Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advances in Applied Science Research, 2017, 8(1):76-84

Radon Exhalation and Natural Radioactivity Levels of Raw Materials Used Building Industry in Basra Governorate in Iraq

Jabbar Jebur H¹, Ali Farhan Nader² and Abdul Subber RH^{3*}

¹Physics Department, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq ²Oil Ministry, Gas Filling Company, South Branch, Basrah, Iraq ³Al-Kunouze University College, Basrah, Iraq

ABSTRACT

Building materials are one of the potential source of indoor radioactivity because of the naturally occurring radionuclides in them, therefore determined the levels of natural radioactivity and radon exhalation rate from these materials is very important. This work presents measurements, comprehensive and analyses study of natural radioactivity in building materials. For this purpose, 14 types of building material, i.e., brick, cement, gypsum, sand, gravel and brick were, used in building Basra Governorate in Iraq. Radon and its exhalation rate were, measured by using "sealed can technique" using CR-39 nuclear track detector. The activity concentrations radionuclides, 226Ra, 232Th and 40K was measured using gamma spectroscopy with NaI(TI) detector. According to the results of this investigation, brick samples had maximum values of the mean radon contribution concentration and 226Ra concentrations, 279 Bq/m³ and 9 Bq/kg, respectively. All activity concentrations radionuclides, 226Ra, 232Th and 40K in raw materials (single), are low comparable with UNSCEAR estimation. For group of raw materials included in construction, became high activity concentration.

Keywords: Raw materials, Radon exhalation rate, Radioactivity concentration, CR-39 detector, Gamma ray spectroscopy NaI(TI)

INTRODUCTION

All building materials are mostly composed of rock and soil and these two raw material contain natural radioactivity isotopes such as ²³²Th and ²³⁸U decay series and ⁴⁰K [1]. Determination of population exposure to radiation from building material is great importance, since people spend about 80% of their life inside the buildings. The activity concentration of natural radionuclides in building material has been estimated in different countries and regions of the world such as Iraq [2-5], Syrian [6], Kuwait [7], Egypt [8-11], Australia [12], Bangladesh [13], Pakistan [14,15], Eastern Europe [16], China [17] and Cyprus [18]. ²²⁶Ra is the most important radionuclide in the ²³⁸U decay chain from radiobiological viewpoint, therefor, the measurements of ²²⁶Ra concentration in building materials considered as reference in all investigations. Natural radionuclides in building materials may cause both external exposure caused by their direct gamma radiation and internal exposure from radon gas [1].

The radiation which people are exposed to my increase if they live in houses or building constructed by using materials whose radiation doses are above normal background level in the area [19].

The concentrations of natural radionuclides in rocks have been found to depend on the local geological conditions and as such they vary from one place to another. Construction materials can, however, cause substantial radiation exposure if they contain elevated levels of naturally occurring radionuclides. Radiation practice comprises the production, trade in or handling of materials with elevated natural radioactivity causing significant excess exposure of workers or public. Natural rocks such as granite, limestone, marble and so on are widely used in building industry; therefore, it is important to measure the concentration of radionuclides in rocks that are used and those that have the potential of being used as building materials in order to assess the radiological risk to human health [20].

In the present work, results of measurements of some important materials (White Cement, White Brick, Limestone, Gray Cement, Sand, Flat Brick, hallow Brick, Coarse Gravels, Middle Gravels) and risk assessment presented in Basrah Governorate. In natural raw materials for cement, concrete, bricks and other building material the activity concentrations of ²³⁸U, ²²⁶Ra, ²³²Th and ⁴⁰K varies considerably, depending on both the natural and the origin of the compounds. Generally, natural building materials reflect the geology of their site of origin and average activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in the Earth's crust are about 40, 40 and 400 Bq/kg, respectively [21,22].

MATERIALS AND METHOD

Samples collection

Fourteen Samples of the most commonly used building materials were collected from manufactures in Iraq, cement, gypsum, brick, and gravel, were gathered from different parts of the Basrah Governorate. Each sample was ground into a fine powder with a particles size <1 mm and dried by heating to 100°C for 24 h to remove moisture.

RADON EXHALATION RATE AND INDOOR INTERNAL EXPOSURE DUE TO RADON INHALATION

The measurement of radon exhalation rate in soil is helpful to study radon health hazard .Radon exhalation rate measurements have been carried out by many workers worldwide using the closed-can a technique. The passive measuring techniques "Can Technique" employing a Solid-State Nuclear Track Detector (SSNTD), a simple and efficient method to assess radon exhalation rates besides being relatively inexpensive, the technique provides quite reliable measurements. The exhalation rate is defined as the rate at which radon escapes from soil into the surrounding air. This may be measured by either per unit area or per unit mass of sample [2]. For our measurement, we designed diffusion chamber for CR-39 SSNTD measurements in hybrid method in the same dimension. These containers were made from polyethylene plastic with dimension 11 cm \times 7 cm and the high of sample in the container is 4 cm. The samples were put at the bottom of these vessels. To make sure that all the radon active gas reaches the detector is ²²²Rn only; a thin piece of sponge has been replaced between the samples and detector. The cans were completely sealed for about 90 days for SSNTDs to allow the radium reach to equilibrium with radon. This step was necessary to ensure that the radon gas is confined within the sample. At the end of exposure, the CR-39 detectors were immediately, removed from the cans and etched with 6.25 N NaOH at 70°C for 7 h. The tracks counted for many field areas using 400x microscope to determine the track density per cm²[2]. The average radon concentration C_{kn}(Bq.m⁻³), the radon exhalation rate and the effective Radium content can be calculated by following equations [2,22,23]:

$$C_{Rn} = \frac{\rho}{KT} \tag{1}$$

Where, ρ the track density (Tr.cm⁻²), K the calibration factor (Tr.cm⁻²/Bq.m⁻³ d) and T the exposure time (d). The surface exhalation rate of the soil sample for the release of radon:

$$E_{A} = \frac{\rho \lambda V}{KA \left[T - \frac{1}{\lambda} \left(1 - e^{-\lambda T} \right) \right]}$$
(2)

where E_A are the radon exhalation rate in terms (mBq.m^{-2h⁻¹}), A the area of can (m²), V effective volume of the can in m³, λ decay constant for radon in h⁻¹ and T the exposure time in hours, respectively. The effective Radium content $C_{Ra}(Bq.kg^{-1})$:

$$C_{Ra} = \frac{\rho A h}{KM \left[T - \frac{1}{\lambda} \left(1 - e^{-\lambda T} \right) \right]}$$
(3)

where M are the mass of samples (kg) and h are the high of can(m). Radon concentration contributes to indoor radon $C_{Rn}(Bq.m^{-3})$ is [24]:

$$C_{Rn} = \frac{E_A S_r}{\lambda_V V_r} \tag{4}$$

Pelagia Research Library

77

Where, E_A are the radon exhalation rate, S_r the total surface of room (m²), V_r the volume of room (m³) and λv the ventilation rate (h⁻¹). The annual effective inhalation dose for radon AEID (mSv/y), as function for the equilibrium factor for radon F_{B_n} is [25]:

$$AEID = C_{Rn} (Bq.m^{-3}) * F_{Rn} * 7000 h * 9nSv (Bq.m^{-3}.h)^{-1}$$
(5)

RADIOACTIVITY MEASUREMENT AND RADIATION RISK

About 14 various raw materials samples were investigated by using technique of gamma spectrometry NaI(Tl). Gamma spectroscopy with a scintillation detector NaI(TI) (3" × 3"), was used determine the activity concentration of ²³⁸U series, ²³²Th series as well as ⁴⁰K. The detectors was calibrated using standard sours, ⁵⁷Co (122keV), ⁶⁰Co (1173 and 1333 keV) and ¹³⁷Cs (662 keV), which has 11 radionuclides with 17 resolved energy photo peaks for gamma ray emitters range from 180 to 2614 keV were observed during the measurements. When γ -ray spectrometry was used for the measurement of natural radioactivity in environmental samples, the properly sealed samples must be allowed to remain undisturbed for at least three weeks to attain radioactive secular equilibrium. This is the radioactive equilibrium between ²²²Rn gas, its progeny (²¹⁴Pb and ²¹⁴Bi) and ²²⁶Ra, from the ²³⁸U decay series. In the ²³²Th decay series, the radon isotope ²²⁰Rn poses no serious problem because of its short half-life of 55 seconds and in the ⁴⁰K decay series, no equilibrium is needed. For this reason the samples were allowed to stand for three weeks before the spectrum analysis was carried out. The detector is surrounding by a lead shield to reduce the background of the system. In spite of, the background inside lab was measuring and subtract. The progeny was identified according to the energy of gamma line observed. Eight photo peaks were from the uranium series, eight were from thorium series and one was from ⁴⁰K. ²²⁶Ra, ²³⁸U, ²³²Th and ⁴⁰K activity concentration of relevance to this work are mainly gamma ray emitting nuclei. While ⁴⁰K can be measured by its own gamma ray, ²²⁶Ra, ²³⁸U and ²³²Th radionuclide emit low energy gamma radiation with very low probability and very long life time, Thus, it is not possible to measure ²²⁶Ra, ²²⁶Ra and ²³²Th directly by own gamma rays. However, it is possible to measure gamma ray activities of their short lifetime decay products. Therefore, ²²⁶Ra, ²³⁸U and ²³²Th activities concentration were determined from their daughter products indirectly under equilibrium conditions [2]. For ²²⁶Ra, ²¹⁴Pb 295 (18.2%) and 351 keV (35.1%) and ²¹⁴Bi: 609 (44.6%), 1764 (15.1%), 1120 (14.7) and 2204 keV (4.98%) where as for ²³⁸U were ^{234m}Pa: 1001 (0.84%) and 766 keV (0.29) where as for ²³²Th were ²²⁸Ac: 911 (25.8%), 986 (15.8%) and 338 keV (11.27%), ²¹²Bi: 727 keV (6.58), ²¹²Pb: 238 (43.3%) and ²⁰⁸Ti: 2614 keV (35.64%) gamma ray. For a simple comparison, the weighted mean values are a good indication; therefor the weighted mean specific activity of the samples was calculated [2]. Activity Concentration of any Gamma-Rays Line A_i(Bq/kg) is [26]:

$$A_i = \frac{C_{net}}{\varepsilon_i \times I_\gamma \times M \times t} \tag{6}$$

Where, C_{net} the peak net count, I_{γ} the emission probability of specific energy peak, ε_i theabsolute efficiency full energy peak, M the mass of sample, t the time of count period in seconds. The distribution of natural radioactivity in the soil is not uniform. Uniformity with respect to exposure to radiation has been defined in terms of radium equivalent activity Ra_{eq} in Bq/kg to compare the specific activity of materials containing different amount of ²²⁶Ra, ²³²Th and ⁴⁰K. Radium equivalent activity is related to the external gamma dose and internal dose due to radon and its daughters. The maximum value of radium equivalent activity in building construction materials must be less than the recommended maximum value 370 Bq/kg (OECD, 1979) for safe use and the maximum value of external hazard index H_{ex} allowed is unity corresponding to the upper limit of Ra_{eq} (370 Bq/kg) [18]. The radiation hazard quantities Radium equivalent activity Ra_{eq} (Bq/kg), Absorbed dose rate D (nGy/h) in the air, external hazard index H_{ex} , internal hazard index H_{in} , gamma index I_{Gamma} , alpha index I_{Alpha} , annual effective dose indoor AEDE_{indoor} (mSv/y), annual effective dose outdoor AEDE_{indoor} (mSv/y) are calculated flowing equations, respectively [27-29].

$$Ra_{ea} = A_{Ra} + 1.43 A_{Th} + 0.077 A_K \tag{7}$$

$$D = 0.462A_{Ra} + 0.6044A_{Th} + 0.0417A_{K}$$
(8)

$$H_{ex} = \frac{A_{Ra}}{370} + \frac{A_{Th}}{259} + \frac{A_{K}}{4810} \le 1$$
(9)

$$H_{in} = \frac{A_{Ra}}{185} + \frac{A_{Th}}{259} + \frac{A_K}{4810} \le 1$$
(10)

Pelagia Research Library

78

$$I_{Gramma} = \frac{A_{Ra}}{300} + \frac{A_{Th}}{200} + \frac{A_{K}}{3000}$$
(11)

$$I_{Alpha} = \frac{A_{Ra}}{200} \tag{12}$$

$$AEDE_{Indoor} = Absorber \ Dose\left(\frac{nGy}{h}\right) * 8760 \frac{h}{y} * 0.8 * 0.7 \frac{Sv}{Gy}$$
(13)

$$AEDE_{Outdoor} = Absorber \ Dose\left(\frac{nGy}{h}\right) * 8760 \frac{h}{y} * 0.2 * 0.7 \frac{Sv}{Gy}$$
(14)

where, A_{Ra} the activity concentration for radium (Bq/kg), A_{Th} the activity concentration for thorium (Bq/kg), A_{K} the activity concentration for potassium (Bq/kg).

RESULTS AND DISCUSSION

In the current investigation, all types of building materials in Table 1 are used in the construction of houses in Basrah Governorate. Table 1 show the values of radon activity, the radon exhalation area rate, the radium content, the radon concentration contribution to indoor radon and the annual effective dose equivalent and for building materials. It were found that the Brick sample has maximum radon concentration 279.6 \pm 73.2 Bq.m⁻³, surface radon exhalation rate 742.2 \pm 279.5 mBq.m⁻².h⁻¹, effective radium 1.9 \pm 0.6 Bq/kg. The minimum radon concentrations, surface radon exhalation rate, radium effective are found to be 23.4 \pm 6.7 Bq.m⁻³, 62.2 \pm 24.5 mBq.m⁻².h⁻¹, 0.2 \pm 0.1 Bq/kg in white brick (Table 1).

It can be seen from the results that the radon concentration varies significantly among building materials as shown Figure 1, this variation may be due to the differences in radium content. The radon exhalation rate varies appreciably from one material to another. This variation may be due to the differences in radium content also [14] and porosity of the soil. It depends on the radioactive content of the materials, emanation factor and diffusion coefficient of radon in that material, porosity and density of the material and permeability of the material are a main factor affecting radon exhalation rate. The radon concentration, in brick is large then another sample this is due to the large radium and uranium contents of sample Table 2. However, only a fraction of radon from radioactive material becomes able to escape to the atmosphere that can be transported to an indoor environment through diffusion and convective flow. The radon concentration, in brick, gravels and san locally much less than Ref [30] and the sand is high radon concentration in spite of the porosity of sand is large [30]. If we imagine, that there are room, built of bricks, cement, gravel fine,

Table 1: The values of the radon concentrations, radon exhalation rates and effective radium contents in the raw material samples

No.	Sample ID	Sample name	Mean radon concentration (Bq.m ⁻³)	Areal radon exhalation rate (mBq.m ⁻² .h ⁻¹)	Radium equivalent content (Bq.Kg ⁻¹)
1	RBM1	White Cement	27.1 ± 7.7	72.0 ± 28.2	0.2 ± 0.1
2	RBM2	White Bricks	23.4 ± 6.7	62.2 ± 24.5	0.2 ± 0.1
3	RBM3	Cement	32.9 ± 9.2	87.4 ± 33.9	0.2 ± 0.1
4	RBM4	Burke	30.9 ± 8.6	82 ± 31.9	0.2 ± 0.1
5	RBM5	Gypsum	115.4 ± 30.6	306.2 ± 116	0.8 ± 0.3
6	RBM6	Limestone	259.9 ± 68	690.0 ± 259.9	1.8 ± 0.6
7	RBM7	Gray Cement	24.1 ± 6.9	64.0 ± 25.2	0.2 ± 0.1
8	RBM8	Sand	62.1 ± 16.7	164.9 ± 63	0.4 ± 0.1
9	RBM9	Sand	135.7 ± 35.8	360.3 ± 136.3	0.9 ± 0.3
10	RBM10	Flat brick	39.0 ± 10.8	103.6 ± 40	0.3 ± 0.1
11	RBM11	Brick	279.6 ± 73.2	742.2 ± 279.5	1.9 ± 0.6
12	RBM12	Coarse Gravels	192.4 ± 50.5	510.7 ± 192.7	1.3 ± 0.4
13	RBM13	Middle Gravels	275.2 ± 72	730.5 ± 275.1	1.9 ± 0.6
14	RBM14	Fine Gravels	228.3 ± 59.9	606.2 ± 228.5	1.5 ± 0.5
Min.		White Brick	23.4 ± 6.7	62.2 ± 24.5	0.2 ± 0.1
Max.		Brick	279.6 ± 73.2	742.2 ± 279.5	1.9 ± 0.6
Sum			1725.9	4581.9	11.7

No.	Sample ID	Natural of sample	²²⁶ Ra (Bq/Kg)	²³² Th (Bq/Kg)	⁴⁰ K (Bq/Kg)
1	RBM1	White Cement	0.7	3.1	11.2
2	RBM2	White Bricks	3.9	3.1	169.3
3	RBM3	Cement	2.3	6.1	14.9
4	RBM4	Burke	5.6	1.6	136.5
5	RBM5	Gypsum	1.8	0.3	131.7
6	RBM6	Limestone	2.9	0.2	446.5
7	RBM7	Gray Cement	4.9	1.1	271.2
8	RBM8	Sand	1.9	0.3	265.3
9	RBM9	Sand	7.7	0.4	136.5
10	RBM10	Flat Bricks	2.7	2.0	106.4
11	RBM11	Brick	9.0	4.2	102.3
12	RBM12	Coarse Gravels	2.3	3.2	179.6
13	RBM13	Middle Gravels	4.9	0.3	175.7
14	RBM14	Fine Gravels	5.1	3.0	183.7

Figure 1: The percentages of radon concentration in building materials

sand, burke and kashi. And, we assume its cavity with $S_r/V_r=2.0 \text{ m}^{-1}$ and an air exchange rate of 0.5 h⁻¹, the maximum radon concentration, from the building materials, was assessed by the total radon concentration contribution equal to 14.3 Bq/m³ and the annual effective inhalation dose is 7.3 mSv/y, which area danger when there are no adequate ventilation.

From Figure 1, we noted, 50% of row materials (white cement, white bricks, cement, white cement, gray cement, Sand and Flat bricks) are low radon concentration (less than 100 Bq/m³) and 28% (gypsum, Butains and coarse gravels) between 100 Bq/m³ to 200 Bq/m³. About 28% of raw materials (brick, limestone and fine gravels) great 200 Bq/m³, which higher than the recommended value in UNSCEAR [31].

Table 2, represents calculated specific activities for ²²⁶Ra, ²³²Th and ⁴⁰K in row material, respectively. The radioactivity of the investigated raw materials, vary in the 0.7–9 Bq/kg for ²²⁶Ra, 0.2–6.1 for ²³²Th and 11.2–446.5 Bq/kg for ⁴⁰K. It were found that the brick sample has maximum ²³⁸Raactivity 9 Bq/kg, this corresponding with maximum radium content in brick see Table 1. The second maximum ²²⁶Raactivity in fine gravels 5.1 Bq/kg, this is corresponding with maximum radium content in fine gravels (Table 1). The minimum ²³⁸Raactivity in white cement 0.7 Bq/kg, this is corresponding with minimum radium content in white cement (Table 2).

The values of radioactivity in row materials (single) are low comparable with the worldwide average concentrations of ²²⁶Ra, ²³²Th and⁴⁰K in soil equal to 32, 45 and 412 Bq/kg, respectively. But, if we imagine, that room are built of bricks, cement, gravel fine, Butain sand, cement, and Flat Bricks, the total radioactivity concentration for ²²⁶Ra and ⁴⁰K are 35 and 947.8 Bq/kg, respectively, which is high than the recommended value in UNSCEAR [31]. The total radioactivity concentration of ²³²Th is 18.5 Bq/kg, which is less than the recommended value in UNSCEAR [31].

It can be seen from the results that ²³⁸Ra, ²³²Th and ⁴⁰K varies significantly among building materials, this variation may be due to the geochemical nature and difference in density and particle size of row material. In comparison with other measurement for radioactivity concentrations, in references [5,30,32], in general, we found that our results less than

Pelagia Research Library

Table 3: The radiation hazard quantities in building materials samples								
Sample ID BMD		DMD1	DMD2	DMD4	DMD5	DMD4	BMD7	
Radiation risk quantity	BNIKI	DIVINZ	DIVINS	DIVIK4	DIVIKS	DIVINO	DIVIN /	
$Ra_{eq}(Bq/kg)$	6.02	21.37	12.26	18.44	12.36	37.46	27.34	
H _{ex}	0.02	0.06	0.03	0.05	0.03	0.10	0.07	
H _{in}	0.02	0.07	0.04	0.06	0.04	0.11	0.09	
Igamma	0.02	0.08	0.04	0.07	0.05	0.16	0.11	
Ĭ _{alpha}	0.00	0.02	0.01	0.03	0.01	0.01	0.02	
D (nGy/h)	2.67	10.73	5.41	9.26	6.50	20.03	14.23	
AEDE _{indoor} (mSv/y)	0.01	0.05	0.03	0.05	0.03	0.10	0.07	
AEDE _{outdoor} (mSv/y)	0.00	0.01	0.01	0.01	0.01	0.02	0.02	

Table 4: The radiation hazard quantities in building materials samples

Sample ID	DMDQ	DMDO	BMR10	BMR11	BMR12	BMR13	BMR14
Radiation risk quantity	DIVINO	DIVIN9					
Ra _{ea} (Bq/kg)	22.78	18.77	13.80	22.92	20.74	18.84	23.58
H _{ex}	0.06	0.05	0.04	0.06	0.06	0.05	0.06
H _{in}	0.07	0.07	0.04	0.09	0.06	0.06	0.08
Igamma	0.10	0.07	0.05	0.09	0.08	0.08	0.09
I _{alpha}	0.01	0.04	0.01	0.05	0.01	0.02	0.03
D (nGy/h)	12.13	9.49	6.92	10.98	10.50	9.76	11.85
AEDE _{indoor} (mSv/y)	0.06	0.05	0.03	0.05	0.05	0.05	0.06
AEDE _{outdoor} (mSv/y)	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Table 5: A comparison between radioactivity content of building materials in used in Basrah governorate/Iraq and other parts of the world

Sample	Ra-226 Bq/Kg	Th-232 Bq/kg	K-40 Bq/kg	Rn-222 Bq/Kg	Exhalation Rat Bq.m ⁻ 2.h ⁻¹	Country/Ref	
	9	4.2	102.3	279.6	0.742	Iraq(this study)	
				166.55	1.01	Iraq [4]	
	37	12.2	851			Iran [1]	
	12	7	332			Iran [1]	
Brick	195.03	26.14	377.4	2101	1.581	Iraq [30]	
	12.5				0.00549	India [35]	
				175.9	1.183	Malaysia [36]	
	0.7	3.1	11.2	27.1	0.072	Iraq (this study)	
White Comont				156.7	0.94	Iraq [4]	
white Cement	49.5	16.7	32.6			Iraq [5]	
					0.0794	Malaysia [36]	
	1.8	0.3	131.7	115.4	0.306	Iraq (this study)	
Gypsum	8.1	2.2	116			Iran [1]	
	33.28	47.2	88			Saudi Arabbia [32]	
Limo stone	2.9	0.2	446.5	259.9	0.69	Iraq (this study)	
	28.6	49.2	66			Saudia Arabia [32]	
	0.7	3.1	11.2	24.1	0.064	Iraq (this study)	
Cement	39.6	28.9	290.8			Iran [1]	
Cement				205.05	1.24	Iraq [4]	
	25.6				0.00329	India [35]	
G 1	1.9	0.3	265	62.1	0.164	Iraq (this study)	
Sand	12.3	24.2	195			Saudi Arabia [32]	
Elat Driels	2.7	2	106.4	39	0.103	Iraq (this study)	
FIAL BLICK				121.9	0.72	Iraq [4]	
	2.3	3.2	179.6	192.4	0.510	Iraq (this study)	
Gravala	20.4	6.3	450.7			Iran [1]	
Gravels	14.7	24.2	195			Saudi Arabia [32]	

Pelagia Research Library

its. This difference in the presence of the two series in the sample of quarries is due to the distribution of radionuclide in row materials which is not the same (random distribution), varying in intensity radiation and quantity of radionuclide. This distribution related to the geochemical nature row materials. Generally, the magnitude and distribution of natural-gamma-ray activity related to lithology. Variation of background concentrations of radionuclides in samples depends on the type, moisture content, in homogeneity of its permeability, formation, transport processes and geomorphology associated with meteorological conditions. Soil formation and chemical and biochemical interactions also influence the distribution patterns of ²³⁸U, ²³²Th and their decay products [33].

The distribution of natural radioactivity in the soil is not uniform. Uniformity with respect to exposure to radiation has been defined in terms of radium equivalent activity Ra_{eq} in Bq/kg to compare the specific activity of materials containing different amount of ²²⁶Ra, ²³²Th and ⁴⁰K. Radium equivalent activity related to the external gamma dose and internal dose due to radon and its daughters. Tables 3 and 4 presented the radiation quantities obtained from ²²⁶Ra, ²³²Th and ⁴⁰K activity concentration in row materials. The maximum value of radium equivalent activity, in building construction materials must be, less than the recommended maximum value 370 Bq/kg (OECD, 1979) for safe use and the maximum value of external hazard index H_{ex} allowed is unity corresponding to the upper limit of Ra_{eq} (370 Bq/kg), D=60 nGy/h and AEDE_{indoor}=0.41 mSv/y world median values respectively [34]. The most of radiation risk quantities for all samples of raw materials are lower than the world median values [31] (Tables 3 and 4).

Table 5 shows the average concentrations of natural radionuclides in the building materials of the present work in the comparison with the results of investigation in different countries [35,36].

CONCLUSION

Due to the presence of radon and radioactive elements in raw building materials, preferably concern by a factor of ventilation when designing buildings, otherwise there will be dangerous when ventilation is poor. The baste raw materials in building industry in Basra Governorate is thermistor instead bricks because low radon concentration and radioactivity concentrate.

REFERENCES

- [1] Mehdizadeh S, Faghihi R, Sedigheh. Natural radioactivity in building materials in Iran. *Nukleonika*, **2011**, 56: 363–368.
- [2] Nadir AF. Theoretical and experimental study to evaluate radioactivity applied on a selected area in basrah Governorate. University of Basrah, 2015.
- [3] Al-Mosuwi WHA. Environmental radioactivity in shutt Al-basrah river banks (soil, water) and basrah sport city. University of Basrah, 2013.
- [4] Najam LA, Tawfiq NF, Mahmood RH. Radon concentration in some building materials in Iraq using CR-39 track detector. Int J Phys, 2013, 1: 73-76.
- [5] Najam LA, Tawfiq NF, Kitah FH. Measurement of natural radioactivity in building material used in Iraq. Austr J Basic Appl Sci, 2013, 7: 56-66.
- [6] Othman I, Mahrouka M. Radionuclide content in some building materials in Syria and their indoor gamma dose rate. *Radiat Prot Dosim*, 1994, 55: 299–304.
- [7] Bou-Rabee F, Bem H. Natural radioactivity in building materials utilized in the state of Kuwait. *J Radioanal Nucl Chem*, **1996**, 213: 143–149.
- [8] Ahmad F. Natural radioactivity in building materials in Egypt. Radiat Eff Defects Solids, 2007, 162: 43-52.
- [9] Arafa W. Specific activity and hazards of granite samples collected from the eastern desert of Egypt. J Environ Radioact, 2004, 75: 315–327.
- [10] El-Arabi AM, Abbady AGE, El-Hussein A. Gamma-ray measurements of natural radioactivity in sedimentary rocks from Egypt. Nucl Sci Tech, 2006, 17: 123–128.
- [11] El-Taher A. Gamma spectroscopic analysis and associated radiation hazards of building materials used in Egypt. *Radiat Prot Dosim*, **2010**, 138: 166–173.

Pelagia Research Library

- [12] Beretka J, Mathew PJ. Natural radioactivity of Australian building materials, industrial wastes and by-product. *Health Phys*, **1985**, 48: 87–95.
- [13] Alam MN, Miah MMH, Chowdhury MI. Radiation dose estimation from the radioactivity analysis of lime and cement used in Bangladesh. *J Environ Radioact*, 1999, 42: 77–85.
- [14] Faheem M, Mujahid SA and Matiullah. Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province, Pakistan. *Radiat Meas*, 2008, 43: 1443–1447.
- [15] Hewamanna R, Sumithrachchi CS, Mahawatte P, Nanayakkara HLC, Ratnayake HC. Natural activity and gamma dose from Sri Lankan clay bricks used in building construction. *Appl Radiat Isot*, 2001, 54: 365–369.
- [16] Krstic D, Nikezic D, StevanovicN, Vucic D. Radioactivity of some domestic and imported building materials from South Eastern Europe. *Radiat Meas*, 2007, 42: 1731–1736.
- [17] Ya-Xin Y, Xin-Min W, Zhong-Ying J. Radioactivity concentrations in soils of the Xiazhuang granite area, China. *Appl Radiat Isot*, 2005, 63: 255–259.
- [18] Michaell F, Parpottas Y, Tsertos H. Gamma radiation measurements and dose rates in commonly used building materials in Cyprus. *Radiat Prot Dosim*, 2010, 91: 1–10.
- [19] Armanerkan. An investigation on the natural radioactivity of building materials, raw materials and interior coatings in central Turkey. *Turk J Med Sci*, 2007, 37: 199-203.
- [20] Todorovic N, Bikit I, Krmar M, Mrdja D, Hansman J, et al. Natural radioactivity in raw materials used in building industry in Serbia. *Int J Environ Sci Technol*, 2015, 12: 705-716.
- [21] Sofilic T, Barisic D, Sofilic U, Durokovic M. Radioactivity of building and raw materials used in Croatia. *Polish Journal of Chemical Technology*, 2011, 13: 23-27.
- [22] Abd-Elzaher M. An overview on studying 222Rn exhalation rates using passive technique solid-state nuclear track detectors. Am J Appl Sci, 2012, 9: 1653-1659.
- [23] Tufail M, Sikander M. Mirza, Arif Mahmood, Qureshi AA. Application of a closed-can technique for measuring radon exhalation from mine samples of Punjab, Pakistan. J Environ Radioact, 2000, 50: 267-275.
- [24] Saad AF. Radium activity and radon exhalation rates from phosphate ores using CR-39 on-line with an electronic radon gas analyzer "Alpha GUARD". *Radiat Meas*, 2008, 43: S463 – S466.
- [25] Ramola RC, Rautela BS, Gusain GS, Ganesh Prasad, Sahoo SK, et al. Measurements of radon and thoron concentrations in high radiation background area using pin-holedosimeter. *Radiat Meas*, 2013.
- [26] OECD, Organization for economic co-operation and development, Exposure to radiation from the natural radiation in building materials. Report by a Group of Experts of the OECD Nuclear Energy Agency, Paris, France, 1979.
- [27] Aykamis AS, Turhan S, Ugur AF, Baykanand UN, Kihc AM. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey. *Radiation Protection Dosimeter*, 2013, 157: 105-111.
- [28] Najam LA, Younis SA, Kithah FH. Natural radioactivity in soil samples in Nineveh Province and the associated radiation hazards. *Int J Phys*, 2015, 3: 126-132.
- [29] Todsadol Santawamaitre. An evaluation of the level of naturally occurring radioactive materials in soil samples along the Chao Phraya River Basin. University of Surrey, 2012.
- [30] Subber ARH, Al Mosuwi WH. Radon level and gamma dose from common building materials used in Basrah sport city, Basrah, Iraq. Int J Phys Res, 2014, 4:59-70.
- [31] UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, Annex B: Exposure from natural radiation sources. Report of UNSCEAR to the General Assembly, United Nations, New York, USA, **2006**.
- [32] EL-Taher. Assessment of natural radioactivity levels and radiation hazard for building materials used in Qassim area, Saudi Arabia. *Environment Physics, Rom Journ Phys*, **2012**, 57: 3–4.
- [33] Mahur AK, Gupta M, Varshney R, Sonkawade ERG, Verma KD, et al. Radon exhalation and gamma radioactivity

levels in soil and radiation hazard assessment in the surrounding area of National Thermal Power Corporation, Dadir (U.P), India. *Radiat Meas*, **2013**, 50: 130-135.

- [34] Masami Fukui. Evaluation of radon in soil gas and natural radioactivity in surface soil of Kinki District, Japan. J Nucl Sci Technol, **2007**, 44: 1106-1116.
- [35] Sathish LA, Nagaraja K, Ramanna HC, Nagesh V, Sundareshan S. Concentration of radon, thoron and their progeny levels in different types of floorings walls, rooms and building materials. 2009, 7: 1-9.
- [36] Ahmad N, Jaafar MS, Khan SA, Nasir T, Ahmad S, et al. Measurement of radon exhalation rate, radium activity and annual effective dose from bricks and cement samples collected from Deara Ismail Khan. **2014**, 11: 240-247.