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ABSTRACT 
 
The objective of this paper is to analyze the radiation and mass transfer effects on an unsteady 
two-dimensional laminar mixed convective boundary layer flow of a viscous, incompressible, 
electrically conducting chemically reacting fluid, along a vertical moving semi-infinite 
permeable plate with suction, embedded in a uniform porous medium, in the presence of 
transverse magnetic filed, by taking into account the effects of viscous dissipation. The equations 
of continuity, linear momentum, energy and diffusion, which govern the flow field, are solved by 
using a regular perturbation method. The behaviour of the velocity, temperature, concentration, 
skin-friction, Nusselt number and Sherwood number has been discussed for variations in the 
governing parameters.  
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INTRODUCTION 
 
Combined heat and mass transfer (or double-diffusion) in fluid-saturated porous media finds 
applications in a variety of engineering processes such as heat exchanger devices, petroleum 
reservoirs, chemical catalytic reactors and processes, geothermal and geophysical engineering 
such as moisture migration in fibrous insulation and nuclear waste disposal and others. Double 
diffusive flow is driven by buoyancy due to temperature and concentration gradients. Bejan and 
Khair [1] investigated the vertical free convection boundary layer flow in porous media owing to 
combined heat and mass transfer. Lai and Kulacki [2] used the series expansion method to 
investigate coupled heat and mass transfer in natural convection from a sphere in a porous 
medium. The suction and blowing effects on free convection coupled heat and mass transfer over 
a vertical plate in saturated porous medium was studied by Raptis et al. [3] and Lai and Kulacki 
[4], respectively. 
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There has been a renewed interest in studying magnetohydrodynamic (MHD) flow and heat 
transfer in porous and non-porous media due to the effect of magnetic fields on the boundary 
layer flow control and on the performance of many systems using electrically conducting fluids. 
In addition, this type of flow finds applications in many engineering problems such as MHD 
generators, plasma studies, nuclear reactors, and geothermal energy extractions. Raptis et al. [5] 
analyzed hydromagnetic free convection flow through a porous medium between two parallel 
plates. Gribben [6] presented the boundary layer flow over a semi-infinite plate with an aligned 
magnetic field in the presence of pressure gradient. He obtained solutions for large and small 
magnetic Prandtl number using the method of matched asymptotic expansion. Helmy [7] 
presented an unsteady two-dimensional laminar free convection flow of an incompressible, 
electrically conducting (Newtonian or polar) fluid through a porous medium bounded by infinite 
vertical plane surface of constant temperature. Soundalgekar et al. [8] analyzed the problem of 
free convection effects on Stokes problem for a vertical plate under the action of transversely 
applied magnetic field with mass transfer. Gregantopoulos et al. [9] studied two-dimensional 
unsteady free convection and mass transfer flow of an incompressible viscous dissipative and 
electrically conducting fluid past an infinite vertical porous plate. 
   
In many chemical engineering processes, there does occur the chemical reaction between a 
foreign mass and the fluid in which the plate is moving. These processes take place in numerous 
industrial applications viz., polymer production, manufacturing of ceramics or glass ware and 
food processing. Chambre and Young [10] have presented a first order chemical reaction in the 
neighbourhood of a horizontal plate. The effects of the chemical reaction and mass transfer on 
MHD unsteady free convection flow past a semi infinite vertical plate with constant/variable 
suction and heat sink was analyzed by [11-13]. Muthucumaraswamy and Meenakshisundaram 
[14] investigated theoretical study of chemical reaction effects on vertical oscillating plate with 
variable temperature and mass diffusion. 
 
For some industrial applications such as glass production and furnace design, and in space 
technology applications such as cosmical flight aerodynamics rocket, propulsion systems, plasma 
physics and spacecraft re-entry aerothermodynamics which operate at higher temperatures, 
radiation effects can be significant. In view of this, Hossain and Takhar [15] analyzed the effect 
of radiation on mixed convection along a vertical plate with uniform surface temperature. Bakier 
and Gorla [16] investigated the effect of radiation on mixed convection flow over horizontal 
surfaces embedded in a porous medium. Kim and Fedorov [17] analyzed transient mixed 
radiative convective flow of a micropolar fluid past a moving semi-infinite vertical porous plate. 
 
In most of the studies mentioned above, viscous dissipation is neglected. Gebhart [18] has shown 
the importance of viscous dissipative heat in free convection flow in the case of isothermal and 
constant heat flux at the plate. Gebhart and Mollendorf [19] considered the effects of viscous 
dissipation for external natural convection flow over a surface.  Soundalgekar [20] analyzed 
viscous dissipative heat on the two-dimensional unsteady free convective flow past an infinite 
vertical porous plate when the temperature oscillates in time and there is constant suction at the 
plate. Israel Cookey et al. [21] investigated the influence of viscous dissipation and radiation on 
unsteady MHD free convection flow past an infinite heated vertical plate in a porous medium 
with time dependent suction. Recently the effects of heat transfer on MHD unsteady free 
convection flow past an infinite/semi infinite vertical plate was analyzed by [24-27]. 
 
However, the interaction of radiation with mass transfer in a chemically reacting and dissipative 
fluid has received little attention. So the objective of this paper is to study the effects of chemical 
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reaction and thermal radiation on MHD convective fluid past a semi infinite vertical plate with 
viscous dissipation.  
 
2. Mathematical Analysis 
An unsteady two-dimensional hydromagnetic laminar mixed convective boundary layer flow of 
a viscous, incompressible, electrically conducting and chemically reacting fluid in an optically 
thin environment, past a semi-infinite vertical permeable moving plate embedded in a uniform 
porous medium, in the presence of thermal radiation is considered. The x′ - axis is taken in the 
upward direction along the plate and y′ - axis normal to it. A uniform magnetic field is applied in 
the direction perpendicular to the plate. The transverse applied magnetic field and magnetic 
Reynolds number are assumed to be very small, so that the induced magnetic field is negligible 
[22]. Also, it is assumed that the there is no applied voltage, so that the electric field is absent. 
The concentration of the diffusing species in the binary mixture is assumed to be very small in 
comparison with the other chemical species which are present, and hence the Soret and Dufour 
effects are negligible. Further due to the semi-infinite plane surface assumption, the flow 
variables are functions of normal distance y′  and t′  only. Now, under the usual Boussinesq’s 
approximation, the governing boundary layer equations are 
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where u′ , v′  are the velocity components in x′ , y′  directions respectively, t ′ - the time, p′ - the 

pressure, ρ  - the fluid density,  g - the acceleration due to gravity, β and   β*- the thermal and 
concentration expansion coefficients respectively, K ′  - the permeability of the porous medium,  
T ′  - the  temperature of the fluid in the boundary layer, ν - the kinematic viscosity, σ - the 
electrical conductivity of the fluid,∞′T  - the temperature of the fluid far away from the plate,C ′  - 
the species concentration in the boundary layer,        ∞′C  - the species concentration in the fluid 

far away from the plate,     0B - the magnetic induction, α - the fluid thermal diffusivity, k  - the 

thermal conductivity,  q′ - the radiative heat flux, *σ - the Stefan- Boltzmann constant and D - 
the mass diffusivity. The third and fourth terms on the right hand side of the momentum equation 
(2.2) denote the thermal and concentration buoyancy effects respectively. Also, the second and 
third terms on right hand side of the energy equation (2.3) represent the radiative heat flux and 
viscous dissipation respectively.  
 
It is assumed that the permeable plate moves with a constant velocity in the direction of fluid 
flow, and the free stream velocity follows the exponentially increasing small perturbation law. In 
addition, it is assumed that the temperature and concentration at the wall as well as the suction 
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velocity are exponentially varying with time. Equation (2.4) is the differential approximation for 
radiation under fairly broad realistic assumptions. In one space coordinatey′ , the radiative heat 
flux q′  satisfies this nonlinear differential equation [23]. 
 
The boundary conditions for the velocity, temperature and concentration fields are  

tn
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where pu′ is the plate velocity, wT ′   and wC ′ - the temperature and concentration of the plate 

respectively. ∞′U - the free stream velocity, U0 and n′  - the  constants. From Equation (2.1) it is 
clear that the suction velocity at the plate is either a constant or function of time only. Hence the 
suction velocity normal to the plate is assumed in the form   
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where A is a real positive constant, and ε is small such that ε << 1, ε A << 1, and V0 is a non-zero 
positive constant, the negative sign indicates that the suction is towards the plate.  
 
Outside the boundary layer, Equation (2.2) gives 
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Since the medium is optically thin with relatively low density and α1 << 1, the radiative heat flux 
given by Equation (2.3), in the spirit of Cogley et al. [23], becomes 
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where B is Planck’s function.                       
 
In order to write the governing equations and the boundary conditions in dimensionless form, the 
following non-dimensional quantities are introduced.  
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In view of Equations (2.4),  (2.7), (2.8), (2.9) and (2.10), Equations (2.2), (2.3) and (2.5) reduce 
to the following dimensionless form.  
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where  )/1( KMN +=  and Gr, Gm, Pr, R, Ec , Sc and rK are the thermal Grashof number, 
solutal Grashof Number, Prandtl Number, radiation parameter, Eckert number,  Schmidt number  
and chemical reaction parameter respectively.  
 
The corresponding dimensionless boundary conditions are 
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3. Solution of the problem 
Equations (2.11) - (2.13) are coupled, non-linear partial differential equations and these cannot 
be solved in closed-form.  However, these equations can be reduced to a set of ordinary 
differential equations, which can be solved analytically. This can be done by representing the 
velocity, temperature and concentration of the fluid in the neighbourhood of the plate as  
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Substituting (3.1) in Equations (2.11) - (2.13) and equating the harmonic and non- harmonic 
terms, and neglecting the higher-order terms of  o(ε2), we obtain  
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where prime denotes ordinary differentiation with respect to y.  
 
The corresponding boundary conditions can be written as   
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The Equations (3.2) - (3.7) are still coupled and non-linear, whose exact solutions are not 
possible. So we expand 101010 ,,,,, CCuu θθ  in terms of Ec in the following form, as the Eckert 

number is very small for incompressible flows. 
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Substituting (3.9) in Equations (3.2) - (3.7), equating the coefficients of  Ec to zero and 
neglecting the terms in Ec2 and higher order, we get the following equations. 
 
The zeroth order equations are 
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The first order equations are 
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Solving Equations (3.10) - (3.15) under the boundary conditions (3.16), and Equations (3.17)-
(3.22) under the boundary conditions (3.23), and using Equations (3.9) and (3.1), we obtain the 
velocity, temperature and concentration distributions in the boundary layer as  
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where the expressions for the constants are given in the Appendix.  
 
The skin-friction, Nusselt number and Sherwood number are important physical parameters for 
this type of boundary layer flow.  
 
Knowing the velocity field, the skin-friction at the plate can be obtained, which in non-
dimensional form is given by 
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Knowing the temperature field, the rate of heat transfer coefficient can be obtained, which in the 
non-dimensional form, in terms of the Nusselt number, is given by 



M. Sudheer Babu et al                                                    Adv. Appl. Sci. Res., 2011, 2 (5):226-239   
 _____________________________________________________________________________ 

233 
Pelagia Research Library 

 

Nu  = 
∞

=′

′−′








′∂
∂

−
TT

y
T

x
w

y 0  ⇒
0

1Re
=

−









∂
∂−=

y

x y
Nu

θ
   = 

0

10

=









∂
∂+

∂
∂−

y

nt

y
e

y

θεθ
            

        = )()(222{( 1353441332413102 mmSmmSmSmSmSmSEcm +−+−−−−−+−−  

         1342313152146 22{}[{)}( mRmRmREcmDmDemmS nt −−−+−−++− ε  

         )(2)()()( 53837146135344 mmRmRmmRmmRmmR +−−+−+−+−  

         )()()()()( 1613121215113610329 mmRmmRmmRmmRmmR +−+−+−+−+−    

         }])()()( 420641624155414 mRmmRmmRmmR −+−+−+−     

 

where Rex = 
v

xV0  is the local Reynolds number. 

Knowing the concentration field, the rate of mass transfer coefficient can be obtained, which in 
the non-dimensional form, in terms of the Sherwood number, is given by 
 

Sh  = 
∞

=′

′−′








′∂
′∂

−
CC

y
C

x
w

y 0  ⇒
0

1Re
=

−









∂
∂−=

y

x y

C
Sh   = 

0

10

=









∂
∂+

∂
∂−

y

nt

y

C
e

y

C ε          

      = }])1({[ 2
1

1
21 Am

n

Am
mem nt ++−+−− ε                                              

 
RESULTS AND DISCUSSION 

 
The formulation of the problem that accounts for the effects of radiation and viscous dissipation 
on the flow of an incompressible viscous chemically reacting fluid along a semi-infinite, vertical 
moving porous plate embedded in a porous medium in the presence of transverse magnetic field 
was accomplished in the preceding sections. Following Cogley et al. [23] approximation for the 
radiative heat flux in the optically thin environment, the governing equations of the flow field 
were solved analytically, using a perturbation method, and the expressions for the velocity, 
temperature, concentration, skin-friction, Nusselt number and Sherwood number were obtained. 
In order to get a physical insight of the problem, the above physical quantities are computed 
numerically for different values of the governing parameters viz., thermal Grashof number Gr, 
the solutal Grashof number Gm, Prandtl number Pr, Schmidt number Sc, the plate velocity Up, 
the radiation parameter R and the Eckert number Ec.  
 
In order to assess the accuracy of this method, we have compared our results with accepted data 
for the velocity and temperature profiles for a stationary vertical porous plate corresponding to 
the case computed by Helmy [7] and to the case of moving vertical porous plate as computed by 
Kim [17]. The results of these comparisons are found to be in very good agreement. 
 
Fig.1 presents the typical velocity profiles in the boundary layer for various values of the thermal 
Grashof number. It is observed that an increase in Gr, leads to a rise in the values of velocity due 
to enhancement in buoyancy force. Here, the positive values of Gr correspond to cooling of the 
plate. In addition, it is observed that the velocity increases rapidly near the wall of the porous 
plate as Grashof number increases and then decays to the free stream velocity. For the case of 
different values of the solutal Grashof number, the velocity profiles in the boundary layer are 
shown in Fig.2.The velocity distribution attains a distinctive maximum value in the vicinity of 
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the plate and then decreases properly to approach a free stream value. As expected, the fluid 
velocity increases and the peak value becomes more distinctive due to increase in the buoyancy 
force represented by Gm. For different values of the radiation parameter R, the velocity and 
temperature profiles are plotted in Figs.3 (a) and 3 (b). It is noticed that an increase in the 
radiation parameter results a decrease in the velocity and temperature within the boundary layer, 
as well as decreased the thickness of the velocity and temperature boundary layers.  
 
Figs. 4(a) and 4(b) display the effects of Schmidt number on the velocity and concentration 
respectively. As the Schmidt number increases, the concentration decreases. This causes the 
concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. Reductions 
in the velocity and concentration distributions are accompanied by simultaneous reductions in 
the velocity and concentration boundary layers. 
 
The effects of the viscous dissipation parameter i.e., the Eckert number on the velocity and 
temperature are shown in Figs. 5(a) and 5(b). Greater viscous dissipative heat causes a rise in the 
temperature as well as the velocity. 
 
Figs.6 (a) and 6(b) illustrate the behaviour velocity and temperature for different values of 
Prandtl number. The numerical results show that the effect of increasing values of Prandtl 
number results in a decreasing velocity. From Fig.6 (b), it is observed that an increase in the 
Prandtl number results a decrease of the thermal boundary layer thickness and in general lower 
average temperature with in the boundary layer. The reason is that smaller values of Pr are 
equivalent to increase in the thermal conductivity of the fluid and therefore heat is able to diffuse 
away from the heated surface more rapidly for higher values of Pr. Hence in the case of smaller 
Prandtl numbers as the thermal boundary layer is thicker and the rate of heat transfer is reduced. 
The effects of the chemical reaction parameter Kr  on the velocity and concentration are shown 
in Figs. 7(a) and 7(b). It is noticed that an increase in the chemical reaction parameter results a 
decrease in the velocity and concentration within the boundary layer. For various values of the 
magnetic parameter M, the velocity profiles are plotted in Fig.8. It is obvious that existence of 
the magnetic field decreases the velocity. Fig.9 shows the velocity profiles for different values of 
the permeability parameter. Clearly, as K increases the peak values of the velocity tends to 
increase.  
 
Tables 1-3 show the effects of the radiation parameter, Eckert number and chemical reaction 
parameter on the skin-friction

fC , Nusselt numberNu , and Sherwood number. From Table 1, it 

can be seen that as the radiation parameter increases, the skin-friction decreases and the Nusselt 
number increases. However, from Table 2, it is noticed that, an increase in the chemical reaction 
parameter reduces the skin-friction and increases the Sherwood number.  Finally, from Table 3, 
it is observed that as Eckert number increases the skin-friction increases, and the Nusselt number 
decreases. 
 

Table 1  Effects of radiation on 
fC  and  1Re−

xNu . Reference values as in Fig.3 (a) and 3(b). 

  
  
  
  
 
 
 

 

    R           
fC      1Re−

xNu  

    0 
  0.5 
  1.0 
  2.0 

     2.5451 
     2.4122 
     2.3326 
     2.2426 

     0.5818 
     1.1234 
     1.2538 
     1.6581 
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Table 2 Effects of Sc on 
fC  and 1Re−

xSh . Reference values as in Fig.4 (a) and 4(b). 

 
  kr 

          fC    1Re−
xSh  

  0.20 
  0.50 
  0.80 
  1.0 

     2.5088 
     2.4123 
     2.3677 
     2.2340 

  0.3106 
  0.5010 
  0.6513 
  0.9416 

 

Table 3  Effects of Ec on 
fC and 1Re−

xNu  . Reference values as in Fig.5 (a) and 5(b). 
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Fig.1 Effect of Gr on velocity. 
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Fig.2 Effect of Gm on velocity.  
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Fig.3(a)  Effect of radiation on velocty.
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Fig.3(b)  Effects of radiation on temperature.
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Fig.4(a)  Effect of Sc on velocty. 
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Fig.4(b)  Effect of Sc on concentration.  
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Fig.5(a)  Effect of Ec on velocity.
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Fig.5(b)  Effect of Ec on temperature.
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Fig.6(a)  Effect of Pr on velocity. 
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Fig.6(b)  Effect of Pr on temperature.
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Fig.7(a)  Effect of Kr on velocty. 
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Fig. 7(b) Effect of Kr on concentration
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Fig.8  Effect of magnetic parameter on velocity. 
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Fig.9  Effect of permeability on velocity.
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