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Abstract
The	 structural	 equation	 model	 is	 proposed	 for	 constructing	 risk	 scores	 for	
cardiac	 surgical	 patients,	 in	 view	 of	 the	 perioperative	 nature	 of	 risk-scoring	
and	 the	 complexity	 in	 data	 structures.	 The	 decision	 trees	 could	 be	 applied	 for	
model	 selection,	 in	 terms	 of	 identification	 of	 relevant	 predictors	 and	 variable	
discretization.	 The	 pitfalls	 of	 the	 conventional	 methodology,	 based	 on	 logistic	
regression	for	estimation	and	prediction,	Hosmer-Lemeshow	test	for	goodness	of	
fit	and	c-statistics	for	assessment	of	predictive	accuracy,	are	also	discussed.
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Introduction
Constructing	risk	scores	for	cardiac	surgical	patients	commands	
a	high	 level	of	 intellectual	attention,	fueled	in	part	by	 its	multi-
disciplinary	nature	and	the	ever-emerging	evidence	from	cardiac	
research.	 The	 search	 for	an	 “ideal”	model	 is	 earnestly	pursued	
as	 a	 clinical	 and	 methodological	 undertaking,	 but	 the	 recent	
developments	 in	 statistics	 and	 data	 science	 have	 not	 been	
appropriately	 infused	 into	the	endeavour.	While	the	celebrated	
EuroSCORE	 II,	 STS	 and	ACEF	 [1-3]	 scores	 continue	 to	 serve	 the	
needs	of	the	scientific	community,	it	is	timey	to	re-examine	the	
underlying	methodological	issues	and	to	shed	light	on	the	pitfalls	
of	 the	 current	 practice,	which	 even	 the	most	 recent	 reference	
fails	to	address	[4].	

The	abovementioned	scores	are	developed	with	the	conventional	
statistical	 approach.	 The	 underlying	 model	 is	 binary	 logistic	
regression	 (logit),	 given	 that	 the	 outcome	 of	 primary	 interest	
is	 mortality	 status	 (survived/dead)	 at	 a	 specific	 end-point.	
Constructed	with	 the	Binomial	 distribution	and	estimated	with	
the	maximum-likelihood	technique	[5],	the	estimated	coefficients	
(interpreted	as	odds	 ratios),	which	quantify	 the	contribution	of	
their	respective	predictors	with	reference	to	the	sign,	magnitude	
and	 significance,	 are	 promised	 to	 be	 “best	 asymptotically	
normal”.	 This	 means	 that	 all	 statistical	 inferences,	 say	 finding	
the	probability-values	and	constructing	the	confidence	intervals,	
could	 be	 facilitated	 with	 the	 familiar	 normal	 distribution.	 A	
forward-selection,	backward-elimination	or	a	stepwise	procedure	
is	often	implemented	to	search	for	the	“optimal”	set	of	predictors	
that	could	best	predict	the	mortality	status	jointly.	The	variable-

selection	 process	 also	 helps	 to	 ascertain	 how	 a	 quantitative	
predictor	 is	 associated	with	mortality	 (linearly	 or	 non-linearly),	
and	 to	 identify	 its	 optimum	 cut-off	 point	 with	 the	 Receiver	
Operating	Characteristic	(ROC)	Curve	[6].	The	goodness-of-fit	and	
calibration	of	 the	 chosen	model	 is	examined	with	 the	Hosmer-
Lemeshow	 test	 (H-L	 test)	 [7]	 and	 its	 discriminatory	 power	 or	
predictive	accuracy	with	the	area	under	the	ROC	(AUC)	curve	or	
c-statistics.	The	finalized	equation	is	translated	 into	a	risk	score	
for	prediction.

Methods
Thus,	there	are	two	integrated	tasks	in	risk-scoring	construction:	
model	 building	 and	 model	 assessment.	 The	 main	 issue	 of	
model	 building	 concerns	 the	 selection	 and	 assessment	 of	 the	
role	 of	 individual	 predictors.	 In	 model	 assessment,	 the	 joint	
performance	of	 the	 selected	predictors	 is	 scrutinized,	with	 the	
score’s	predictive	accuracy	taking	the	center	stage.	The	advocated	
practice	 is	 to	construct	a	 score	with	 the	most-updated	medical	
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evidence	augmented	with	a	sound	clinical	interpretation,	and	to	
let	the	“data	speak	for	themselves”.	An	acceptable	model	is	one	
that	 could	 predict	 the	 outcome	 accurately,	 based	 on	 carefully-
selected	 predictors	 and	 precisely-estimated	 coefficients.	
However,	an	important	feature	concerning	the	role	of	predictors	
in	 the	 context	 of	 cardiac	 surgery	 has	 been	 overlooked.	 The	
predictors	 in	 the	 logit	 are	 assumed	 to	 be	 independent.	While	
this	 facilitates	 interpretation,	 it	 fails	 to	 reflect	 the	 underlying	
complexity	 of	 the	 inter-relationships	 among	 the	 predictors	 in	
action.	As	such,	it	could	only	provide	a	partial	picture	on	how	each	
predictor	is	associated	with	the	mortality	status.	For	example,	old	
age	could	be	associated	with	arterial	stiffness	and	left	ventricular	
diastolic	function	[8],	which	in	turn	translated	into	a	higher	risk	of	
death.	The	influence	of	age	on	death	could	be	direct	(measured	
as	an	independent	predictor)	and	indirect—manifested	through	
arterial	stiffness	and	left	ventricular	diastolic	function.	While	age,	
arterial	stiffness	and	left	ventricular	diastolic	function	are	baseline	
predictors,	 they	 are	 not	 mutually	 independent	 in	 the	 logical	
sense.	 In	 the	 context	 of	 logit	 and	 all	 conventional	 regression	
models,	 this	 problem	might	 be	 highlighted	 as	multicollinearity,	
which	 needs	 to	 be	 rectified	 before	 the	 final	model	 is	 derived.	
However,	 the	 very	 fact	 that	multicollinearity	 is	 often	 detected	
suggests	that	it	is	a	matter	of	fact	that	a	considerable	number	of	
predictors	are	correlated	by	nature.	It	is	an	undeniable	nature	of	
the	issue	under	investigation.	The	common	practice	could	be	to	
omit	of	some	of	these	correlated	predictors,	but	this	would	result	
in	model	distortion,	lack	of	fit	and	loss	of	information.	

A	 related	 issue	 is	 the	 application	 of	 intraoperative	 factors	
in	 predicting	 the	 mortality	 status.	 One	 good	 example	 is	 the	
cardiopulmonary	bypass	(CPB)	time.	The	vast	majority	of	Coronary	
Artery	Bypass	Graft	(CABG)	operations	are	now	performed	under	
CPB	to	take	advantage	of	a	motionless	and	bloodless	operative	
field.	However,	CPB	is	not	free	from	side	effects	and	postoperative	
complications	 [9],	 and	 the	 extra-corporeal	 circulation	 could	
stimulate	an	inflammatory	response	[10],	possibly	owing	to	the	
blood’s	exposure	to	abnormal	shearing	forces	and	contact	with	
the	 artificial	 surfaces	 of	 the	 bypass	 circuit	 [11-13].	 It	 follows	
that	patients’	 risk	could	be	amplified	with	the	duration	of	such	
exposure.	 A	 risk	 score	 that	 ignores	 the	 CPB	time	 and	 depends	
solely	on	preoperative	factors	would	thus	be	inadequate.	As	such,	
to	better	predict	the	mortality	status,	the	score	should	factor	in	
intraoperative	factors	(including	aortic	cross-clamp	time),	which	
could	also	in	turn	be	analyzed	with	relevant	preoperative	factors	
(e.g.,	operation-related	factors	such	as	urgency	of	operation).	The	
intraoperative	factors	are	variables	that	play	a	dual	role	in	the	risk	
score:	as	predictors	of	mortality	status	and	as	outcomes	of	 the	
preoperative	factors.	

But	 the	 conventional	 logit	 could	 not	 cope	 with	 the	 sequential	
nature	 of	 these	 predictors.	 Having	 the	 preoperative	 and	
intraoperative	predictors	listed	side	by	side	in	the	logit	effectively	
distorts	 their	 natural	 sequential	 order.	 This	might	 result	 in	 the	
detection	of	multicollinearity	and	thus	generating	an	erroneous	
interpretation	 of	 the	 results,	 in	 particular	 how	 each	 predictor	
affects	the	outcome.	

A	more	complete	risk	score	should	involve	relevant	postoperative	
outcomes	that	are	expected	to	affect	the	mortality	status.	These	
include	 prolonged	 mechanical	 ventilation,	 prolonged	 intensive	
care	 stay,	 prolonged	 hospital	 stay,	 the	 needs	 for	 re-operations	
and	re-admissions,	and	the	development	of	complications.	Again,	
these	factors	must	be	considered	 in	the	risk	score	according	to	
their	sequential	nature.	The	model	must	be	able	to	consider	them	
as	predictors	of	death	 (ultimate	outcome),	and	as	outcomes	to	
be	predicted	by	relevant	preoperative	and	intraoperative	factors.	
A	 risk	 score	 is	 only	 reasonable,	 useful	 and	 comprehensive	 if	 it	
is	perioperative	 in	nature,	as	 the	occurrence	of	death	could	be	
explained	 by	 preoperative,	 intraoperative	 and	 postoperative	
factors	acting	individually	and	jointly,	directly	and	indirectly.	

To	 overcome	 the	 problems	 outlined	 above	 and	 to	 facilitate	 a	
more	 comprehensive	 and	 fruitful	 analysis	 involving	 correlated	
and	 sequentially-arranged	 predictors,	 the	 structural	 equation	
model	 (SEM)	 [14]	 is	 recommended.	 Constructed	 with	 an	
underlying	covariance	matrix,	SEM	differs	from	the	conventional	
regression	models	 in	 terms	 of	 its	 unique	 set-up.	 It	 could	 offer	
more	in	terms	of	hypothesis	testing	and	interpretation,	and	the	
much	 needed	 flexibility	 in	 accommodating	 the	 preoperative	
predictors	 with	 the	 intraoperative	 factors	 and	 postoperative	
outcomes.	One	does	not	have	 to	build	k	 separate	models	with	
k	outcomes,	as	SEM	could	accommodate	all	variables	in	a	single	
analytical	 setting	 and	 allows	 the	 model-builder	 to	 specify	 the	
sequential	 ordering	 of	 the	 predictors.	 It	 is	 effectively	 a	 system	
of	 related	 equations	 that	 enables	multiple	 outcomes	 of	mixed	
types	(qualitative	and	quantitative)	be	handled	concurrently,	and	
without	making	unrealistic	 assumptions	 (e.g.,	 independence	of	
predictors)	required	in	conventional	models.	 In	the	event	when	
there	are	correlated	predictors	a	sub-model	is	built.	As	such,	the	
risk	prediction	model	is	made	up	of	several	sub-models	based	on	
the	number	of	intermediate	and	final	outcomes,	and	each	could	
be	interpreted	separately.	

It	 is	helpful	 to	visualize	 the	proposed	modelling	strategy	 in	 the	
form	of	 a	path	diagram	 (Figure 1),	which	 is	 an	 integral	 part	 of	

Figure 1 A generic path diagram for cardiac risk-scoring 
construction.
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SEM.	 It	 depicts	 all	 the	 data	 interrelationships	 involved.	 For	
example,	PreOP→IntraOp	indicates	that	an	analysis	is	performed	
for	ascertaining	the	effects	of	preoperative	factors	(say	creatinine	
clearance,	left	ventricular	ejection	function,	PA	systolic	pressure	
as	in	EuroSCORE	II)	on	intraoperative	factor	(say	CPB	time).	The	
preoperative	factor	is	in	turn	predicted	with	demographics	(e.g.,	
age,	gender),	which	are	hypothesized	to	have	a	direct	effect	on	
the	intraoperative	factors,	postoperative	outcomes	and	mortality	
as	well.	The	preoperative	factor	constitutes	a	sub-model	within	
the	 entire	 network,	 so	 are	 the	 intraoperative	 factors	 and	
postoperative	outcomes.	 It	 is	 crucial	 to	 consider	 the	directions	
of	 the	arrows.	 It	makes	no	sense	 to	consider	PostOp→IntraOp,	
as	 this	 violates	 the	 temporal	 ordering	 of	 the	 postoperative	
outcomes	and	intraoperative	factors.	Neither	is	it	logical	to	have	
PreOp→Demo	as	it	is	absurd	to	test	whether	prevalence	of	kidney	
failure	could	explain	gender.	Figure 1	is	a	simplified	path	diagram	
for	facilitating	discussion,	as	a	box	must	be	specified	for	a	specific	
predictor	in	actual	practice.	In	a	nutshell,	a	risk	score	constructed	
with	gSEM	enables	one	to	apply	preoperative	factors	to	predict	
all	 relevant	 intraoperative	 and	 postoperative	 outcomes	 of	 the	
cardiac	surgery,	thus	producing	a	more	consolidated,	realistic	and	
useful	result	in	prediction.

In	 passing,	 note	 that	 SEM	 is	 not	 a	 new	 endeavour;	 it	 is	
overlooked	in	medical	research	but	has	been	successfully	applied	
in	 cardiovascular	 research	 in	 recent	 years	 [15-17].	 The	 latest	
member	of	SEM	is	the	generalized	SEM	(gSEM)	[18],	which	serves	
to	 generalize	 all	 known	 parametric	 models	 (e.g.,	 generalized	
linear	 model,	 generalized	 estimating	 equations,	 generalized	
linear	 mixed	 model	 and	 time-to-event	 analysis).	 The	 specific	
choice	of	the	underlying	probabilistic	distributions	is	determined	
in	accordance	with	the	nature	of	the	outcomes	considered	in	the	
model.	In	the	case	of	a	binary	outcome,	the	Binomial	distribution	
is	appropriate	and	the	generated	coefficients	are	transformed	as	
odds	 ratios.	 For	 counts,	 an	 appropriate	 distribution	 is	 Poisson,	
with	 the	 coefficients	 exponentiated	 as	 incidence	 rate	 ratios.	
For	continuous	outcomes	the	choice	depends	on	whether	 they	
are	 bell-shaped	 (Normal),	 bounded	 (Beta)	 or	 skewed	 (Inverse	
Gaussian	or	Gamma).	In	time	to	event	analysis	the	choice	could	
be	Weibull	and	the	estimated	coefficients	are	hazard	ratios.	The	
gSEM	routine	and	commands	are	available	 in	popular	 software	
packages	 such	 as	 R	 and	 Stata.	 The	 sample	 size	 calculation,	
however,	remains	a	tricky	issue	given	the	complexity	but	a	useful	
reference	is	available	in	literature	[19].

With	 the	help	of	gSEM	a	more	complicated	study	design	could	
be	 accommodated.	 While	 the	 well-cited	 risk	 scores	 consider	
mortality	 at	 some	 end	 point,	 it	 is	 possible	 to	 consider	 a	
longitudinal	 design	where	 the	mortality	 status	 is	monitored	 in	
more	than	one	periods,	say	at	30	days,	31-90	days,	91-365	days	
and	beyond.	This	would	call	 for	 the	application	of	a	multi-level	
gSEM	[18],	which	could	ascertain	the	possible	change	in	outcome	
over	the	periods	explicitly.	From	a	clinical	point	of	view,	this	could	
be	more	informative	than	considering	the	mortality	status	as	at	
some	end	point.

The	issue	of	variable-selection	is	discussed	next.	This	 is	a	much	
trickier	issue	than	the	current	literature	might	suggest.	It	involves	
not	only	the	selection	of	specific	predictors	but	how	they	should	
be	 featured	 in	 the	 risk	 score.	 For	 example,	 LV	 function,	 renal	
dysfunction	 based	 on	 dialysis	 and	 creatinine	 clearance	 and	 PA	
systolic	pressure	are	discretized	in	EuroSCORE	II,	and	so	is	serum	
creatinine	in	determining	the	ACEF	score.	The	discretization	does	
not	necessarily	result	in	loss	of	information	as	the	conventional	
wisdom	might	suggest	 [20].	As	the	ultimate	aim	 is	 to	construct	
an	 accurate	 risk	 score	 it	 makes	 sense	 to	 discretize	 some	
quantitative	predictors	meaningfully,	in	view	of	the	fact	that	the	
risk	of	death	might	not	be	uniform	with	a	unit	 increase	in	such	
predictors	[21].	For	example,	the	risk	of	death	might	be	different	
for	patients	 in	different	age	groups,	as	shown	 in	 the	STS	score.	
Failing	to	recognize	this	might	reduce	the	accuracy	in	prediction.	
While	locating	a	cut-off	with	the	ROC	curve	is	legitimate,	it	is	not	
ideal	on	the	very	fact	that	only	one	cut-off	is	allowed,	even	if	it	
is	 optimal	with	 respect	 to	 the	 sensitivity	 and	 specificity.	 There	
is	no	reason	to	believe	that	there	should	be	only	one	cut-off.	A	
more	practical	approach	 is	not	to	make	any	assumption	on	the	
number	of	potential	cut-offs	but	implement	a	multi-way	splitting	
decision	 tree,	 i.e.,	 Chi-square	 Automatic	 Interaction	 Detector	
(CHAID)	 [22],	 to	 determine	 what	 are	 the	 cut-off(s).	 With	 the	
help	of	chi-square	test	and	analysis	of	variance,	CHAID	identifies	
the	 cut-off(s)	 by	 objectively	 considering	 how	 the	 quantitative	
predictors	 should	 be	merged	 to	 better	 predict	 the	 outcome	of	
interest.	Moreover,	CHAID	is	a	multivariate	technique	that	could	
handle	multiple	predictors.	The	model-builder	should	devote	his	
time	and	effort	to	interpret	the	generated	cut-off(s),	to	make	the	
necessary	refinement	and	to	explain	the	results	with	justification.	
It	is	also	worth	noting	that	decision	trees	are	constructed	mainly	
for	 uncovering	 relationships	 among	 variables	 and	 is	 thus	 an	
indispensable	tool	for	variable	selection.	Once	the	predictors	and	
their	cut-offs/splitting	points	are	identified	they	are	considered	in	
the	gSEM	for	model	estimation.	In	fact,	one	could	apply	decision	
trees	for	constructing	a	risk	score	directly,	although	they	do	not	
possess	the	statistical	properties	of	logit	and	gSEM.	The	product	
of	a	decision	tree	is	a	rule-based	decision	in	the	“if-then”	format,	
rather	than	a	p-value	for	ascertaining	statistical	significance.

Conclusion and Discussion
The	final	 issue	 highlights	 the	 pitfalls	 of	 logit,	H-L	 test	 and	ROC	
despite	their	widespread	use.	In	the	context	of	rare	events	a	logit	
based	 on	maximum	 likelihood	 estimation	 could	 underestimate	
the	odds	 ratios	 and	 the	probability	 of	 event	 (say	death),	 given	
that	 the	model	 is	 dominated	 by	 the	 overwhelming	 number	 of	
non-events.	The	degree	of	bias	depends	on	the	number	of	cases	
in	 the	 less	 frequent	 category	 of	 outcome	 under	 investigation.	
This	 is	 certainly	 a	 serious	 problem	 as	 the	 incidence	 of	 death	
after	cardiac	surgery	is	greatly	reduced,	thanks	to	advancement	
in	 skills	 and	 technology.	 The	 solution	 to	 reduce	 such	bias	 is	 to	
apply	 the	 Firth	 logit	 [23]	 and	 related	method	 [24],	 but	 a	more	
careful	analysis	of	how	death	occurred	is	desired.	 It	 is	certainly	
not	a	 good	practice	 to	 consider	a	 composite	outcome	 in	order	
to	 achieve	 a	 bigger	 number,	 as	 it	masks	 the	 sequential	 nature	
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of	death	and	other	postoperative	outcomes	discussed	above.	It	
is	a	well-known	 fact	 that	 the	H-L	 test	 is	 sensitive	 to	 the	choice	
of	groupings	(g)	for	comparing	the	actual	and	expected	number	
of	 events	 (say	 death),	 and	 it	 can	 be	 demonstrated	 that	 the	
conclusion	concerning	the	model’s	goodness	of	fit	could	change	
drastically	with	a	different	g.	Despite	adhering	 to	 the	guideline	
that	g	should	be	higher	than	the	number	of	predictors	involved-a	
much	ignored	advice	in	practice-the	problem	remains.	Adding	a	
non-significant	predictor	could	 increase	the	p-value	of	the	test,	
thereby	giving	a	wrong	 impression	that	the	model	fits	the	data	
satisfactorily.	Similarly,	the	ROC	curve	could	also	be	a	misleading	
measure	 of	 logit’s	 predictive	 performance,	 as	 a	 poorly-fitted	
model	 could	 possess	 high	 discrimination	 power	 while	 a	 well-
fitted	model	could	suffer	from	poor	discrimination	[25].	

What	could	one	do	with	these	pitfalls	then?	Bearing	in	mind	that	
the	ultimate	aim	of	a	risk	score	is	to	predict	accurately,	it	is	thus	
more	helpful	to	report	the	direct	measures:	accuracy,	sensitivity,	
specificity	 and	 the	 positive	 and	 negative	 predictive	 values.	
Measuring	 the	 degree	 of	 the	 separation	 of	 events	 from	 non-
events,	 the	 Kolmogorov-Smirnov	 chart	 is	 a	 worthy	 alternative	
approach	for	model	assessment.	Intuitively,	a	model	is	evaluated	
by	the	ability	to	separate	the	events	from	non-events.	A	gain	or	
a	 lift	 chart	may	also	be	 reported;	 these	are	measures	 in	 terms	
of	results	obtained	with	and	without	the	risk	prediction	model.	
Several	alternative	goodness	of	fit	methods	that	do	not	require	
groupings	of	data	 could	be	 found	 in	 reference	 [26-28].	Cardiac	
risk-scoring	 construction	 should	 evolve	 with	 a	 shift	 from	 the	
conventional	paradigm	of	methodology.
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