Progress in Animal Models of Pancreatic Ductal Adeno-carcinoma

Kaiwen kong¹*, Meng Guo²*, Yanfang Liu^{3#}, Jianming Zheng^{1#}

¹Pathology Department, Changhai Hospital, Second Military Medical University, China

²Institute of Organ Transplantation, Changzheng Hospital, Second Military Med-ical University, Shanghai, China; National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, China

³Pathology Department, Changhai Hospital, Second Military Medical University; National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, China

ABSTRACT

As a common gastrointestinal tumor, the incidence of pancreatic cancer has been increasing in recent years. The disease shows multigene, multi-step complex evolution from occurrence to dissemination. Furthermore , pancreatic cancer has an insidious onset and an extremely poor prognosis, so it is difficult to obtain cinical specimens at different stages of the disease, and it is, therefore, difficult to observe tumorigenesis and tumor development in patients with pancreatic cancer. At present, no standard protocols stipulate clinical treatment of pancreatic cancer, and the benefit rate of new targeted therapies is low. For this reason, a well-established preclinical model of pancreatic cancer must be established to allow further exploration of the occurrence, development, invasion, and metastasis mechanism of pancreatic cancer, as well as to facilitate research into new therapeutic targets. A large number of animal models of pancreatic cancer are currently available, including a cancer cell line-based xenograft, a patient-derived xenograft, several mouse models (including transgenic mice), and organoid models. These models have their own characteristics, but they still cannot perfectly predict the clinical outcome of the new treatment. In this paper, we present the distinctive features of the currently popular pancreatic cancer models, and discuss their preparation methods, clinical relations, scientific purposes and limitations.

INTRODUCTION

According to NIH statistics, the 5-year survival rate of patients with pancreatic cancer between 2009 and 2015 was only 9.3% in US (https://seer.cancer.gov/statfacts/ html/pancreas.html). As such, pancreatic cancer is associated with the worst prognosis of any malignancy because it has an insidious onset, high malignancy, special anatomical location, low resection rate, and high recurrence rate, as well as lack typical symptoms. Furthermore, the incidence of the disease increases annually: by 2030, patients with pancreatic cancer are expected to outnumber those with breast and colorectal cancer in United States,

Received May 09th, 2019 - Accepted July 26th, 2019 Keywords Mice; Transgenic; Models; Animal; Pancreatic; Neoplasms Abbreviations CDX cell line-based xenograft; PDAC pancreatic ductal adenocarcinoma; PDX patient-derived xenograft Correspondence Yangfang Liu Department of Pathology, Changhai Hospital Second Military Medical University, Shanghai 200433, P.R.China **Tel** +8613918386805 Fax 021-81873689 E-mail liuyanfang00215@163.com Jianming Zheng Department of Pathology, Changhai Hospital Second Military Medical University, Shanghai 200433, P.R.China Tel +8613386273822 Fax 021-81873689 E-mail jmzheng1962@163.com *authors contribute equally; #corresponding author

and pancreatic cancer is projected to become the second most common cancer worldwide [1].

Owing to the characteristics of pancreatic cancer, it is difficult for clincians to obtain samples at different stages and to continuously observe the occurrence and development of pancreatic cancer in individual patients. For this reason, animal models of pancreatic cancer help clinicians to further understand the occurrence, development, invasion, and metastasis mechanisms of this disease [1], and can even be used to explore new therapeutic means.

In 1941, Wilson discovered that a diet supplemented with 2-acetylaminofluorene induced pancreatic cancer in albino rats [2]. By the late 20th century, as the incidence of pancreatic cancer increased, the study of animal models began to develop, with the help from government agencies.

An ideal animal model of pancreatic cancer should have the following characteristics: (1) A biological development process similar to that of human pancreatic cancer, which is stable and repeatable. Specifically, Pancreatic Ductal Adenocarcinoma (PDAC) mostly develops from precursor lesions, the most common type being ductal intraepithelial neoplasia (PanINs) [3]. Genetic mutations highly correlated with this process have been reported in the literatures [4]. At present, a series of mouse pancreatic cancer models have been constructed using genetic engineering technology. By mutating *KRAS, CDKN2A, TP53, SMAD4*, and other genes, researchers can induce ductal intraepithelial neoplasia, and the number of mutant genes is highly correlated to the severity of disease [5]; (2) Malignant phenotype similar to human tumors, such as anti-apoptotic effect, immune escape, and invasion and metastasis. A wide variety of pancreatic cancer cell lines are available on the market, with the phenotype and genotype of each representing a specific subtype of pancreatic cancer. Researchers can infer the mechanism of tumorigenesis and development by studying the relationship between the expression of different specific proteins in cell lines and tumor growth, invasion and metastasis; (3) An experimental method that is easy to implement and efficient in terms of labor and time, as well as a short model establishment period. In particular, pancreatic cancer models used in clinical studies of individualized treatment must have a high success rate and be suitable for largescale preparation to ensure that they provide evidence regarding individualized treatment options for patients with a short survival time.

Spontaneous Tumor Animal Models

As used herein, the term "spontaneous tumor" refers to a specific tumor induced spontaneously in a laboratory animal using a chemical, viral induction, or experimental genetic techniques. This contrasts with a transplanted tomor. Spontaneous tumors are more similar to human tumors, so results from animal models of such tumors can be more easily extrapolated to humans. However, the occurrence of spontaneous tumors may vary, so it is difficult to obtain a large amount of tumor material in a short period of time. Moreover, the observation time is long, and the experiment is expensive.

Chemically Induced Animal Models

Rat: Wistar and Lewis rats are injected intraperitoneally with azaserine to induce acinar cell carcinoma of the pancreas, with liver, lung and lymph node metastasis [6, 7]. However, the lesions in this model lack a typical duct-like structure and often occur alongside tumors of other organs (mammary, liver, kidney). The chemicals 4-hydroxyaminoquinoline-1-oxide [8], nafenopin [9], clofibrate [10], N -(N-methyl-N-nitrosamide)-Lornithine [11], and different N-nitro compounds [7] can induce acinar cell lesions without a duct-like structure. Vesselinovitch et al. found that topical benzopyrene can induce adenocarcinoma in rats. They implanted dimethylbenzanthracene crystal powder into the pancreas of Sprague-Dawley rats, and approximately 80% of them developed spindle cell sarcoma and poorly differentiated adenocarcinoma. Other researchers using this method have found ductal cell proliferation, tubular adenocarcinoma, acinic cell carcinoma, fibrosarcoma, and invasive ductal adenocarcinoma.

Hamster: Hamsters are one of the best animal models for inducing pancreatic cancer. For instance, some carcinogens that work in hamsters are ineffective in other animals, such as rats, mice, Dutch pigs, and rabbits.

N-Nitroso-bis(2-oxopropyl)amine (BOP) has the highest specificity in this regard [12, 13], and it show a specific affinity for the pancreas, although its mechanism has not yet been confirmed. This N-Nitroso-BOP model shows unique characteristics that are similar to a wellcharacterized series of morphologic changes that occurs in the human pancreatic duct, and it frequently shows point mutations in codon 12 of the K-ras gene, concurring with findings in human pancreatic cancer [14, 15]. Meijers found that the early pseudoductular lesions, induced by BOP in the exocrine pancreas of hamsters originate from proliferating ductal/ductular acinar cells rather than proliferating dedifferentiated acinar cells [16]. In addition, the tumors induced in hamsters are most similar to human tumors in terms of morphology, clinical features, and biological manifestations. Not only benign and malignant tumors but also some rare lesions occurred in hamsters. Tumors in hamsters, just as in humans, may show perineural invasion, involvement of the lymph nodes adjacent to the pancreas, weight loss, diarrhea, ascites, and thrombosis. Occasionally, the tumors also involve jaundice, because they mainly occurr in the body and tail of the pancreas. Similar to human tumors, serum antigens CA125, 17-1A, TAG-72, TFGR-α, EGFR, and lectin have been detected in hamster pancreatic tumors, and glucose tolerance has been observed. However, carcinoembryonic antigen, pancreatic cancer embryonal antigen, and α -fetal protein are low or unexpressed [17]. Animal models like the hamster model of pancreatic cancer can help identify known and emerging human risk factors and implement appropriate interventions.

Genetically Engineered Mouse Model of Pancreatic Cancer

Many recent studies have used genetic technology to introduce oncogenes into mouse embryonic or somatic cells through tissue-specific promoters targeting the pancreas and inducing pancreatic cancer. Genetically Engineered Mouse Models (GEMMs) are constructed using transgenic, gene knock-in, and gene knock-out techniques to transfer specific genes into mice via retroviruses. Most currently used GEMMs are developed using KRAS proto-oncogenes. The transgenic mice that overexpress the mutant KRAS gene can mimic pancreatic tumorigenesis [18]. As most human pancreatic cancers are ductal adenocarcinomas, researchers preferred the selected promoter to be limited to the ductal epithelial or exocrine cells. Most single genetically modified models cannot reproduce the whole process of pancreatic tumorigenesis, and the progression from the normal epithelium to cancer cells often requires gour to five genetic mutations [19]. Additional genetic modifications, such as P53 and P16 inactivation, can accelerate tumorigenesis and metastasis. Conditional gene knockout technology allows gene modification to be limited to a certain part or a certain stage of development, so the time and space of the mutant gene can be accurately contolled, enabling more accurate study of gene function. The Cre/loxp recombinase [20] and tet on systems [21]

are the most commonly used conditional gene knockout strategies [22]. GEMMs of pancreatic cancer are similar in nature to the human disease. In particular, their metastasis pattern is the most similar to that of human pancreatic cancer. The model can be used to study early-stage tumor formation, allowing researchers to ascertain tumor pathogenesis and the effects of therapy. However, the model is limited because it is genetically and biologically different from the human tumor, its modeling time is difficult to control, and its cost is high. Furthermore, it is difficult to meet experimental requirements in terms of quantity.

Tetracycline-Induced TetO-Cre

Cre expression can be activated when rtTA or tTA with transcriptional activation functions bind to tetO. Binding of rtTA or tTA to tetO is regulated by tetracycline or its derivative doxycycline (Dox). Specifically, tTA only induces Cre expression when it binds to tetO in the absence of Dox; it does no bind to tetO when Dox is present, so Cre is not expressed in such cases. Convasely, rtTA binds to tetO and induces Cre expression when Dox is present; when Dox is absent, it does not bind to tetO, and Cre is not expressed (Figure 1). Thus, in tetO-Cre and tissue-specific rtTA (or tTA) doubletransgenic mice, Cre recombinase can be controlled in space and time by administering or withdrawing Dox. Cre recombinase specifically recognizes the loxp site and cleaves the DNA sequence, causing DNA sequence recombination between the two sites.

Establishment of Animal Models Based on Cell Lines

To understand certain aspects of human pancreatic tumors, such as tumor growth, metastasis, drug efficacy, etc., researchers generally prefer nude mice with T-cell defects. The phenotype of the original tumor can be maintained after cancer cells of human origin have been implanted into such models, although some abnormal reactions will occur [23]. However, one recent study used some combined immunodeficiency mice as hosts to receive pancreatic cancer cells of human origin. The results showed that differences in immunodeficiency do not affect the occurence of pancreatic cancer in mice, and that the potential for metastasis is largely determined by the specific cell line [24].

Cell Line Selection

The low diagnostic rate of pancreatic cancer is partly due to a lack of specific molecular changes, so it may be useful for researchers to understand their known cell lines **(Table 1)**. Therefore, before beginning studies on pancreatic tumors, researchers should know what the research direction is. This will allow them to select the appropriate cell line and evaluate its clinical background, growth characteristics in both *in vitro* and *in vivo* experiments, and the phenotypic characteristics (adhesion, invasion, metastatic ability [25]), and genotypic changes, which most often occur in the *KRAS, SMD4, TP53*, and *P16* genes [26, 27, 28, 29] **(Table 2)**.

<u>Cell Geonotypes</u>: Studies have shown that mutations in these four genes are not associated with the degree of differentiation [30] or biological behavior [31] of pancreatic cancer cells. However, research does indicate that *in vivo* tumor metastasis is related to alterations in *hte P53* gene, suggesting that genotype is related to the phenotype in pancreatic cancer cell lines [32, 33].

<u>Cell Metastasis and Invasion</u>: The biological characteristics of tumor metastasis can be understood through cancer cell metastasis experiments. In the Boyden chamber invasion model, cells migrated from one chamber to another through the artificial basement membrane pores at different chemokine concentrations [34]. Other migration experiments include the transwell and scratch assays [35]. Stahle *et al.* found that PANC-1 cells were five times more active than BxPC-3 in the transwell migration experiment [36]. Lin *et al.* evaluated mobility by measuring the phagocytic trajectory of cell movement on a colloid surface; they found that both HPAF-II and BxPC-3 cells had good mobility [37].

Tumorigenicity: In a study by Schmidt, a pancreatic cancer cell suspension was injected into nude mice. The researchers then observed the volume, quantity, and metastasis of the subsequent tumor to roughly ascertain the tumorgenicity of the cell line. Relatedly, different methods of tumor induction can cause differences in the tumor formation rate and metastatic colonization location. For example, intra-abdominal or intravenous injection, *in situ* implantation, and implantation metastasisshow differing outcomes. Subcutaneous injection of tumor

Figure 1. Tetracycline-induced TetO-Cre for GEMM. Cre mice (TRE-Cre, also called tetO-Cre) controlled by a tetracycline-responsive element (TRE, also called tetO). Mice expressing a tetracycline-responsive transcriptional activator rtTA or tTA driven by a tissue-specific promoter.

Table 1: Pancreatic cancer cell lines.

Cell line	Tissue origin	Metastasis	Doubling time	Differentiation degree	Morphology	Tumor formation rate (subcutaneous)	Ref
AsPC-1	Ascites	Yes	38-40 hrs	Poor	Epithelioid		[69]
HPAF-II	Ascites	Yes	42 hrs	Moderate	Epithelioi d		[70]
HPAC-1	Primary tumor	-	41 hrs	Good	Epithelioid		[71]
MIA PaCa-2	Primary tumor	-	40 hrs	Poor	Epithelioid	66%	[72]
PANC-1	Primary tumor	Yes	52 hrs	Poor	Epithelioid	86%	[73]
BxPC-3	Primary tumor	No	48-60 hrs	Moderate-Poor	Epithelioid	100%	[74]
Capan-2	Primary tumor	No	96 hrs	Good			[75]
Capan-1	Liver Metastasis	Yes	-	Good	Epithelioid		[76, 77]
SU.86.86	Liver Metastasis	Yes	77 hrs	Moderate-Poor	Epithelioi d		[78]
CFPAC-1	Liver Metastasis	Yes	31 hrs	Good		100%	[79]
Suit-2	Liver Metastasis	Yes	29-38 hrs				[80, 81]
SW1990	Splenic Metastasis	Yes	64 hrs			100%	[82]
Hs766T	Lymphatic Metastasis	Yes	6-7days	-	Epithelioid		[83]
Colo357	Lymphatic Metastasis	Yes	21 hrs	Good			[84]
T3M4	Lymphatic Metastasis	Yes		Moderate			[85]

Animal-origin (hamster) pancreatic cancer cell line

Cell line	Carcinogen	Differentiation degree	Gene mutation	Ref
PC1	ВОР	Good	K-ras, P53	[86, 87]
WDPaCa	BOP	Good	P53	[88]
PDPaCa	ВОР	Poor	k-ras	[88]
НРС	ВОР	Poor		[89]
HP1	ВОР			[90]
HaP-T1	BOP	Good-Moderate		[91]
H2T	BHP		K-ras, P5 3	[92, 93]
HPD(1-3)NR	BHP	Moderate	K-ras, P5 3	[91, 94]
Pan02	MCA		K-ras,smad4	[95]

Note: BHP: N-nitrosobis(2-hydroxypropyl)amine; animal-origin pancreatic cancer cell lines are commonly used in inbred mice of the same origin for allogeneic transplantation. This model is used more frequently in tumor immunology studies and to evaluate single-agent or combination immunotherapy studies.

Table 2. Expression of mutant genes in cell lines.

Gene	Expression of Cell Line	
KRAS	Occurred in almost all of the primary tumors of pancreatic cancer, but the BxPC-3 cell line is WT	
SMD4/DPC4	Capan-2, MIA PaCa-2, PANC-1, SU.86.86 without SMD4 gene inactivation	
TP53	Its mutation occurs in 50% of pancreatic malignant tumors and is associated with late tumor progression	
CDKN2A/P16	Basically all pancreatic cancer cell lines have inactivation of the P16 gene	

cells is the most common experimental method, probably because it is easy to operate. Different cell lines result in tomors of significantly different sizes. In one study, Capan-1, PANC-1, and MIA PaCa-2 cell suspensions were injected into the Severe Combined Immunodeficiency (SCID) mice. After 30 days, a biopsy was taken, revealing the tumor sizes in the following oder: MIA PaCa-2 > Capan -1 >PANC-1 [38]. Eibl et al. [39] uesd donor nude mice to grow Capan-2 and MIA PaCa-2 tumors. They then removed the tumor, cut it into a cube of 1×1×1 mm³, and implanted it in the pancreatic tail of recipient nude mice. They reported a 100% tumor formation rate and that MIA PaCa -2 tumors grew faster. However, because the tumor was first formed under the skin, this in situ tumor implantation model lacks the changes related to the tumor microenvironment and morphology of early-stage tumor. Direct injection of cancer cells into the pancreas can better reflect the tumorigenesis and development of pancreatic cancer. Indeed, several studies have focused on direct injection of different pancreatic cancer cell lines into the pancreas of SCID mice to induce tumor formation [25]. The tumor gomation rate were as follows: AsPC-1, 100% (10/10); CFPAC-1, 100% (10/10); HPAF- II, 100% (8/8); Capan-2, 90% (9/10); Hs 766T, 90% (9/10); HPAC, 88% (7/8); PANC-1, 80% (8/10); and BxPC-3, 67% (6/9).

Establishment of a Transplanted Tumor Model

Subcutaneous Tumor Formation: This model involves planting tumor cells or tumor tissue directly under the skin of mice. Nude or other immunodeficient mice are generally used in such experiments to study the biological behavior of tumors and intervention therapy. The model is easy to operate, inflicts little trauma on the mice, and confers a high tumor formation rate (80%-100%). The

implantation sites are usually located in the back, neck, armpits, groin, or other areas with a rich supply og blood and lymphatic vessels. The model uses tumor cells in the logarithmic growth phase. Briefly, the cell suspension density is adjusted to 1-2×107/mL using PBS, and the cell suspention is injected into the implantation site at a volume of 0.2 mL. The mice are then fed in cages. The tumor formation rate and size differ depending on the cell line used. Although subcutaneous tumor formation is easy to operate and suitable for large-scale experiments, it is limited to subcutaneous growth, without distant metastasis, or internal organ invasion, and it cannot truly reflect the tumor microenvironment of pancreatic cancer. In this way, the model does not match the real human pancreatic cancer, and it is therefore used to assess the response of tumors to specific drugs, including antibodybased and cellular drugs, but not for mechanism studies.

In situ Tumor Formation: In situ pancreatic cancer can be induced using in situ injection or pancreatic capsule implantation of tumor cells. In the latter case, tumor cells grow subcutaneously for 4 weeks to form a tumor. The tumors are then excised and cut into pieces of $1 \sim 2 \text{ mm}^3$. In recipient mice, the pancreatic capsule is then opened, and the tumor is implanted into the tail of the pancreas. The tumor formation period is 4 weeks, and the rate is 100%; the injection of tumor cell suspension has a lower tumor formation rate than the transplantation method, and the injection port is likely to cause cell shedding, resulting in extensive transplantation metastasis. For this reason, the method is rarely used [40]. However, researchers have implanted pancreatic cancer cells into a recently developed thermosensitive biogel. The cells then develop into tumors. The gel is liquid at a low temperature and turns into jelly at body temperature, which prevents cell shedding; the gel can also dissolve any intervention drugs and is an excellent model for studying such drug. In general, in situ tumor formation of pancreatic cancer can fully simulate the internal environment of tumorigenesis and development, and it can affect the whole body during the tumor evaluation period. With the in situ tumor model, the tumorigenesis time is short and the tumorigenesis rate is high, so the original tumor structure is maintained, as are most biological characteristics of the human tumor, including the growth of primary tumor, local invasion, and subsequent distant visceral metastasis. The model is an indispensable for studying the tumor microenvironment and is important for exploring new surgical approaches, nutritional support, and other ancillary treatments for pancreatic cancer.

Liver Metastasis Model: At the time of presentation, patients with pancreatic cancer are usually at an advanced stage, with tumor invasion into adjacent structures or metastasis into the peritoneum *via* direct extension, as well as into the regional lymph nodes or distant organs, such as the liver and lungs [41]. The most commonly used liver metastasis models involve spleen injection and direct intrahepatic implantation. In such models, the

spleen is injected with a pancreatic cancer cell line at the logarithmic phase, and a 1×10⁶/mL single-cell suspension is prepared using ice-cold sterile PBS. Experimental animals are then anesthetized and disinfected, and the spleen is exposed at a distance of 0.5 cm left of the ventral midline. Next, 100 µL of cell suspension is injected slowly using an insulin syringe. Immediately after injection, tissue glue or an alcohol cotton ball are used to prevent bleeding and transplantation metastasis into the abdominal cavity. This liver metastasis model is mainly used to study the invasive ability of pancreatic cancer; it is not applicable to the study of blood flow dissemination. The intrahepatic implantation model is a supplement to the model. In this model, the tumor cell suspension is directly injected into the liver through the portal vein. Tumor tissue from human or experimental animals can then be cut into a 1-mm³ tumor mass and directly implanted under capsule of the left lobe using a 16-gauge needle. The above models can complement each other and be used to systematically study various cascade processes in which pancreatic cancer develops from the primary tumor, invades and migrates into the blood vessels, and acclimates the microenvironment of the metastatic tumor, allowing the secondary tumor to grow.

Lung Metastasis Model: The lung metastasis model is established by injection of tumor cells through the tail vein. After the tumor cells enter the capillary network of the lungs through the systemic circulation, they gather in the microvessels of the lungs, and metastatic tumors 1~2 mm in diameter are formed in the lungs after around 1 month. By labeling tumor cells with fluorescent proteins, tumor colonization and growth can be continuously observed under an *in vivo* imaging system. This method also causes tumor formation in ograns other than the lungs, such as the liver, so this method is also used to study the hematogenous metastasis.

Lymph Node Metastasis Model: The presence or absence of lymphatic metastasis has a guiding role in the treatment of pancreatic cancer, but no imaging method or technique can satisfactorily track lymph node metastasis [42, 43]. Therefore, to better study this phenomenon, a stable lymph node metastasis model for pancreatic cancer is needed. No cell lines have been reported to confer specific lymph node metastasis, and researchers usually screen for such cell lines by continuous screening and planting in vivo. For example, Li et al. used the BxPC-3 cell line to produce a highly lymphatic metastatic pancreatic cancer cell line, dubbed BxPC-3-LN5, through repeated screening. They then injected 100 μ L of 1×10⁹/mL cell suspension into the left hindpaw of BALB/C nude mice and observed swollen lymph nodes in the popliteal fossa of the left knee after about 5 weeks [44].

Perineuronal Invasion Model: Patients with pancreatic cancer often have severe pain due to peripheral nerve invasion, which considerable impacts quality of life. Pancreatic cancer has a high incidence of invasion and metastasis into the nerves and plexuses surrounding

the arteries, and this is one e important factors in local recurrence of pancreatic cancer after excision. Therefore, reseachers must further explore perineuronal invasion of pancreatic cancer, with a view to reduce patient suffering and improve clinical treatment. Both human and mouse perineuronal invasion models of pancreatic cancer are used. In the former case, the celiac plexus and superior mesenteric artery nerve are obtained from a donor 6 hours after death by postmortem autopsy. Under aseptic conditions, the nerves are then cut into 1 cm pieces and immediately placed in RPMI-1640 medium containing antibiotics. The isolated tissues are implanted subcutaneously in non-obese diabetic (NOD)/SCID mice. After 4 weeks, 7×10⁶ pancreatic cancer cells are injected near the plantation site. After 5 to 8 weeks, the tumor volume is around 1.5 cm³. The mouse model also uses NOD/SCID mice: 7×10⁶ pancreatic cancer cells are injected into the midline of the mouse. In this model, it is better to choose a cell line with a tendency towards perineuronal invasion, such as Capan-1 or Capan-2 [45, 46].

Patient Derived Tumor Xenografts (PDTX)

In this model, researchers implant small tumors from a patient's pancreas into experimental immunecompromised mice, simulating their native growth environment [47, 48]. Tumors cultured using this method can better preserve matrix heterogeneity and retain more human tumor matrix components in the early generations (within 10 generations) [49]. They can also retain the histological characteristics of the original tumor, such as morphology, lymphatic and vascular systems and necrotic areas [50]. Moreover, they retain molecular diversity, with at least the first 10 generations showing microarraycomparative genomic hybridization, microsatellite instability, and higher genetic stability-genesequencing shows that neither the DNA copy number nor the gene expression profile differs significantly between the early and late generation models [51]. This model can reflect the tumor characteristics in individual patients and is necessary to study individualized treatment. However, the cycle time is long and the model's success rate is low. In addition, the most typical feature of pancreatic cancer is rich stromal cells. With the passage of the tumor, the human stromal cells in the tumor are gradually replaced by the mouse cells, so they still cannot truly reflect the original biological behavior.

Establishment and Application of Pancreatic Cancer Organoid

Cell lines, genetically engineered mouse models and transplanted tumor models all have important clinical significance and scientific research value, but each also has clear shortcomings, especially with regards to individualized treatment. The establishment of xenograft tumors requires effort and time, as well as materials. In addition, *in situ* tumor models based on cell lines never truly reflect the patient's condition. Organoid models are artificially controllable and can reproduce the threedimensional structure of PDAC; it has attracted increasing attention because it can overcome the limitations of the traditional model. Organoids can be used to study tumorigenesis and tumor development, including the solid and interstitial components of the tumor, and also as a "test bed" to help determine specific treatment options for patients using *in vitro* testing.

In vitro culture of the pancreas can be traced back to 1938, when Carrel and Lindberg used the irrigation method to culture a cat's pancreas in vitro for 4 weeks [52]. In the 1980s, researchers began to explore how to culture isolated pancreatic cells in a three-dimensional structure [53]. On the basis of previous experience, Speier et al. sliced the pancreas of the mouse and then successfully cultured it for 7 days in agarose [54]; the normal human pancreas and pancreatic tumors can be cultured in the same way for 6 days [55]. In a further improvement of this method, part of the normal pancreas and tumor were placed in a collagen or matrix gel and used for drug sensitivity testing [56]. In addition, PDAC cell lines have been directly cultured in a three-dimensional structure [57], using various physical methods to prevent cell adhesion and form a polarized spheroid structure. Lorenzo Moroni's team were aimed to investigate the interactions between human primary PDAC cells and take polymeric scaffolds with different design and composition to create biomimetic models of PDAC [58]. The cultivation of pancreatic cells in a three-dimensional space has allowed researchers to realize the possibility of organoids, but no uniform definition of organoids has yet been agreed.

Clevers *et al.*, working with Tuveson Laboratories [59], found that cells isolated from PDA or PanIN lesions in mice can be cultured into organoids. They prepared pancreatic ductal organoids from multiple murine primary tumors (mT) and metastases (mM). Orthotopic transplantation of mT organoids initially generated low- and high-grade lesions that resembled mPanINs . Over longer periods of time (1-6 months), transplants developed into invasive primary and metastatic mPDA. Similarly, this kind of tumor model is applicable to human pancreatic cancer cells. They researchers modified the culture conditions to support human normal and malignant pancreatic tissues. These Patient-Derived Organoids (PDO) can be cryopreserved and passaged indefinitely, and they can be genetically, transcribed, proteinized, and biochemically analyzed. Therefore, this system is an ideal model for exploring tumor progression at each stage . Melissa Skala et al. [60] used a similar method to isolate PDA cells in transgenetic mice with the following genotype: Ptf1a Cre/+; Kras LSL-G12D/+, Tgfbr2 fl/fl mice. These cells were cultured in mixed medium and serum-containing medium to develop into an organoid. This method can be used to culture tumors that have been removed from human pancreatic cancer.

Senthil Muthuswamy *et al.* [61] established threedimensional culture conditions to induce differentiation of human pluripotent stem cells into exocrine progenitor cells, forming ductal and acinar structures *in vitro* and *in* *vivo*; they also identified culture conditions for cloning freshly collected PDAC cells into tumor organoids, which can maintain the differentiation status, histological structure, and phenotypic heterogeneity of the primary tumor, as well as preserve the unique physiological changes seen in the patient, including hypoxia, oxygen consumption, epigenetic marks, and sensitivity difference to histone methyltransferase EZH2 inhibition.

Calvin Kuo *et al.* [62] used an "Air-Liquid Interface" (ALI) method in which embryonic tissue fragments were cultured in type I collagen gels built on a permeable substrate with a medium underneath that allows nutrients to diffuse from the bottom. The top of the medium was exposed to the air so that the cells could obtain a higher level of oxygen than in conventional culture methods, thereby preventing hypoxia. In the ALI culture, a pancreatic tissue from newborn mice formed an organoid surrounded by stromal cells and containing ductal epithelial cells. It could survive for 50 days without exogenous growth factors, but cannot be passaged. Later, the researchers cultured pancreatic organoids from Kras^{LSL-G12D/+} and Trp53^{fl/fl} mice.

In most organoid studies in the cancer field, primary carcinoma samples have been generated under Adult Stem Cell (ASC)-organoid conditions. However, CRISPR mutagenesis technology has been applied to Pluripotent Stem Cell (PSC)-based organoids to generate cancercausing mutations. Organoid cultures allow several parameters to be observated: (1) Interpatient variation can be captured and maintained, (2) Patient material can be xenotransplanted with high efficiency, (3) The drug response of the corresponding patient can be faithfully reproduced, and (4) Drug sensitivities of PDOs can be recapitulated in PDX settings. The organoid model is highly efficient, so a corresponding organoid biobanks can be established on the basis on different tumor types. Indeed, several studies have reported that organoids can be derived from needle biopsies taken from liver cancer [63], pancreatic cancer [64, 65], or human colorectal cancer metastases [66]. In the studies of colorectal cancer, two laboratories separately have established human intestinal cell organoids containing mutant tumor suppressor genes and oncogenes, which can be used to study the mechanism of tumorigenesis and invasion [67, 68]. In the near future, pancreatic organoids will likely play a key role in the development of precision medical treatment against PDAC, which will have its own unique advantages [69-95].

CONCLUSION

Because pancreatic cancer shows no specific early clinical manifestations and has high mortality, medical researchers find it difficult to study the biological behavior and internal mechanisms of early pancreatic cancer, and our understanding of the mechanism underlying tumorigenesis is limited. Early diagnosis allows patients to receive timely treatment in the curable phase. Use of experimental animal models is an important method for gaining insight into the etiology, risk factors, prevention, and treatment of this tumor. This approach requires a model that is similar in biology, morphology, and clinical characteristics to human tumors. Although many mouse models can be obtained using transgenic technology, there is still a lack of specificity for clinical research.

Perhaps importantly, 70% of pancreatic cancers are induced by carcinogens, with nitrosamine and polycyclic aromatic hydrocarbons in tobacco being high risk factors for inducing pancreatic cancer. Therefore, to induce tumorigenesis of pancreatic cancer, chemically induced models are more useful. However, the transplantation tumor model has been used to study etiology, diet, modification factors, and some natural products, as well as early diagnosis, prevention and treatment of pancreatic cancer.

In summary, current animal models can mimic the characteristics of most human pancreatic cancers, but no model has become a "gold standard" that meets the needs of all research. By simply focusing on specific needs and combining the characteristics of each model, researchers can better study the overall process of tumorigenesis and development of pancreatic cancer. Ultimately, to reduce PDAC mortality, judgments based on genetic and nongenetic risk factors must be improved. As such, researchers must explore new biomarkers and high-resolution imaging techniques to screen for patients with early-stage, high risk cancer, and must carry out drug interventions to prevent PDAC progression and prolonging survival time. In the past few decades, improvements in animal models have driven advances in these areas, and these models will continue to make significant contributions in the coming years.

Acknowledgement

This study is supported by research grants from the National Natural Science Foundation of China (NO. 81772577), National Natural Science Foundation of China (NO.81602497), Shanghai Municipal Commission of Health and Family Planning Key Developing Disciplines (NO.2015ZB0202).

Conflict of Interest

The authors disclose no financial relationships or conflict of interest relevant to this publication.

References

1. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med 2014; 371:1039-49. [PMID: 25207767]

2. Wilson RH, Deeds F, Cox AJ. The Toxicity and Carcinogenic Activity of 2-Acetaminofluorene. Cancer Research 1941; 1:595-608.

3. Hruban RH, Adsay NV, Alboressaavedra J, Compton C, Garrett ES, Goodman SN, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 2001; 25:579-86. [PMID: 11342768]

4. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531:47-52.[PMID:26909576]

5. Hruban RH, Takaori K, Klimstra DS, Adsay NV, Alboressaavedra J, Biankin AV, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 2004, 28:977. [PMID: 15252303]

6. Longnecker DS, Memoli V, Pettengill OS. Recent results in animal models of pancreatic carcinoma: histogenesis of tumors. Yale J Biol Med 1992; 65:457-64; discussion 65-9. [PMID: 1340063]

7. Rao MS. Animal models of exocrine pancreatic carcinogenesis. Cancer Metastasis Rev 1987; 6:665-76. [PMID: 3127071]

8. Hayashi Y, Hasegawa T. Experimental pancreatic tumor in rats after intravenous injection of 4-hydroxyaminoquinoline 1-oxide. Gan 1971; 62:329-30. [PMID: 5094173]

9. Reddy JK, Rao MS. Malignant tumors in rats fed nafenopin, a hepatic peroxisome proliferator. J Natl Cancer Inst 1977; 59:1645-50. [PMID:200757]

10. Reddy JK, Qureshi SA. Tumorigenicity of the hypolipidaemic peroxisome proliferator ethyl-alpha-p-chlorophenoxyisobutyrate (clofibrate) in rats. Br J Cancer 1979; 40:476-82. [PMID:508572]

11. Longnecker DS, Curphey TJ, Lilja HS, French JI, Daniel DS. Carcinogenicity in rats of the nitrosourea amino acid N delta-(N-methyl-N-nitrosocarbamoyl)-L-ornithine. J Environ Pathol Toxicol 1980; 4:117-29.[PMID:7441106]

12. Gurski T. Experimental production of tumors of the pancreas. Vopr Onkol 1959; 5:341-8. [PMID:13659883]

13. Pour P, Wallcave L, Gingell R, Nagel D, Lawson T, Salmasi S, et al. Carcinogenic effect of N-nitroso(2-hydroxypropyl)(2-oxopropyl)amine, a postulated proximate pancreatic carcinogen in Syrian hamsters. Cancer Res 1979; 39:3828-33.[PMID:225009]

14. Fujii H, Egami H, Chaney W, Pour P, Pelling J. Pancreatic ductal adenocarcinomas induced in Syrian hamsters by N-nitrosobis(2-oxopropyl)amine contain a c-Ki-ras oncogene with a point-mutated codon 12. Mol Carcinog 2010; 3:296-301. [PMID: 2173932]

15. Tsutsumi M, Kondoh S, Noguchi O, Horiguchi K, Kobayashi E, Okita S, et al. K-ras Gene Mutation in Early Ductal Lesions Induced in a Rapid Production Model for Pancreatic Carcinomas in Syrian Hamsters. Jpn J Cancer Res 1993; 84:1101-1105. [PMID: 8276713]

16. Meijers M, Bruijntjes JP, Hendriksen EG, Woutersen RA. Histogenesis of early preneoplastic lesions induced by N-nitrosobis (2-oxopropyl) amine in exocrine pancreas of hamsters. Int J Pancreatol 1989; 4:127-137. [PMID: 2723465]

17. Pour PM. Experimental pancreatic cancer. Am J Surg Pathol 1989; 13:96-103. [PMID: 2633635]

18. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4:437-450. [PMID: 14706336]

19. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61:759-767. [PMID: 2188735]

20. Orban PC, Chui D, Marth JD. Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 1992; 89:6861-6865. [PMID: 1495975]

21. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992; 89:5547-5551. [PMID: 1319065]

22. Schonig K, Schwenk F, Rajewsky K, Bujard H. Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 2002; 30:e134. [PMID: 12466566]

23. Schmied BM, Ulrich AB, Matsuzaki H, El-Metwally TH, Ding X, Fernandes ME, et al. Biologic instability of pancreatic cancer xenografts in the nude mouse. Carcinogenesis 2000; 21:1121-1127. [PMID: 10836999]

24. Garofalo A, Chirivi RG, Scanziani E, Mayo JG, Vecchi A, Giavazzi R. Comparative study on the metastatic behavior of human tumors in nude, beige/nude/xid and severe combined immunodeficient mice. Invasion Metastasis 1993; 13:82-91. [PMID: 8225855]

25. Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 2004; 29:193-203. [PMID: 15367885]

26. Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas 2010; 39:425-435. [PMID: 20418756]

27. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature 2013; 500:415-421. [PMID: 23945592]

28. Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 2015; 6:6744. [PMID: 25855536]

29. Kern SE. Molecular genetic alterations in ductal pancreatic adenocarcinomas. Med Clin North Am 2000; 84:691-695. [PMID: 10872425]

30. Sipos B, Moser S, Kalthoff H, Torok V, Lohr M, Kloppel G. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 2003; 442:444-452. [PMID: 12692724]

31. Monti P, Marchesi F, Reni M, Mercalli A, Sordi V, Zerbi A, et al. A comprehensive in vitro characterization of pancreatic ductal carcinoma cell line biological behavior and its correlation with the structural and genetic profile. Virchows Arch 2004; 445:236-247. [PMID: 15258755]

32. Panayiotis L, Kengo K, Masaaki T, Tatsuhiro S, Michiie S, Setsuo H. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 2004; 29:193-203. [PMID: 15367885]

33. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, et al. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 2001; 439:798-802. [PMID: 11787853]

34. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 1962; 115:453-466. [PMID: 13872176]

35. Cai AQ, Landman KA, Hughes BD. Multi-scale modeling of a woundhealing cell migration assay. J Theor Biol 2007; 245:576-594. [PMID: 17188306]

36. Stahle M, Veit C, Bachfischer U, Schierling K, Skripczynski B, Hall A, et al. Mechanisms in LPA-induced tumor cell migration: critical role of phosphorylated ERK. J Cell Sci 2003; 116:3835-3846. [PMID: 12902401]

37. Lin M, DiVito MM, Merajver SD, Boyanapalli M, van Golen KL. Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Mol Cancer 2005; 4:21. [PMID: 15969750]

38. Fogar P, Greco E, Basso D, Habeler W, Navaglia F, Zambon CF, et al. Suicide gene therapy with HSV-TK in pancreatic cancer has no effect in vivo in a mouse model. Eur J Surg Oncol 2003; 29:721-730. [PMID: 14602490]

39. Eibl G, Reber HA. A xenograft nude mouse model for perineural invasion and recurrence in pancreatic cancer. Pancreas 2005; 31:258-262. [PMID: 16163058]

40. Kim MP, Evans DB, Huamin W, Abbruzzese JL, Fleming JB, Gallick GE. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc 2009; 4:1670-1680. [PMID: 19876027]

41. Campos CF. Cancer of the pancreas. Rev Gastroenterol Mex 1997; 62:202-211. [PMID: 9480528]

42. Mai R, Anzai Y. Ultrasmall superparamagnetic iron oxide enhanced MR imaging for lymph node metastases. Radiography 2007; 13:e73-e84.

43. Abdollahi A, Jangjoo A, Dabbagh Kakhki VR, Rasoul Zakavi S, Memar B, Naser Forghani M, et al. Factors affecting sentinel lymph node detection failure in breast cancer patients using intradermal injection of the tracer. Rev Esp Med Nucl 2010; 29:73-77. [PMID: 19931946]

44. Xinzhe YU, Hengchao LI, Deliang FU, Jin C, Li Ji. Characterization of the role of the photosensitizer, deuteporfin, in the detection of lymphatic metastases in a pancreatic cancer xenograft model. Oncol Lett 2015; 10:1430. [PMID: 26622685]

45. Koide N, Yamada T, Shibata R, Mori T, Fukuma M, Yamazaki K, et al. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin Cancer Res 2006; 12:2419-26. [PMID: 16638847]

46. Nomura H, Nishimori H, Yasoshima T, Hata F, Tanaka H, Nakajima F, et al. A new liver metastatic and peritoneal dissemination model established from the same human pancreatic cancer cell line: analysis using cDNA macroarray. Clin Exp Metastasis 2002; 19:391-399. [PMID: 12198767]

47. Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B, et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther 2011; 10:1311-1316. [PMID: 21673092]

48. Jimeno A, Feldmann G, Suárez-Gauthier A, Rasheed Z, Solomon A, Zou GM, et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 2009; 8:310-314. [PMID: 19174553]

49. Kim MP, Truty MJ, Choi W, Kang Y, Chopin-Lally X, Gallick GE, et al. Molecular profiling of direct xenograft tumors established from human pancreatic adenocarcinoma after neoadjuvant therapy. Ann Surg Oncol 2012; 3:S395-403. [PMID: 21701930]

50. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 2011; 17:1514-1520. [PMID: 22019887]

51. Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res 2012; 18:5314-5328. [PMID: 22825584]

52. Smith GH. The Culture of Organs. Yale J Biol Med 1938; 11:162. [PMCID: PMC2601972]

53. Jones RT, Hudson EA, Ms JHR. A review of in vitro and in vivo culture techniques for the study of pancreatic carcinogenesis. Cancer 1981; 47:1490-1496. [PMID: 6791803]

54. Marciniak A, Selck C, Friedrich B, Speier S. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ. PloS ONE 2013; 8:e78706. [PMID: 24223842]

55. van Geer MA, Kuhlmann KF, Bakker CT, ten Kate FJ, Oude Elferink RP, Bosma PJ. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices. World J Gastroenterol 2009; 15:1359-66. [PMID : 19294766]

56. Sempere LF, Gunn JR, Korc M. A novel 3-dimensional culture system uncovers growth stimulatory actions by TGF β in pancreatic cancer cells. Cancer Biol Ther 2011; 12:198-207. [PMID: 21613822]

57. Fanjul M, Hollande E. Morphogenesis of "Duct-like" Structures in Three-Dimensional Cultures of Human Cancerous Pancreatic Duct Cells (Capan-1). In Vitro Cell Dev Biol Anim 1993; 29A:574-84. [PMID: 8354666]

58. Ricci C, Mota C, Moscato S, D'Alessandro D, Ugel S, Sartoris S, et al. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models. Biomatter 2014; 4:e955386. [PMID: 25482337]

59. Boj SF, Hwang CI, Baker LA, Chio II C, Engle DD, Corbo V, et al: Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell 2015; 160:324-38. [PMID: 25557080]

60. Walsh AJ, Castellanos JA, Nagathihalli NS, Merchant NB, Skala MC. Optical Imaging of Drug-Induced Metabolism Changes in Murine and Human Pancreatic Cancer Organoids Reveals Heterogeneous Drug Response. Pancreas 2016; 45:863-9. [PMID: 26495796] 61. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell– and patient-derived tumor organoids. Nat Med 2015; 21:1364. [PMID: 26501191]

62. Li X, Nadauld L, Ootani A, Corney DC, Pai RK, Gevaert O, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med 2014; 20:769. [PMID: 24859528]

63. Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, et al. Organoid Models of Human Liver Cancers Derived from Tumor Needle Biopsies. Cell Rep 2018; 24:1363-76.

64. Tiriac H, Bucobo JC, Tzimas D, Grewel S, Lacomb JF, Rowehl LM, et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy for personalized cancer treatment. Gastrointest Endosc 2017; 87: 14174-1480. [PMID: 29325707]

65. Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov 2018; 8:1112-1129. [PMID: 29853643]

66. Fleur W, Marc VDW, Marlous H, Dijkstra KK, Oscar K, Thomas K, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA 2015; 112:13308-11. [PMID: 26460009]

67. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 2015; 21:256. [PMID: 25706875]

68. Drost J, Jaarsveld RHV, Ponsioen B, Zimberlin C, Boxtel RV, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015; 521:43-47. [PMID: 25924068]

69. Chen WH, Horoszewicz JS, Leong SS, Shimano T, Penetrante R, Sanders WH, et al. Human pancreatic adenocarcinoma: in vitro and in vivo morphology of a new tumor line established from ascites. In Vitro 1982; 18:24-34. [PMID: 7182348]

70. Kim YW, Kern HF, Mullins TD, Koriwchak MJ, Metzgar RS. Characterization of clones of a human pancreatic adenocarcinoma cell line representing different stages of differentiation. Pancreas 1989; 4:353-362. [PMID: 2734279]

71. Gower WR, Jr, Risch RM, Godellas CV, Fabri PJ. HPAC, a new human glucocorticoid-sensitive pancreatic ductal adenocarcinoma cell line. In Vitro Cell Dev Biol Anim 1994; 30A:151-161. [PMID: 25939163]

72. Yunis AA, Arimura GK, Russin DJ. Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int J Cancer 1977; 19:128-35. [PMID: 832918]

73. Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G. Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 1975; 15:741-747. [PMID: 1140870]

74. Tan MH, Nowak NJ, Loor R, Ochi H, Sandberg AA, Lopez C, et al. Characterization of a new primary human pancreatic tumor line. Cancer Invest 1986; 4:15-23. [PMID: 3754176]

75. Dahiya R, Kwak KS, Byrd JC, Ho S, Yoon WH, Kim YS. Mucin synthesis and secretion in various human epithelial cancer cell lines that express the MUC-1 mucin gene. Cancer Res 1993; 53:1437-43. [PMID: 8443822]

76. Fanjul M, Hollande E. Morphogenesis of "duct-like" structures in threedimensional cultures of human cancerous pancreatic duct cells (Capan-1). In Vitro Cell Dev Biol Anim 1993; 29A:574-584. [PMID: 8354666]

77. Kyriazis AP, Kyriazis AA, Scarpelli DG, Fogh J, Rao MS, Lepera R. Human pancreatic adenocarcinoma line Capan-1 in tissue culture and the nude mouse: morphologic, biologic, and biochemical characteristics. Am J Pathol 1982; 106:250-260. [PMID: 6278935]

78. LeDonne DM. Trends in morbidity and use of health services by women veterans of Vietnam. Navy Med 1988; 79:22-25. [PMID: 3264888]

79. Schoumacher RA, Ram J, Iannuzzi MC, Bradbury NA, Wallace RW, Hon CT, et al. A cystic fibrosis pancreatic adenocarcinoma cell line. Proc Natl Acad Sci U S A 1990; 87:4012-4016. [PMID: 1692630]

80. Iwamura T, Katsuki T, Ide K. Establishment and characterization of a human pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-9. Jpn J Cancer Res 1987; 78:54-62. [PMID: 3102439]

81. Iwamura T, Taniguchi S, Kitamura N, Yamanari H, Kojima A, Hidaka K, et al. Correlation between CA19-9 production in vitro and histological grades of differentiation in vivo in clones isolated from a human pancreatic cancer cell line (SUIT-2). J Gastroenterol Hepatol 1992; 7:512-519. [PMID: 1391733]

82. Kyriazis AP, McCombs WB, Sandberg AA, Kyriazis AA, Sloane NH, Lepera R. Establishment and characterization of human pancreatic adenocarcinoma cell line SW-1990 in tissue culture and the nude mouse. Cancer Res 1983; 43:4393-4401. [PMID:6871872]

83. Owens RB, Smith HS, Nelson-Rees WA, Springer EL. Epithelial cell cultures from normal and cancerous human tissues. J Natl Cancer Inst 1976; 56:843-849. [PMID:176412]

84. Morgan RT, Woods LK, Moore GE, Quinn LA, McGavran L, Gordon SG. Human cell line (COLO 357) of metastatic pancreatic adenocarcinoma. Int J Cancer 1980; 25:591-598. [PMID:6989766]

85. Okabe T, Yamaguchi N, Ohsawa N. Establishment and characterization of a carcinoembryonic antigen (CEA)-producing cell line from a human carcinoma of the exocrine pancreas. Cancer 1983. 51:662-668. [PMID: 6821838]

86. Egami H, Takiyama Y, Cano M, Houser WH, Pour PM. Establishment of hamster pancreatic ductal carcinoma cell line (PC-1) producing blood group-related antigens. Carcinogenesis 1989; 10:861-869. [PMID: 2539915]

87. Erill N, Cuatrecasas M, Sancho FJ, Farre A, Pour PM, Lluis F, et al. K-ras and p53 mutations in hamster pancreatic ductal adenocarcinomas and cell lines. Am J Pathol 1996; 149:1333-1339. [PMID: 8863680]

88. Chang BK, Gutman R. Chemotherapy of pancreatic adenocarcinoma: initial report on two transplantable models in the Syrian hamster. Cancer Res 1982; 42:2666-2670. [PMID:6805945]

89. Morita Y, Moriai T, Takiyama Y, Makino I. Establishment and characterization of a new hamster pancreatic cancer cell line: the biological activity and the binding characteristics of EGF or TGF-alpha. Int J Pancreatol 1998; 23:41-50. [PMID: 9520090]

90. Batra SK, Metzgar RS, Worlock AJ, Hollingsworth MA. Expression of the human MUC1 mucin cDNA in a hamster pancreatic tumor cell line HP-1. Int J Pancreatol 1992; 12:271-283. [PMID:1289420]

91. Saito S, Nishimura N, Kubota Y, Yamazaki K, Shibuya T, Sasaki H. Establishment and characterization of a cultured cell line derived from nitrosamine-induced pancreatic ductal adenocarcinoma in Syrian golden hamsters. Gastroenterol Jpn 1988; 23:183-194. [PMID: 2838375]

92. Townsend CM Jr, Franklin RB, Gelder FB, Glass E, Thompson JC. Development of a transplantable model of pancreatic duct adenocarcinoma. Surgery 1982; 92:72-8. [PMID: 7089870]

93. Sumi S, Beauchamp RD, Townsend CM Jr, Pour PM, Ishizuka J, Thompson JC. Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation. Pancreas 1994; 9:657-661. [PMID: 7809022]

94. Bardi G, Parada LA, Bomme L, Pandis N, Johansson B, Willen R, et al. Cytogenetic findings in metastases from colorectal cancer. Int J Cancer 1997; 72:604-607. [PMID: 9259398]

95. Wang Y, Zhang Y, Yang J, Ni X, Liu S, Li Z, et al. Genomic sequencing of key genes in mouse pancreatic cancer cells. Curr Mol Med 2012; 12:331-341. [PMID: 22208613]