assisting and 
opposing flows and various values of the micropolar parameter K are presented in Figs. 10-12. It is found that for 

both positive (assisting flow) and negative (opposing flow) ζ  that the raising the values of K the present results 

similar to those results of El-Aziz [14] that is the axial velocity ( )'f η  and angular velocity ( )h η  increase while 

the temperature ( )θ η  decreases with an increase in the micropolar parameter K , but the effect of K  on the 
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velocity, temperature fields is more pronounced in the case of opposing flow. When 0K =  (Newtonian fluid) there 

is no angular velocity, and as K  increases, the angular velocity is greatly induced. Further, the micropolar 

parameter K  demonstrates a more pronounced influence on the axial and angular velocities ( )'f η  and ( )h η  

respectively, than that on the temperature( )θ η .  Moreover, it is seen from Figs. 10 and 11 that the smaller the K , 

the thinner the momentum and angular momentum boundary layer thickness while the opposite trend is true for the 
thermal boundary layer as obvious from Fig. 12. 

 
Fig.3 Temperature for different values of M 

 
Fig.4 Velocity for different values of γ 
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Fig.5 Angular velocity for different values of γ 

 
Fig.6 Temperature for different values of γ 

 
Figs. 13-15 are the plot of the velocity, angular velocity and temperature distribution with η  for various values of 

Eckert number Ec in the case of assisting and opposing flows. It is known that the viscous dissipation produces heat 
due to drag between the fluid particles and this extra heat causes an increase of the initial fluid temperature (see 
Fig.15). This increase of temperature causes an increase of the buoyant force. Also, there is a continuous interaction 
between the viscous heating and the buoyant force. This mechanism produces different results in the assisting 
(upward) and opposing (downward) flow. In the assisting (opposing) flow, the increase in the values of positive 
(negative) Ec will increase the buoyant force in the upward (downward) direction which results in an increase in the 
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fluid velocity as shown in Fig. 13. The positive (Ec > 0) and negative (Ec < 0) Eckert numbers assists the upward (
0ζ > and hence Ec >0) and downward ( 0ζ <  and hence Ec < 0) flow, respectively as shown in Fig. 13.  

 
Fig.7 Velocity for different values of δ 

 
Fig.8 Angular velocity for different values of δ 
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heated (Ec >0) but decrease when the fluid is being cooled (Ec < 0). For Ec < 0 the dimensionless fluid temperature 

wT T∞< decreases monotonically withη , from unity at the wall towards its free-stream value.  

 
Fig.9 Temperature for different values of δ 

 
Fig.10 Velocity for different values of K 
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maximum value and then decrease to its free-stream value. It should be noted that for the fluid cooling case (Ec < 0) 

a negative θ  indicates the excess of actual fluid temperature T over that at the plate because of the viscous 
dissipation effect. 

 
Fig.11 Angular velocity for different values of K 

 
Fig.12 Temperature for different values of K 
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magnetic parameter and Eckert number. It is observed that the skin friction increases with an increase in the Ec for 
both assisting and opposing flow cases these finding are similar to the results reported by El-Aziz [14]. In addition, 
the effect of viscous dissipation on skin friction is more pronounced for lower values of M, It is also observed that 
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the local skin friction coefficient of buoyancy assisting flow is higher than that of buoyancy opposing flow for all 
values of M and Ec and couple wall stress decreases with increasing the Ec these findings are similar to the results 
reported by El-Aziz [14], Further, viscous dissipation demonstrates a more pronounced influence on the wall couple 
stress in the opposing flow than that of assisting flow (See Fig. 17).  

 
Fig.13 Velocity for different values of Ec 

 
Fig.14 Angular velocity for different values of Ec 
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increasing δ in the range of 1.7 3γ≅ ≤ in the case of assisting flow. It is observed that the skin friction increases 

with an increase in the parameters γ or δ in the case of opposing flow.  

 
Fig.15 Temperature for different values of Ec 

 
Fig.16 Skin friction for different values of M and Ec 
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0.5 1.7γ≤ ≅ and increases with increasing δ in the range of 1.7 3γ≅ ≤ in the case of assisting flow. It is observed 

that the skin friction and Nusselt number decreases with an increase in the parameters γ or δ in the case of opposing 
flow. Table.1 shows that the present results perfect agreement to the previously published data (Ref.34). 
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Fig.17 couple wall stress for different values of M and Ec 

 
Fig.18 Nusselt number for different values of M and Ec 
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Fig.19 (a) Skin friction for different values of γ and δ for assisting flow 

 
Fig.19 (b) Skin friction for different values of γ and δ for opposing flow 
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Fig.20(a) couple wall stress for different values of γ and δ for assisting flow 

 
Fig.20(b) couple wall stress for different values of γ and δ for opposing flow 
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Fig.21(a) Nusselt number for different values of γ and δ for assisting flow 

 
Fig.21(b) Nusselt number for different values of γ and δ for opposing flow 

 
CONCLUSION 

 
In the present prater, the unsteady mixed convection flow of a viscous incompressible electrically conducting 
micropolar fluid on a vertical and impermeable stretching surface by taking MHD and second order slip flow into 
account, are analyzed. The governing equations are approximated to a system of non-linear ordinary differential 
equations by similarity transformation. Numerical calculations are carried out for various values of the 
dimensionless parameters of the problem. It has been found that 
 
1. The velocity and angular velocity decreases as well as temperature increases with an increase in the magnetic 
parameter in both assisting and opposing flows. 
2. The first order slip parameter and second order slip parameter reduces the velocity and angular velocity, and 
enhances the temperature in both assisting and opposing flows. 
3. The skin friction enhances the first order slip parameter or second order slip parameter and decreases the first 
order slip parameter and second order slip parameter for opposing flows. 
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