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ABSTRACT 
 
Aim of the paper is to investigate the radiation effect on an unsteady megnetohydrodynamic free convective flow 
past a vertical porous plate in the presence of soret is analyzed. The problem is governed by the system of coupled 
non-linear partial differential equations whose exact solutions are difficult to obtain, if possible. So, Galerkin finite 
element method has been adopted for its solution . The flow phenomenon has been characterized with the help of 
flow parameters such as velocity, temperature and concentration profiles for different parameters such as Grashof 
number, modified Grashof number, Schmidt number,  Prandtl  number,  Soret  number, Magnetic field, Heat source 
and Radiation parameter. The velocity, temperature and concentration are shown graphically. The coefficient of 
skin-friction, Nusselt number and Sherwood number are shown in tables. 
 
Keywords: Radiation effect, MHD, free convective, Porous plate, FEM. 
 
 

INTRODUCTION 
 

Convective heat transfer in a porous media is a topic of rapidly growing interest due to its application to geophysics, 
geothermal reservoirs, thermal insulation engineering, exploration of petroleum and gas fields,  water movements in 
geothermal reservoirs, etc. The study of convective heat transfer mechanisms through porous media in relation to the 
applications to the  above  areas  has  been  made  by  Nield  and  Bejan [19] .  Kafousias et al [7] have studied 
unsteady free  convective flow past  vertical  plates  with  suction.  Hossain  and  Begum [5]  have discussed 
unsteady free convective mass transfer  flow past vertical porous plates.  MHD convective flow of a micro-polar 
fluid past a continuously moving vertical porous plate in the presence of heat generation/absorption was studied by 
Rahman and Sattar [12]. Recently, the study of free convective mass transfer flow has become the object of 
extensive research as the  effects of heat transfer along with mass transfer effects are dominant features in many 
engineering  applications such as rocket nozzles, cooling of nuclear reactors, high sinks in turbine blades,  high  
speed  aircrafts  and  their  atmospheric reentry,  chemical  devices  and process  equipments.   Unsteady effect on 
MHD free convective and mass transfer flow through porous medium with constant suction and constant heat flux in 
rotating system studied by Sharma [15]. But in all these papers thermal diffusion effects have been neglected, 
whereas in a convective fluid when the flow of mass is caused by a temperature difference, thermal diffusion effects 
cannot be neglected. In view of the importance of this diffusion-thermo effect, Jha and Singh [6] presented an 
analytical study for free convection and mass transfer flow past an infinite vertical plate moving  impulsively in its 
own plane taking Soret effects into account. In all the above studies,  the  effect  of  the  viscous  dissipative  heat  
was  ignored  in  free-convection  flow. However,  Gebhart  and  Mollendorf  [3]  have  shown  that  when  the 
temperature difference is small or in high Prandtl number  fluids or when the gravitational field  is  of  high  
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intensity,  viscous  dissipative  heat  should  be  taken  into  account  in  free convection flow past a semi-infinite 
vertical plate. The unsteady free convection flow of a viscous  incompressible  fluid  past  an  infinite  vertical  plate  
with  constant  heat  flux  is considered on taking into account viscous dissipative heat, under the influence of a 
transverse magnetic field studied by Srihari. K et al [16] . Ramana Kumari and Bhaskar Reddy [13] have  studied  a  
two-dimensional   unsteady   MHD  free  convective  flow  of  a  viscous incompressible electrically conducting 
fluid past an infinite vertical porous plate with variable suction. Suneetha [17] examined the problem of radiation 
and  mass transfer effects on MHD  free  convection  flow  past  an  impulsively  started  isothermal  vertical  plate  
with dissipation.  The  effect  of  temperature  dependent  viscosity  and  thermal  conductivity  on unsteady MHD 
convective heat transfer past a semi-infinite vertical porous plate has studied Seddek and Salama [14]. In recent 
years, progress has been considerably made in the study of heat and mass transfer in  magneto hydrodynamic flows 
due to its application in many devices, like the MHD power generator and Hall accelerator. The influence of 
magnetic field on the flow of an electrically conducting viscous fluid with  mass transfer and radiation absorption is 
also useful in planetary atmosphere research. Kinyanjui et al. [8] presented simultaneous  heat  and  mass  transfer  
in  unsteady  free  convection  flow  with  radiation absorption past an impulsively started infinite vertical porous 
plate subjected to a strong magnetic field.  Yih [18] numerically analyzed the effect of transpiration velocity on the 
heat and mass transfer characteristics of mixed convection about a permeable vertical plate embedded in a saturated 
porous  medium  under the coupled effects of thermal and mass diffusion. Elbashbeshy [2] studied the effect of 
surface mass flux on mixed convection along a vertical plate embedded in porous medium. Chin et al.[1]  obtained 
numerical results for the steady mixed convection boundary layer flow over a vertical  impermeable surface 
embedded in a porous medium when the viscosity of the fluid varies inversely as a linear function of the 
temperature. Pal and Talukdar [11] analyzed the combined effect of mixed convection with thermal radiation and 
chemical reaction on MHD flow of viscous and electrically conducting fluid past a vertical permeable surface 
embedded in a porous medium is analyzed. Mukhopadhyay [9] performed an analysis to investigate the effects of 
thermal radiation on unsteady mixed convection flow and heat transfer  over a porous stretching surface in porous 
medium. Hayat et al. [4] analyzed a mathematical model in  order to study the heat and mass transfer characteristics 
in mixed convection boundary layer flow about a linearly stretching vertical surface in a porous medium filled with 
a visco-elastic fluid, by taking into account the diffusion thermo (Dufour) and thermal-diffusion (Soret) 
effects.Satya sagar sexena and Dubey [19] M.H.D free convection heat and mass transfer flow of viscoelastic fluid 
embedded in a porous medium of variable permeability with radiation effect and heat source in slip flow region. 
Rathore and Asha  [20-21] discussed recently the effects of heat transfer MHD unsteady free convection flow past 
an infinite/semi infinite vertical plate was analysed. Sudhir Babu et al. [22] discussed radiation and chemical 
reaction effects on an unsteady MHD convection flow past a vertical moving porous plate embedded in a porous 
medium with viscous dissipation. 
 
The object of the present paper is to study the radiation effect on an unsteady megnetohydrodynamic free convective 
flow past a vertical porous plate in the presence of soret.The problem is governed by the system of coupled non-
linear partial differential equations whose exact solutions are difficult to obtain, if possible. So, Galerkin finite 
element method has been adopted for its solution, which is more economical from computational point of view. 
 
NOMENCLATURE 

οB    External magnetic field 

'c      Species concentration  

wC ′
     Spice concentration near the plate

 

∞′C   Spice concentration of the fluid  

 C       Dimensionless concentration 

pC
  

  Specific heat at constant pressure 

g      Acceleration due to gravity 

ΓG     Thermal Grashof number 

CG       Modified Grashof number 

R         Radiation Parameter 

TK  Thermal conductivity of the fluid 
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M       Magnetic field parameter 
D  Chemical molecular dieeusivity 

ΓP  Prandtl number 

CS    Schmidt number  

OS  Soret number  
Q  Heat source parameter 

 
'

wT     
Temperature of the plate 

 
'

∞T     Temperature of the fluid far away from the plate 

  t′  Time 

  t  Dimensionless time 

  u′  Velocity of the fluid in the x -Direction 

  οu
   

Velocity of the plate 

  u   Dimensionless velocity 

  y′   Coordinate axis normal to the plate 

  y  Dimensionless coordinate axis  normal to the plate 

 
Greek symbols 
β           Volumetric coefficient of thermal  expansion 

∗β       Volumetric coefficient of expansion With Concentration 

µ  Coefficient of viscosity 

q′
         Radiative heat flux 

ν  Kinematic viscosity 
ρ  Density of the fluid 

sσ
       

 Stefan-Boltzmann constant 

σ  Electric conductivity 
'τ
        

Skin-friction 
τ  Dimensionless skin-friction 
η  Similarity parameter 

 
FORMATION OF THE PROBLEM 
Unsteady flow of an incompressible, electrically conducting viscous fluid past an infinite vertical porous plate under 
the influence of a uniform transverse magnetic field is considered. Here the origin of the  co-ordinate  system is 

taken to be at any point of the plate. Let the components  of  the  velocity  along  with  'x  and 'y      axes  should  

be 'u , 'v  and  which  are chosen in the upward direction along the plate and normal to the plate respectively. The 
polarization effects are assumed to be negligible and hence the electric field is also negligible Hence the governing 
equations of the problem are 
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Here, the status of an equation of state is that of equation 'ρ   is constant. This means that the density  variations  

produced by the pressure, temperature and concentration variations are sufficiently small to be unimportant. 
Variations of all fluid properties other than the variations of  density  except  in  so  far  as  they  give  rise  to  a  

body  force  are  ignored  completely (Boussinesq approximation). All the physical variables are functions of  'y
and 't  only as the plate are infinite. It is also assumed that the variation of expansion coefficient is negligibly small 
and the  pressure and influence of the pressure on the density are negligible. In a convective fluid the flow of 
mass is caused by a temperature difference, the thermal diffusion (Soret  effect)  cannot  be  neglected.  Within  
the framework of abo ve assumptions the  governing equations reduce to 
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and the corresponding boundary conditions are    
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From the continuity equation, it can be seen that 'v  is either a constant or a function of time. So, assuming suction 
velocity to be oscillatory about a non-zero constant mean, one can write 
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Where  Οv   is the mean suction velocity andA,ε   are small such that  1<<Aε  the negative sign indicates the 

suction velocity is directed towards the plate. 
 
In  order  to  write  the  governing  equations  and  the  boundary  conditions  in  dimensional following non-
dimensional quantities are introduced. 
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Hence,  using  the  above  non-dimensional  quantities,  the  equations  (6)  -  (9)  in  the non-dimensional 
form can be written as 

 

 ( ) u
K

M
y

u
CGTG

y

u
Ae

t

u
C

ti







 +−
∂
∂++=

∂
∂+−

∂
∂

Γ
1

1
4

1
2

2
ωε

                                                                    (12) 

( ) QT
y

TR

y

T
Ae

t

T ti +
∂
∂







 +=
∂
∂+−

∂
∂

2

2

Pr

1
1

4

1 ωε
                                                                                              (13) 

( )
2

2

2

21
1

4

1

y

T
ScSo

y

C

Sy

C
Ae

t

C

C

ti

∂
∂+

∂
∂=

∂
∂+−

∂
∂ ωε

                                                                                           (14) 
 
and the corresponding boundary conditions are 
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Method of solution 
The Galerkin expansion for the differential equation (12) becomes 
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The Galerkin expansion for the differential equation (16) becomes 
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Neglecting the first term in equation (17) we gets
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and dot denotes the differentiation with respect to t  . 

We write the element equations for the elements  ii yyy ≤≤−1  and    kj yyy ≤≤  assemble three element 

equations, we obtain 
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Now put row corresponding to the node i to zero, from equation (18)  the difference schemes is 
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Applying Crank-Nicholson method to the above equation then we gets 
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QkBrhArB 261216 +++=                

 

rhBSrSC CC 6121 +−=
   

rSC C 2442 +=
 rhBSrSC CC 6123 −−=

   
rhBSrSC CC 6124 −+=

 
rSC C 2445 −=

  
  

rhBSrSC CC 6126 ++=
  

])1[][2]1[(24 2 ++−−=∗∗∗ iTiTiTSkSR c ο  
 

Here  
2h

k
r =  and kh,  are the mesh sizes along y -direction and time t  -direction respectively. Index i  refers to 

the space and j  refers to the time. In Equations (19)-(21), taking i = 1(1)n and using initial and boundary 

conditions (12), the following system of equations are obtained: 

3)1(1== iBXA iii                   
 
Where iA ’s are matrices of order n and ii BX , ’s column matrices having n − components. The solutions of above 

system of equations are obtained by using Thomas algorithm for velocity, temperature and concentration. Also, 
numerical solutions for these equations are obtained by C-program. In order to prove the convergence and stability 
of finite element method, the same C-program was run with slightly changed values of h and k and no significant 
change was observed in the values of Tu, and C . Hence, the finite element method is stable and convergent. 

 
Skin friction 
The skin-friction, Nusselt number and Sherwood number are important physical parameters for this type of 
boundary layer flow. The skin friction, rate of heat and mass transfer are 

Skin friction coefficient ( fC ) is given  by 
0=










∂
∂=

y

f y

u
C                              (22) 

Nusselt number (Nu) at the plate is         
0=










∂
∂=

y
y

T
Nu                                            (23) 

Sherwood number (Sh ) at the plate is     
0=










∂
∂=

y
y

C
Sh                                           (24)  

 
 

RESULTS AND DISCUSSION 
 

As a result of the numerical calculations, the dimensionless velocity, temperature and concentration distributions for 
the flow under consideration are obtained and their behaviour have been discussed for variations in the governing 

parameters viz., the thermal Grashof number ΓG , modified Grashof    number CG , magnetic field parameter M  , 

permeability parameter K  , Prandtl number ΓP  , heat  absorption parameter Q ,Radiation Parameter R , Schmidt 
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number CS  and Soret number OS  . Here we fixed .1.0,1,002.0 === tωε   
 
The influence of the Schmidt number CS  on the velocity and concentration profiles are plotted in  Figs 1(a) and 

1(b) respectively. The Schmidt number embodies the ratio of the momentum to the mass diffusivity. The Schmidt 
number therefore quantifies the relative effectiveness of momentum and mass transport by diffusion in the 
hydrodynamic (velocity) and concentration (species) boundary layers. As the Schmidt number increases the 
concentration decreases. This causes the concentration buoyancy effects to decrease yielding a reduction in the fluid 
velocity. The reductions in the velocity and concentration profiles are accompanied by simultaneous  reductions in 
the velocity and concentration boundary layers. These behaviors are clear from Figs 1(a) and 1(b). 
 
Figs 2(a) and 2(b) illustrate the velocity and temperature profiles for different values of heat source parameter Q  , 

the numerical results show that the effect of increasing values of heat source parameter result in a increasing 
velocity and temperature. 
 
Figs 3(a) and 3(b) illustrates the behavior velocity and Temperature for different values of Radiation parameter R  . 
It is observed that an increase in R contributes to increase in both the values of velocity and Temperature. 
 
Figs 4(a) and 4(b) illustrate the velocity and temperature profiles for different values of the Prandtl number ΓP . The 

Prandtl number defines the ratio of momentum diffusivity to thermal diffusivity. The numerical results show that the 
effect of increasing values of Prandtl number results in a decreasing velocity (Fig 4 (a)). From Fig 4 (b), it is 
observed that an increase in the Prandtl number results a decrease of the thermal boundary layer  thickness and in 
general lower average temperature within the boundary layer. The reason is that smaller values of ΓP  are equivalent 

to increasing the thermal conductivities, and therefore heat is able to diffuse away from the heated plate more 
rapidly than for higher values of ΓP  . Hence in the case of smaller Prandtl numbers as the boundary layer is thicker 

and the rate of heat transfer is reduced. 
 
Figs 5(a) and 5(b) depict the velocity and concentration profiles for different values of the Soret number OS . The 

Soret number OS  defines the effect of the temperature gradients inducing significant mass diffusion effects. It is 

noticed that an increase in the Soret number OS  results in an increase in the velocity and concentration within the 

boundary layer. 
 

The influence of the  modified Grashof number CG  on the velocity is presented in Fig 6. The modified Grashof 

number   signifies the relative effect of the thermal buoyancy force to the viscous hydrodynamic force in the 
boundary layer. As expected, it is observed that there is a rise in the velocity due to the enhancement of thermal 
buoyancy force. Here, the positive values of 

CG  correspond to cooling of the plate. Also, as 
CG  increases, the peak 

values of the velocity increases rapidly near the porous plate and then decays smoothly to the free stream velocity. 
Fig 7 presents typical velocity profiles in the boundary layer for various values of the Grashof number ΓG  , while 

all other parameters are kept at some fixed values. The  Grashof number ΓG  defines the ratio of the species 

buoyancy force to the viscous hydrodynamic force. As expected, the fluid velocity increases and the peak value is 
more distinctive due to increase in the species buoyancy force. The velocity distribution attains a distinctive 
maximum value in the vicinity of the plate and then decreases properly to approach the free stream value. 
 
The effect of the permeability parameter K  on the velocity field is shown in Fig 8. An increase the resistance of the 
porous medium which will tend to increase the velocity. This behavior is evident from Fig 8. 
 
For various values of the magnetic parameterM  , the velocity profiles are plotted in Fig 9. It can be seen that as M 
increases, the velocity decreases. This result qualitatively agrees with the expectations, since the magnetic field 
exerts a retarding force on the flow. 
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Tables (1), (2) and (3) show the numerical values of the skin friction coefficient, Nusselt number and Shear wood 

number. The effects of where ScQRKMGmGr ,,Pr,,,,, and 0S on the skin-friction fC , Nusselt numberNu

, Sherwood number Sh  are shown in Tables 1 to 3. From Table 1, it is observed that as Gr  or Gm or K  

increases, the skin-friction coefficient increases, where as the skin-friction coefficient decreases as M increases. 
From Table 2, it is noticed that as the skin-friction coefficient  and  the Nusselt number decreases as Pr  increases.

QR,   increases the skin-friction coefficient and the Nusselt number  also increases. From Table 3, it is found that 

as Sc  increases, the skin-friction coefficient decreases while the Sherwood number decreases. 0S
 
increases, the 

skin-friction coefficient increases while the Sherwood number increases 
 
 

 
 

                           
(a)                                                                                               (b) 

Fig.1.Effects of CS  on a) velocity and b)Concentration profile. 
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                             (a)                                                                                                              (b) 
             

Fig.2.Effets on Q  on a) velocity and Temperature profile 
     
 

( )1,1.0,1,5,1,5,5,1,71.0,002.0,6.0 =========== ΓΓ RtKSGGMPS OCC ωε  

                                                                                         

               
(a)                                                                                                (b) 

Fig.3.Effects of R  on a) Velocity and b)Temperature profile. 
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(a)                                                                                                                            (b) 

Fig.4.Effects of ΓP  on a)Velocity and b)Temperature profile. 

                
( )1,1.0,1,5,1,5,5,1,1,002.0,6.0 =========== Γ QtKSGGMRS OCC ωε      

                                                           
(a)                                                                                                                                (b) 

Fig.5.Effects of οS  on a) Velocity and b)Concentration profile. 
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     Fig.6.Effects of CG  on Velocity.                                             Fig.7.Effects of ΓG  on Velocity.  
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        Fig.8.Effects of K  on Velocity.                                               Fig.9.Effets of M  on Velocity. 
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Table 1:  Effect of ΓG ,Gc , M  and K  on fC  

( R =0.5,Pr =0.71, Q=1.0,Sc =0.6, 0S  =1.0) 

 
 
 
 
 
 
 

 

Table 2:  Effect of R , Pr  and Q  on  fC  and Nu 

( ΓG =2.0, Gc=2.0, M =0.3, K =0.5, Sc =0. 6, 0S =1.0) 

 

R  Pr  Q
 fC  Nu  

0.5 
1.0 
0.5 
0.5 
0.5 

0.71 
0.71 
7.0 
0.71 
0.71 

1.0 
1.0 
1.0 
1.0 
2.0 

1.4456 
1.5429 
0.6724 
1.4354 
1.5428 

1.1489 
0.9458 
0.5435 
1.0512 
1.4465 

 

Table 3:  Effect of Sc  and 0S   on  fC  and Sh  

( ΓG = 2.0, Gc= 2.0, M = 0.3, K =0.5, R  = 0.5,Pr = 0.71, 0S = 1.0, Q=1.0) 

 

Sc  0S  fC  Sh  
0.22 
0.60 
0.22 

1.0 
1.0 
3.0 

1.4479 
1.1364 
1.4758 

0.5654 
0.4429 
0.7458 

 
CONCLUSION 

 
In this article a mathematical model has been presented for the radiation effect on an unsteady 
megnetohydrodynamic free convective flow past a vertical porous plate in the presence of soret. The non- 
dimensional governing equations are solved with the help of finite element method. The results illustrate the flow 
characteristics for the velocity, temperature, concentration, skin-friction, Nusselt number, and Sherwood number. 
The conclusions of the study are as follows: 
 
• The velocity increases with the increase Grashof number and modified Grashof number. 
• The velocity decreases with an increase in the magnetic parameter. 

• The velocity increases with an increase in the permeability of the porous medium parameter. 

• Increasing the Prandtl number substantially decreases the translational velocity and the temperature function. 

• Increasing the heat source parameter increase both velocity and temperature. 

• The velocity as well as temperature increases with an increase in the Radiation parameter. 

• The velocity as well as concentration decreases with an increase in the Schmidt number. 

• An increase in the Soret number leads to increase in the velocity and temperature. 
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