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ABSTRACT

The pulsatile flow of Herschel — Bulkley fluid tbgh an inclined multiple stenoses artery with peicobody
acceleration has been investigated in this papessufning the stenoses to be mild, the nonlinear temmsa
governing the flow are solved using perturbatiocht@que. Analytical expressions are obtained fdalaxelocity,
plug velocity, wall shear stress and flow rate. if variations with different flow parameters areoftied in figures.
It is noticed that the velocity increases as bodgeteration increases but it decreases as yielesstincreases and
wall shear stress increases as body acceleratioreamses.

Keywords. Pulsatile flow, Body acceleration, Herschel — Beykfluid, stenosed artery.

INTRODUCTION

The cardiovascular system primarily functions irtrimmt and waste transport throughout the body. BHleed
vessels distribute blood to different organs angputhemselves with nutrition. The arteries, famf inert tubes,
adapt to varying flow and pressure conditions bwrmgithg or shrinking to meet changing hemodynamimateds.
The systemic flow is characterised predominantlyiteypulsatile nature and the many levels of brarglof the
vascular network. The heart ejects and fills withold in alternating cycles called systole and diestBlood is
pumped out of the heart during systole. The hesstsrduring diastole, and no blood is ejecteditlrasons like
traveling in vehicles or aircraft, jackleg driligperating jackhammer or the sudden movements obdkg during
sports activities, the human body experiences eatdsody acceleration. Prolonged exposure of attmedduman
body to external acceleration may cause serioukhhpeoblem like headache, loss of vision, abdompsn, and
increase pulse rate. Due to physiological impoaotbody acceleration, many mathematical model® Heeen
proposed for blood flow with body acceleration. €mani and Palanisami[1l] discussed Casson fluid ehod
pulsatile flow of blood flow under periodic bodycateration. Chaturani and Palanisami[2] investidptdsatile
flow of power law fluid model for blood flow undeyeriodic body acceleration. Chaturani and Palanysgh
considered pulsatile flow of blood with periodicdyoacceleration. Chaturani and Samy[4] studied&il flow of
Casson's fluid through stenosed arteries with egftins to blood flow. Chien[5] discussed hemorbgyplin
clinical medicine, Recent Advances in Cardiovascllseases. El-Shehed [6] considered pulsatile fdvislood
through a stenosed porous medium under periodig bodeleration. Elshehawey et.al [7] discussedapilesflow
of blood through a porous medium under periodicybadceleration. Mandalet.al [9] considered effecbody
acceleration on unsteady pulsatile flow of non-Newdn fluid through a stenosed artery. Maruthi Bdasnd
Radhakrishnamacharya [10] studiedeffect of multgitknoses on Herschel-Bulkley fluid through a tulith non-
uniform cross-section. Maruthi Prasad and Radhakamacharya [11] studied flow of Herschel-Bulkldyid
through an inclined tube of non-uniform cross-sectivith multiple stenoses. Merrill et.al [12] cosied pressure
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flow relations of human blood in hollow fibre atwoshear rates. Nagarani and Sarojamma[13] studfedt eof
body acceleration on pulsatile flow of Casson fltlidough a mild stenosed artery. Sankar and Hetretbt]
investigated pulsatile flow of Herschel-Bulkey fluihrough stenosed arteries a mathematical modebjé&8nma
and Nagarani[15] considered pulsatile flow of Cas8aid in a homogeneous porous medium subjectxtereal
acceleration.Shukla et.al [16]investigated Effemtstenosis on non-Newtonian flow through an artsith mild
stenosis. Siddiqui and Mishra [17] studied a stoflynodified Casson’s fluid in modeled normal andnstic
capillary — tissue diffusion phenomena. Siddigalefl8] considered Mathematical modelling of pulsaflow of
Casson’s fluid in arterial stenosis. Tu and Devjll®] discussedpulsatile flow of non-Newtonian dsithrough
arterial stenoses. Vajravelu et.at [20] investiggberistaltic transport of a Herschel-Bulkley fluid an inclined
tube.

In the present investigation an effort has beenariadstudy the pulsatile flow of Herschel — Bulkligyid through

an inclined multiple stenoses artery with non-umfacross-section subject to periodic body accetmmassuming
that the stenoses are mild. Analytical expressfongxial velocity and flow rate have been derieedl the effects
of various parameters on these flow variables teen studied.

MATHEMATICAL FORMULATION

Ro :0<z<d,
R - g 1+COSZE( d- Lij d<s = d+ L,
R d+ L<z< 3—%,
R(2)= RO—é 1+cosz—(z— B) -3—5<—L< B W
L, L, 27 ’
R(z)—% 1+cosi—7:(z B) BT &%,
R (2) :I§+%s_zs B

The following restrictions for mild stenoses [10¢ supposed to be satisfied:

d <<min(Ry, Ry,),
o <<\, whereR,= R ¥ atz |

Here Li and 5| (i =1, 2) are the lengths and maximum heights of two sten¢ibe suffixes 1 and 2 refer to the
first and second stenosis respectively).

The pressure gradient and body acceleration aendiy:
=A+Acos@w,t), (2)
G(t)=a,cost + @) ®3)
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Where A)and A& are pressure gradient of steady flow and amplitnfdescillatory part respectivelyd, is the
amplitude of body acceleratiora)p = 27'[fp, ) = 27be with fp is the pulse frequency anfﬁb is body

acceleration frequency@ is the phase angle of body acceleration witheeso the pressure gradient ahds
time.

Figure: 1 Geometry of an inclined tube with multiple stenoses

The governing equation of motion for flow in cylinchl polar coordinates can be written in the form:

AU D 10,y
C =P 29 (rr)+G(D) +

Pot ™ a2 Tar(”) 1)+ pgsing

_ou _ 10, _ o
pﬁ—%+ﬁcos@pt)—gg(rr)+a‘g cos@gt+@ )} pg siB @
op _

or ©)

Where T, Z denote the radial and axial coordinates respdytiard ,5 denote densitylU axial velocity of

blood, T time, [_J pressure and the shear stress aqﬁ' be the small angle of inclination, g is accelematiue to
gravity. For Herschell-Bulkley fluid the relatiortween shear stress and shear rate is given by

f=,L7H(—a—u] +T,ifT >T, 6)

or
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ou e o

—=0 if 7<7, ™

or

Where U is the total velocity,fH is the yield stress, n is the power law index, qﬁ_iq is the coefficient of
viscosity for Herschell-bulkley fluid.

WhenT < TH i.e. the shear stress is less than the yield stitesie is a core region which flows as a plug Bgd
(7) corresponds to vanishing velocity gradienthattregion. However, the fluid behavior is indichtghenever

T>T,.

The boundary conditions are:

Tis finite atr = C (8)
U=0 atT =R (2) 9)
Introducing the non-dimensional variables: _
— u ’ Z:i, t:a)p_t’ 5:2, r= T
AR 4i, R R A2
T, R(Z T qd L
o= H , (Z):L, r=—, q:ﬂ’ |_I:_I'1
AR/2 R R B E
Lzzﬁ, Blzi, a:i’ e:ﬁ, w:ﬂ’
B B A A w,
- 2 n-1 Ab
Ho=Hy(5—)" F=— (10)
T TTURA 4pg
The non-dimensional momentum equation (4) becomes
ou 20 sing
a’—=4(1+ecost)-=—(I7)+ 4 cosft+¢ ¥y —— 11
ot ( ) ror ( ) wEey F )
w R
WhereC}’2 =2 , @ is Womersley frequency parameter.
ulp
Equations (6) and (7) can be written as
(r-r )i:(—ia—ujiﬂ'>1’ (12)
" 2 0r :
ou .
—=0 if 7<r 13
or " )

The boundary conditions (equations 8 and 9) retlice
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ris finite atr = C (14)
u=0 atr=R(2) (15)

The geometry of the stenosis in non-dimensionahfir given by

1 :0<z<d,
1—%[1+ coszzﬂ(z—dl—%n d< z=< d+ L,
1 d+ L <z< Bl—%,
R(a= 1—%[“ coszLiT(z— Bl)j :Ei—%s < B, e
R*(z)—%[1+coszL—ﬂ( z- Flz)) B< &%,
R(2 :I§+%s = B

METHOD OF SOLUTION

On using perturbation method, the veloaitand shear stresE are expanded as follows in termst@‘f2 (where
2
a<<1)

Uz nt)=y(zn)+a’y(z nd+ s, (17)
T(z,r,t)=71,(Z, 1, )+ Q%7 (Z, 1)+ e, (18)
U (zZ )=y, (2 H)+a’y (Z L)+ e, (19)
R(zrn)=R,(zr)+a* R(Z 1)+ e, (20)
Substituting (17) and (18) in equation (11) andatiopg the constant term arﬁf2 term we get
in
i(rro):Zr {(1+e cog)+a cosgt+ g }M (21)
or 4F
ou, _ 290
—=———\Ir (22)
ot ror (r7.)

Integrate equation (21) and using boundary condifiat)
To=f(t)r (23)

in
where f (t)=1+ecost+ a cost+ @ ¥ S4—F’8

Substituting (17) and (18) in (12)
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O 2rs (1, —kry,) (24)
or

—% =2kry?r, (1, - (k- 21),,) (25)

r

Where k = 1/n

Integrating equation (24) using the relation (23 ¢he boundary condition (15) we obtain

U, = A( R — rk+1)+ Az( R - rk) (26)

2f4(t §
Where A = ©) A =-2f (),

n+1 '

The plug core velocit)uop can be obtained from equation (26) as
— 1 1
Upp = A(R™ - R+ A( R- 1) @7)

Neglecting the terms of (I(Z) and higher powers off in equation (ZO)R)p can be obtained from (23) as

= 28
R =0 )
Using equation (22) we get the solution &y as,
I, =al +art+ar? (29)

+1 - —
Where 2, = — nR | _(k 1)THF€, __(k l)TH,
2(k+1) 2 k+ 2
k

a4:W(k+3)’ a = (a+a) f(D f(D,

a, = a, f*7*(1) f'(1), a,=a, () f(9

Similarly using equations (25) and (29) we can iobtlae solution forl, as
u={(b+b) R*- Q3 {( b+« B+ R'€ b-)p ¥
(30)
_b9R2k + Qo - khF\krl r - ka‘k (4 93 R* f+ 94 Rt
u,={(bh+b) R*-BR3 H( b+ R« b+ B R'¢ p)p R

(31)

HR+h,R- h R KB'- b RE+ Hh'R R p'RS
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2k-2 2%k-2 %-2 2
WhereblZM, Q:M’ Q:M’ b4: 2n@f (D
k+1 k+2 k+1 2n+ 1

_ 2k(k-1)r, g (1) _ 2k(k-1y, 3 P (1)

b, K ’ & 2k +1 ’
b, = 2ka, F272(t) b = 2k(k-1)r,, g <2 (1)
2k+1 2k+1 ’

— _ Q8 ) cok-s — (ke k-3
B, =2K(k-Dr, [ 24 2] 50, b= (k-1 P,

_ 2ka, f72(1) _ 2kg f*7*(1) ol -3
b11_ k+1 ’ tlz_ k+1 ) QS_Z(k 1)Tqu2 (t),

b, =2(k-1r, a (1)
Using equations (17) and (18) the total velocistrilbution and shear stress can be written as
UZAL(F*H— lJ<+1)_|_ A( B - lk)+0’2|:{( Q"' @ Br2_ p?l&?
H(b,+b) -(b+ R} R h-h ' @2
B, R+ ™ - B, R - g, R+ R F+ b, R
u, = A(R™- R+ A( R- B)+a’[{( b p R~ piRY
H(b,+b) (b + )} R« h- B B™ 9
R+ R - B R B b RE+ HR R bRIR
r :(TO + 0’2T1),_R
) (34)
= f (t)R+a2{asR+ g R+ a F‘{Z}
The second approximation plug core radpr can be obtained by neglecting terms of&)4() and higher powers

of & in equation (20) as

7, (Rop)
Rip = 1f (t)p (35)
With the help of equations (20), (28) and (3E§p can be given by
T a’ 5
=—H 4+ — + "t 36
p f(t) f(t)(a‘“’l%lD %ng e"%) (36)

The volumetric flow rate Q is given by

Q :4_[:(2) ru(z, r,t)dr
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o KHD) g K WZ{W(MQ)
2(k +3) 2+ 2) 2

_Rzku{ b, , b113)+ R”*S(bf’ b4_2b°'_ R 37

Q:{AR“

2k+4 k+

_b-b b, b ]+R2k+2£—tb+ b, . QJH
2k+3 k+3 k+2 2 X+ 2 k+

r

Figure 2: Variation of axial velocity W radial distance r for, = 0.&4= .
w=1,¢=0.2,=0.1

4.5 ~
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r

Figure 3: Variation of axial velocity wh radial distance for, = 0.&=
w=1,¢9=0.2,6=0.1
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Figure 4: Variation of axial velocity W radial distance r for, = 0.4= .
w=1¢=0.2,=0.1

Figure 5: Variation of axial velocity W radial distance r for, = 0.4= .
w=1le=2,=0.1
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——B=0.1

Figure 6: Variation of axial velocity W radial distance r for, = 0.&4= .
w=1,¢9=0.2,e=2

Figure 7: Variation of axial velocity wh radial distance r far=
w=1,¢9=0.2,=0.1
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Figure 8: Variation of shear stress miimet forr, = 0.1e= 2w= 1
9=0.2,4=0.1

RESULTSAND DISCUSSION

The velocity profile for the pulsatile flow of Hatsel — Bulkley fluid through an inclined multipléesoses artery
with periodic body acceleration is computed by gs{82) for different values of parameter e, bodgederation
parametem , time t, phase angl), inclination angleB, yield stress, have been shown through figures 2- 7.

Figure - 2 shows that the variation of velocityfijeofor different values of parameter It can be noted here that as
the parametee increases the velocity profile increases. In thespnce of body acceleration, velocity increases
rapidly. As the body acceleration increases, thg pegion shrinks and hence more flow takes pléigarg.3). It
can easily be seen from figures 4 & 5 that an mseein the time¢ and phase angl€) leads to decrease in the
velocity profile. From figures 6 and 7 it can beselved that an increase in the inclination agéend yield stress

T, lead to an increase in velocity profile. Variatiohwall shear stress with times presented in figure - 8. From

this figure, it can be clearly observed that foy aalue of body acceleration parametewall shear stress gradually
decreases as tiniéncreases until it attains its minimumtat 180 , wherefrom it gradually increases with time and
reaches its approached magnitude=ag60.

CONCLUSION

The present study deals with a theoretical invattg of the characteristics of the pulsatile flofvblood through
an inclined multiple stenoses artery with periodaxly acceleration. Blood is represented by HersehBllkley
fluid model. Using appropriate boundary conditioasalytical expressions for the velocity and flaterhave been
obtained. It is clear from the above result andubsions that the body acceleration effects largelythe axial
velocity of blood flow.

A proper understanding of interactions of body &mregion with blood flow in presence of inclinati@ould be
useful in the diagnosis and therapeutic treatmérgome health problems (joint pain, vision loss adcular
disorder) to better design of protective pads aadhimes.
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Hence from all the above discussions we can cordhat a careful choice of the values of the pataraef body
acceleration, yield stress and inclination anglé affect the flow characteristics and hence canuliised for
medical and engineering applications.
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