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Introduction
Cellular senescence is a permanent state of cell cycle arrest in 
response to stress, including DNA damage, telomeric erosion, 
oncogenic activation, mitochondrial dysfunction and replicative 
stress [1,2]. Accumulation of senescent cells contribute to decline 
of the regenerative potential and function of tissues, accelerates 
aging. Senescence have been implicated in aging as well as in 
aging related pathologies including cancer, metabolic syndrome, 
neurological disorders like Alzheimer’s and Parkinson disease [3]. 
Hence, senescence is viewed as an essential process to eliminate 
damaged cells by inducing tissue remodeling [3]. Hallmarks of 
senescent cells include enhanced senescence associated β- gal 
(SA-β gal) activity, expression of senescence markers (p16, p21, 
p19 and pRB) and secretion of a plethora of factors including 
cytokines, chemokines, matrix metalloproteinases, popularly 
known as senescence associated secretory phenotype (SASP) [4]. 
SASP, aid in clearance of senescent cells through both innate and 
adaptive immune system, termed as senescence surveillance [5].

Transposable elements (TEs) comprise ~50% of human genome 

and often considered as detrimental, because of their inherent 
mobile nature [6]. Endogenous retrovirus (ERV) are specialized 
transposable elements that constitute 8% of human genome and 
have the ability to transpose through DNA or RNA intermediates 
[7,8]. Though majority of ERVs have lost their ability to actively 
move across the genome, some may still impact their host by 
modulating nearby genes. Several human diseases have been 
linked to ERVs, including cancer, amyotropic lateral sclerosis 
(ALS), multiple sclerosis (MS) and schizophrenia [9].

Several studies have successfully demonstrated increased ERV 
expression during senescence and aging [10-12]. Bidirectional 
transcription of many TEs including ERVs results in dsRNA [13,14]. 
dsRNAs, thus formed trigger interferon response, facilitating 
immune clearance of ERV-activated cells [15,16]. Thus, increased 
ERV could potentiate senescent cell clearance.

Recent work from our laboratory showed ERV dysregulation 
in acute myeloid leukemia (AML) development. ERVs were 
increased during early myeloid dysplastic syndrome (MDS) and 
were significantly suppressed in high risk MDS. Also, it suggests 
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ERV suppression as a potential mechanism in modulating 
immunogenicity regarding AML development [6].

Current study aimed in identifying the role of ERVs in prolonged 
senescence. Interestingly, results indicate that during prolonged 
senescence, ERVs are suppressed via specialized autophagy, 
RNautophagy. Hence, suggesting ERV suppression as a 
prospective mechanism to evade immune surveillance.

Case Study
All animal procedures were approved by the Institutional Animal 
Care and Use Committee at New York University School of 
Medicine. All mice studied were male, had free access to water 
and were subjected to 12 h light/dark cycles. WT C57BL/6 male 
that were 2 months old, were used for the study. For primary skin 
fibroblasts, 2 mm ear lobe tissues were minced in DMEM buffer 
containing Type III Collagenase overnight and passed through 
50µm filter to obtain single cell suspension. The attached cells 
were then cultured and passaged in DMEM supplemented with 
10% fetal bovine serum (FBS). HCT116 and IMR-90 cells were 
purchased from ATCC and maintained in McCoy5A and EMEM 
medium, supplemented with 10% FBS. Media and FBS were 
purchased from GIBCO. 

Mitomycin C, was purchased from SigmaAldrich. Cells were 
treated with and without 10 µM MMC for 4hrs, washed and 
incubated in fresh media. Cells were analyzed 4 or 12 days post 
treatment. 

RNA was isolated using Qiagen RNAesy Kit (Qiagen). cDNA was 
synthesized using superscript cDNA synthesis kit (Invitrogen). 
qPCR performed using FastSybr green mastermix (Applied 
biosystems) and were normalized against β-actin. Table 1 lists 
the primer sequences used.

For lysates, cells were suspended in RIPA buffer (25 mM Tris, 150 
mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% TritonX100), 
with protease inhibitor cocktail. 40 µg lysate were loaded on 
4-15% Bis-Tris gel and blotted onto nitrocellulose membrane. 
Blots were probed for BNIP3, BECLIN1, ATG5, ATG7, LCIII, p-mTOR 
and t-mTOR (Cell Signaling Technologies), β-ACTIN (Santacruz), 
LAMP2B and SIDT2 (Abcam). Bands were normalized to β-ACTIN 
and quantified using ImageJ.

Data were analyzed using Graphpad Prism software. All data are 
expressed as mean± standard error mean (SEM). Results were 
analyzed using two-tailed unpaired t-test. P values <0.05 were 
considered significant.

Results and Discussion
Primary dermal fibroblasts, isolated from 2 months old WT 
C57BL/6 mice were used in this study. Primary mice fibroblasts 
were treated with either vehicle or mitomycin C (MMC), to 
induce senescence [17]. Cells were analyzed 4 and 12 days 
post treatment. qPCR for senescence markers (p21 and p16), 
revealed increased expression of both the markers studied 
(Figure 1A). Results indicate the induction of senescence upon 
MMC treatment. Further, ERVs (Merv-k, MusD, MuLV and Linc9) 
were examined via qPCR in mock vs senescent fibroblasts. As 

can be seen in (Figure 1B), ERVs were upregulated in 4 days post 
senescence (Sen 4 d), which then were then downregulated in 12 
days post senescence (sen 12 d). 

To verify the results, the same experiment was repeated in two 
different human cell lines- IMR-90 (human diploid fibroblasts) 
and HCT116 (colorectal cancer cell line). Both the cell lines were 
induced senescence using MMC and senescence as well as ERV 
expression were analyzed via qPCR. The results consistently 
showed ERV downregulation at 12 days post senescence, 
senescent post 12 days, compared to 4 days post senescence, 
despite no decrease in the senescence markers, p16, p21 (Figures 
2A-2D). 

Lysosomes degrade various biomolecules including nucleic acids 
through autophagy. Autophagy mainly consist of three types 
namely, micro, macro and chaperone mediated. Recent studies 
suggested the fourth autophagic mechanism, RNautophagy, 
to degrade retrotransposon RNA [18-20]. To examine whether 
RNautophagy was activated in prolonged senescence condition, 
lysates were made from primary mice fibroblasts, in mock, 4 and 
12 days post senescence. Western blot for autophagy related 
proteins including LCIII, ATG5, ATG7, mTOR, BNIP3, BECLIN1, 
LAMP2B and SIDT2 were carried out. Results indicate that key 
autophagic proteins including LCIII, mTOR, and RNautophagy 

Mice Primers Name Sequences
MICE p21 FP ACGGGACCGAAGAGACAAC
MICE p21 RP CAGATCCACAGCGATATCCA
MICE p16 FP TCGAATCTGCACCGTAGTTG
MICE p16 RP CGTGAACATGTTGTTGAGGC

MICE LINC9 FP TGAGTGGAACACAACTTCTGC
MICE LINC9 RP CAGGCAAGCTCTCTTCTTGC
MICE MULV FP TTCTGCTCCTCTTCTGCCCT
MICE MULV RP GAGGACCCTGGGCAAGAAAC
MICE MMTV FP TTTCCCGAAGAAGGAGGATT
MICE MMTV RP GCTTCTGCGGATAGCAAAAC
MICE MUSD FP ATAGAGGCCGCTTCTTTGC
MICE MUSD RP TGAGACTCCACCAAATGTCC
MICE ACTIN FP AGGCCAACCGTGAAAAGATG
MICE ACTIN RP GCTGAGAAGCTGGCCAAAGA

Human Primers Name Sequences
human p21 RT FP  CATGGGTTCTGACGGACAT
human p21 RT RP  AGTCAGTTCCTTGTGGAGCC
human p16 RT FP  GGGTCGGGTGAGAGTGG
human p16 RT RP  CGAATAGTTACGGTCGGAGG

human ERV K RT FP  CACAACTAAAGAAGGCTGACG
human ERV K RT RP  CATAGGCCCAGTTGGTATAG
human ERV L RT FP  CTTCAGCTGGCAAGGCC
human ERV L RT RP  CCAGTGTGATATCTTGTGGC
human ERV W RT FP  TGAGTCAATTCTCATACCTG
human ERV W RT RP  AGTTAAGAGTTCTTGGGTTGG
human ERV R RT FP  CATGGGAAGCAAGGGAACT
human ERV R RT RP  CTTTCCCCAGCGAGCAATAC
human Actin RT FP  CATGTACGTTGCTATCCAGGC
human actin RT RP  CTCCTTAATGTCACGCACGAT

Table 1 Sybr green primers (Source: Life technologies).
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Figure 1 ERVs are upregulated in senescence.

Note: Primary mice skin fibroblasts were treated with and without MMC. qPCR were performed 4 and 
12 days post treatment for A. Senescence markers. B. ERVs, n=3, *- P<0.05.

Figure 2 ERVs are down-regulated in prolonged senescence.

Note: HCT116 and IMR90 cells were treated with and without MMC. qPCR performed 4 and 12 days 
post treatment. A. Senescence markers (HCT116), B. ERVs (HCT116), C. Senescence markers (IMR90), 
D. ERVs (IMR90), n=3, *P<0.05.

related proteins-LAMP2B, SIDT2 were suppressed at 4 days post 
senescence, while were significantly upregulated in 12 days post 
senescence (Figure 3A). 

To further examine, whether autophagy is responsible for 
ERV suppression, cells were treated with chloroquine (CQ), an 
autophagy inhibitor 12 d post treatment. When compared to 
vehicle treated post senescent 12-day fibroblasts, CQ treatment 
drastically enhances the ERV expression (Figure 3B). This data 
clearly demonstrates the role of autophagy in ERV suppression.

Senescence is viewed as an essential process for tissue 
remodeling. While acute senescence aids in wound healing and 
tissue repair, under chronic settings, senescence contributes to 
functional decline and aging [3]. Senescent cells, through ERVs 
and SASP, recruit immune cells, to eliminate them. However, 
prolonged senescence is the result of evasion of surveillance. 
This study demonstrates ERV suppression via RNautophagy, as 
an escape mechanism for immune surveillance.

Increased ERV expression can lead to genomic instability, 
resulting in cancer development and cancer occurs when 
cells bypass senescence [8]. However, our results suggest ERV 
suppression aids in evading surveillance, resulting in senescent 
cells accumulation, which seems to be detrimental. Nonetheless, 
just like senescence, ERV expression under acute settings, 
assists in clearing damaged cells, while chronic expression leads 
to genomic instability and cancer. Like most of the biological 
phenomenon, senescence and ERV regulation seems to be a 
‘double edged’ sword. 

Autophagy is a catabolic process, where macromolecules are 
degraded by lysosomes. Autophagy occurs at basal level in 
normal condition but is accelerated during stress and is essential 
for biological homeostasis. Apart from the macroautophagy, 
microautophagy and chaperone mediated autophagy, RNA/
DNAutophagy forms the fourth type, where DNA and RNA are 
degraded by lysosomes in ATP dependent manner [18,20]. Loss 
of autophagy has been shown to cause premature aging in many 
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Figure 3 RNautophagy is activated in prolonged senescence.

Note: Western blot analysis on non-senescent and Sen 4 and 12 days primary mice fibroblast for 
autophagy related proteins. A. Images along with quantification using ImageJ. B. Primary mice 
fibroblasts post 12days senescence, were treated with either vehicle or CQ and probed for ERV 
expression, n=3, *- P<0.05.

species [21,22]. Treatment with transcription factor EB (TFEB), a 
master regulator of lysosomal biogenesis has shown to extend 
life span in worms and lessen the metabolic syndrome in mice [23]. 

Conclusion
Several evidences are in favor of autophagy activation to extend 
longevity. Autophagy activation have been shown to induce 
senescence [24]. Our results show, that autophagy suppression 
might help the senescent cells to escape surveillance and 

contribute to aging. Nevertheless, it is the type of autophagy 
cargo, which determines the outcome in terms of longevity and 
aging. This study is in lieu with the observations in AML patients, 
where ERV regulation correlates with Lamp2, RNautophagy 
marker [6]. Senolytic drugs under development targets these 
surveillance resistant senescent cells. Hence, mechanism 
mediating evasion from senescence surveillance is essential 
for designing better senolytic drugs and this study provides a 
possible direction.
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