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ABSTRACT
As a common gastrointestinal tumor, the incidence of pancreatic cancer has been increasing in recent years. The disease shows multi-
gene, multi-step complex evolution from occurrence to dissemination. Furthermore , pancreatic cancer has an insidious onset and an 
extremely poor prognosis, so it is difficult to obtain cinical specimens at different stages of the disease, and it is, therefore, difficult to 
observe tumorigenesis and tumor development in patients with pancreatic cancer. At present, no standard protocols stipulate clinical 
treatment of pancreatic cancer, and the benefit rate of new targeted therapies is low. For this reason, a well-established preclinical model 
of pancreatic cancer must be established to allow further exploration of the occurrence, development, invasion, and metastasis mechanism 
of pancreatic cancer, as well as to facilitate research into new therapeutic targets. A large number of animal models of pancreatic cancer are 
currently available, including a cancer cell line-based xenograft, a patient-derived xenograft, several mouse models (including transgenic 
mice), and organoid models. These models have their own characteristics, but they still cannot perfectly predict the clinical outcome of 
the new treatment. In this paper, we present the distinctive features of the currently popular pancreatic cancer models, and discuss their 
preparation methods, clinical relations, scientific purposes and limitations.
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INTRODUCTION
According to NIH statistics, the 5-year survival rate of 

patients with pancreatic cancer between 2009 and 2015 
was only 9.3% in US (https://seer.cancer.gov/statfacts/
html/pancreas.html). As such, pancreatic cancer is 
associated with the worst prognosis of any malignancy 
because it has an insidious onset, high malignancy, special 
anatomical location, low resection rate, and high recurrence 
rate, as well as lack typical symptoms. Furthermore, the 
incidence of the disease increases annually: by 2030, 
patients with pancreatic cancer are expected to outnumber 
those with breast and colorectal cancer in United States, 

and pancreatic cancer is projected to become the second 
most common cancer worldwide [1]. 

 Owing to the characteristics of pancreatic cancer, 
it is difficult for clincians to obtain samples at different 
stages and to continuously observe the occurrence and 
development of pancreatic cancer in individual patients. 
For this reason, animal models of pancreatic cancer 
help clinicians to further understand the occurrence, 
development, invasion, and metastasis mechanisms of 
this disease [1], and can even be used to explore new 
therapeutic means.

 In 1941, Wilson discovered that a diet supplemented 
with 2-acetylaminofluorene induced pancreatic cancer in 
albino rats [2]. By the late 20th century, as the incidence 
of pancreatic cancer increased, the study of animal models 
began to develop, with the help from government agencies.

 An ideal animal model of pancreatic cancer should have 
the following characteristics: (1) A biological development 
process similar to that of human pancreatic cancer, which 
is stable and repeatable. Specifically, Pancreatic Ductal 
Adenocarcinoma (PDAC) mostly develops from precursor 
lesions, the most common type being ductal intraepithelial 
neoplasia (PanINs) [3]. Genetic mutations highly correlated 
with this process have been reported in the literatures [4]. 
At present, a series of mouse pancreatic cancer models have 
been constructed using genetic engineering technology. By 
mutating KRAS, CDKN2A, TP53, SMAD4, and other genes, 
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N-Nitroso-bis(2-oxopropyl)amine (BOP) has the highest 
specificity in this regard [12, 13], and it show a specific 
affinity for the pancreas, although its mechanism has 
not yet been confirmed. This N-Nitroso-BOP model 
shows unique characteristics that are similar to a well-
characterized series of morphologic changes that occurs 
in the human pancreatic duct, and it frequently shows 
point mutations in codon 12 of the K-ras gene, concurring 
with findings in human pancreatic cancer [14, 15]. Meijers 
found that the early pseudoductular lesions, induced 
by BOP in the exocrine pancreas of hamsters originate 
from proliferating ductal/ductular acinar cells rather 
than proliferating dedifferentiated acinar cells [16]. 
In addition, the tumors induced in hamsters are most 
similar to human tumors in terms of morphology, clinical 
features, and biological manifestations. Not only benign 
and malignant tumors but also some rare lesions occurred 
in hamsters. Tumors in hamsters, just as in humans, may 
show perineural invasion, involvement of the lymph nodes 
adjacent to the pancreas, weight loss, diarrhea, ascites, 
and thrombosis. Occasionally, the tumors also involve 
jaundice,because they mainly occurr in the body and tail 
of the pancreas. Similar to human tumors, serum antigens 
CA125, 17-1A, TAG-72, TFGR-α, EGFR, and lectin have 
been detected in hamster pancreatic tumors, and glucose 
tolerance has been observed. However, carcinoembryonic 
antigen, pancreatic cancer embryonal antigen, and α-fetal 
protein are low or unexpressed [17]. Animal models like 
the hamster model of pancreatic cancer can help identify 
known and emerging human risk factors and implement 
appropriate interventions.

Genetically Engineered Mouse Model of Pancreatic 
Cancer

Many recent studies have used genetic technology to 
introduce oncogenes into mouse embryonic or somatic cells 
through tissue-specific promoters targeting the pancreas 
and inducing pancreatic cancer. Genetically Engineered 
Mouse Models (GEMMs) are constructed using transgenic, 
gene knock-in, and gene knock-out techniques to transfer 
specific genes into mice via retroviruses. Most currently 
used GEMMs are developed using KRAS proto-oncogenes. 
The transgenic mice that overexpress the mutant KRAS 
gene can mimic pancreatic tumorigenesis [18]. As most 
human pancreatic cancers are ductal adenocarcinomas, 
researchers preferred the selected promoter to be limited 
to the ductal epithelial or exocrine cells. Most single 
genetically modified models cannot reproduce the whole 
process of pancreatic tumorigenesis, and the progression 
from the normal epithelium to cancer cells often requires 
gour to five genetic mutations [19]. Additional genetic 
modifications, such as P53 and P16 inactivation, can 
accelerate tumorigenesis and metastasis. Conditional 
gene knockout technology allows gene modification to be 
limited to a certain part or a certain stage of development, 
so the time and space of the mutant gene can be accurately 
contolled, enabling more accurate study of gene function. 
The Cre/loxp recombinase [20] and tet on systems [21] 

researchers can induce ductal intraepithelial neoplasia, 
and the number of mutant genes is highly correlated to the 
severity of disease [5]; (2) Malignant phenotype similar 
to human tumors, such as anti-apoptotic effect, immune 
escape, and invasion and metastasis. A wide variety of 
pancreatic cancer cell lines are available on the market, 
with the phenotype and genotype of each representing 
a specific subtype of pancreatic cancer. Researchers can 
infer the mechanism of tumorigenesis and development 
by studying the relationship between the expression 
of different specific proteins in cell lines and tumor 
growth, invasion and metastasis; (3) An experimental 
method that is easy to implement and efficient in terms 
of labor and time, as well as a short model establishment 
period. In particular, pancreatic cancer models used 
in clinical studies of individualized treatment must 
have a high success rate and be suitable for large-
scale preparation to ensure that they provide evidence 
regarding individualized treatment options for patients 
with a short survival time.

Spontaneous Tumor Animal Models

As used herein, the term “spontaneous tumor” refers 
to a specific tumor induced spontaneously in a laboratory 
animal using a chemical, viral induction, or experimental 
genetic techniques. This contrasts with a transplanted 
tomor. Spontaneous tumors are more similar to human 
tumors, so results from animal models of such tumors 
can be more easily extrapolated to humans. However, 
the occurrence of spontaneous tumors may vary, so it is 
difficult to obtain a large amount of tumor material in a 
short period of time. Moreover, the observation time is 
long, and the experiment is expensive.

Chemically Induced Animal Models

Rat: Wistar and Lewis rats are injected intraperitoneally 
with azaserine to induce acinar cell carcinoma of the 
pancreas, with liver, lung and lymph node metastasis 
[6, 7]. However, the lesions in this model lack a typical 
duct-like structure and often occur alongside tumors of 
other organs (mammary, liver, kidney). The chemicals 
4-hydroxyaminoquinoline-1-oxide [8], nafenopin 
[9], clofibrate [10], N -(N-methyl-N-nitrosamide)-L-
ornithine [11], and different N-nitro compounds [7] can 
induce acinar cell lesions without a duct-like structure. 
Vesselinovitch et al. found that topical benzopyrene 
can induce adenocarcinoma in rats. They implanted 
dimethylbenzanthracene crystal powder into the pancreas 
of Sprague-Dawley rats, and approximately 80% of them 
developed spindle cell sarcoma and poorly differentiated 
adenocarcinoma. Other researchers using this method have 
found ductal cell proliferation, tubular adenocarcinoma, 
acinic cell carcinoma, fibrosarcoma, and invasive ductal 
adenocarcinoma.

Hamster: Hamsters are one of the best animal models 
for inducing pancreatic cancer. For instance, some 
carcinogens that work in hamsters are ineffective in 
other animals, such as rats, mice, Dutch pigs, and rabbits. 
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are the most commonly used conditional gene knockout 
strategies [22]. GEMMs of pancreatic cancer are similar in 
nature to the human disease. In particular, their metastasis 
pattern is the most similar to that of human pancreatic 
cancer. The model can be used to study early-stage tumor 
formation, allowing researchers to ascertain tumor 
pathogenesis and the effects of therapy. However, the 
model is limited because it is genetically and biologically 
different from the human tumor, its modeling time is 
difficult to control, and its cost is high. Furthermore, it is 
difficult to meet experimental requirements in terms of 
quantity.

Tetracycline-Induced TetO-Cre

Cre expression can be activated when rtTA or tTA with 
transcriptional activation functions bind to tetO. Binding 
of rtTA or tTA to tetO is regulated by tetracycline or 
its derivative doxycycline (Dox). Specifically, tTA only 
induces Cre expression when it binds to tetO in the 
absence of Dox; it does no bind to tetO when Dox is 
present, so Cre is not expressed in such cases. Convasely, 
rtTA binds to tetO and induces Cre expression when 
Dox is present; when Dox is absent, it does not bind 
to tetO, and Cre is not expressed (Figure 1). Thus, in 
tetO-Cre and tissue-specific rtTA (or tTA) double-
transgenic mice, Cre recombinase can be controlled in 
space and time by administering or withdrawing Dox. 
Cre recombinase specifically recognizes the loxp site 
and cleaves the DNA sequence, causing DNA sequence 
recombination between the two sites.

Establishment of Animal Models Based on Cell Lines

To understand certain aspects of human pancreatic 
tumors, such as tumor growth, metastasis, drug efficacy, 
etc., researchers generally prefer nude mice with T-cell 
defects. The phenotype of the original tumor can be 
maintained after cancer cells of human origin have been 
implanted into such models, although some abnormal 
reactions will occur [23]. However, one recent study 
used some combined immunodeficiency mice as hosts 
to receive pancreatic cancer cells of human origin. The 
results showed that differences in immunodeficiency do 
not affect the occurence of pancreatic cancer in mice, and 
that the potential for metastasis is largely determined by 
the specific cell line [24].

Cell Line Selection

The low diagnostic rate of pancreatic cancer is partly 
due to a lack of specific molecular changes, so it may be 
useful for researchers to understand their known cell 
lines (Table 1). Therefore, before beginning studies on 
pancreatic tumors, researchers should know what the 
research direction is. This will allow them to select the 
appropriate cell line and evaluate its clinical background, 
growth characteristics in both in vitro and in vivo 
experiments, and the phenotypic characteristics (adhesion, 
invasion, metastatic ability [25]), and genotypic changes, 
which most often occur in the KRAS, SMD4, TP53, and P16 
genes [26, 27, 28, 29] (Table 2). 

Cell Geonotypes: Studies have shown that mutations 
in these four genes are not associated with the degree 
of differentiation [30] or biological behavior [31] of 
pancreatic cancer cells. However, research does indicate 
that in vivo tumor metastasis is related to alterations in 
hte P53 gene, suggesting that genotype is related to the 
phenotype in pancreatic cancer cell lines [32, 33]. 

Cell Metastasis and Invasion: The biological 
characteristics of tumor metastasis can be understood 
through cancer cell metastasis experiments. In the Boyden 
chamber invasion model, cells migrated from one chamber 
to another through the artificial basement membrane 
pores at different chemokine concentrations [34]. Other 
migration experiments include the transwell and scratch 
assays [35]. Stahle et al. found that PANC-1 cells were five 
times more active than BxPC-3 in the transwell migration 
experiment [36]. Lin et al. evaluated mobility by measuring 
the phagocytic trajectory of cell movement on a colloid 
surface; they found that both HPAF-II and BxPC-3 cells had 
good mobility [37].

Tumorigenicity: In a study by Schmidt, a pancreatic 
cancer cell suspension was injected into nude mice. The 
researchers then observed the volume, quantity, and 
metastasis of the subsequent tumor to roughly ascertain 
the tumorgenicity of the cell line. Relatedly, different 
methods of tumor induction can cause differences in the 
tumor formation rate and metastatic colonization location. 
For example, intra-abdominal or intravenous injection, 
in situ implantation, and implantation metastasisshow 
differing outcomes. Subcutaneous injection of tumor 

Figure 1. Tetracycline-induced TetO-Cre for GEMM. Cre mice (TRE-Cre, also called tetO-Cre) controlled by a tetracycline-responsive element (TRE, also 
called tetO). Mice expressing a tetracycline-responsive transcriptional activator rtTA or tTA driven by a tissue-specific promoter.
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cells is the most common experimental method, probably 
because it is easy to operate. Different cell lines result 
in tomors of significantly different sizes. In one study, 
Capan-1, PANC-1, and MIA PaCa-2 cell suspensions were 
injected into the Severe Combined Immunodeficiency 
(SCID) mice. After 30 days, a biopsy was taken, revealing 
the tumor sizes in the following oder: MIA PaCa-2 > 
Capan -1 >PANC-1 [38]. Eibl et al. [39] uesd donor nude 
mice to grow Capan-2 and MIA PaCa-2 tumors. They then 
removed the tumor, cut it into a cube of 1×1×1 mm3, and 
implanted it in the pancreatic tail of recipient nude mice. 
They reported a 100% tumor formation rate and that 
MIA PaCa -2 tumors grew faster. However, because the 
tumor was first formed under the skin, this in situ tumor 
implantation model lacks the changes related to the tumor 
microenvironment and morphology of early-stage tumor. 
Direct injection of cancer cells into the pancreas can better 

reflect the tumorigenesis and development of pancreatic 
cancer. Indeed, several studies have focused on direct 
injection of different pancreatic cancer cell lines into the 
pancreas of SCID mice to induce tumor formation [25]. 
The tumor gomation rate were as follows: AsPC-1, 100% 
(10/10); CFPAC-1, 100% (10/10); HPAF- II, 100% (8/8); 
Capan-2, 90% (9/10); Hs 766T, 90% (9/10); HPAC, 88% 
(7/8); PANC-1, 80% (8/10); and BxPC-3, 67% (6/9).

Establishment of a Transplanted Tumor Model

Subcutaneous Tumor Formation: This model involves 
planting tumor cells or tumor tissue directly under the 
skin of mice. Nude or other immunodeficient mice are 
generally used in such experiments to study the biological 
behavior of tumors and intervention therapy. The model 
is easy to operate, inflicts little trauma on the mice, and 
confers a high tumor formation rate (80%-100%). The 

Human pancreatic cancer cell line

Cell line Tissue origin Metastasis Doubling time Differentiation 
degree Morphology Tumor formation rate 

(subcutaneous) Ref

AsPC-1 Ascites Yes 38-40 hrs Poor Epithelioid [69]
HPAF-II Ascites Yes 42 hrs Moderate Epithelioid [70]
HPAC-1 Primary tumor - 41 hrs Good Epithelioid [71]
MIA PaCa-2 Primary tumor - 40 hrs Poor Epithelioid 66% [72]
PANC-1 Primary tumor Yes 52 hrs Poor Epithelioid 86% [73]
BxPC-3 Primary tumor No 48-60 hrs Moderate-Poor Epithelioid 100% [74]
Capan-2 Primary tumor No 96 hrs Good [75]
Capan-1 Liver Metastasis Yes - Good Epithelioid [76, 77]
SU.86.86 Liver Metastasis Yes 77 hrs Moderate-Poor Epithelioid [78]
CFPAC-1 Liver Metastasis Yes 31 hrs Good 100% [79]
Suit-2 Liver Metastasis Yes 29-38 hrs [80, 81]
SW1990 Splenic Metastasis Yes 64 hrs 100% [82]
Hs766T Lymphatic Metastasis Yes 6-7days - Epithelioid [83]
Colo357 Lymphatic Metastasis Yes 21 hrs Good [84]
T3M4 Lymphatic Metastasis Yes Moderate [85]

Animal-origin (hamster) pancreatic cancer cell line

Cell line Carcinogen Differentiation degree Gene mutation Ref

PC1 BOP Good K-ras, P53 [86, 87]

WDPaCa BOP Good P53 [88]

PDPaCa BOP Poor k-ras [88]

HPC BOP Poor [89]

HP1 BOP [90]

HaP-T1 BOP Good-Moderate [91]

H2T BHP K-ras, P53 [92, 93]

HPD(1-3)NR BHP Moderate K-ras, P53 [91, 94]

Pan02 MCA                                 K-ras,smad4 [95]

Table 1: Pancreatic cancer cell lines.

Note: BHP: N-nitrosobis(2-hydroxypropyl)amine; animal-origin pancreatic cancer cell lines are commonly used in inbred mice of the same origin for 
allogeneic transplantation. This model is used more frequently in tumor immunology studies and to evaluate single-agent or combination immunotherapy 
studies.

Gene Expression of Cell Line
KRAS Occurred in almost all of the primary tumors of pancreatic cancer, but the BxPC-3 cell line is WT
SMD4/DPC4 Capan-2, MIA PaCa-2, PANC-1, SU.86.86 without SMD4 gene inactivation
TP53 Its mutation occurs in 50% of pancreatic malignant tumors and is associated with late tumor progression
CDKN2A/P16 Basically all pancreatic cancer cell lines have inactivation of the P16 gene

Table 2. Expression of mutant genes in cell lines.
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implantation sites are usually located in the back, neck, 
armpits, groin, or other areas with a rich supply og blood 
and lymphatic vessels. The model uses tumor cells in the 
logarithmic growth phase. Briefly, the cell suspension 
density is adjusted to 1-2×107/mL using PBS, and the 
cell suspention is injected into the implantation site at 
a volume of 0.2 mL. The mice are then fed in cages. The 
tumor formation rate and size differ depending on the 
cell line used. Although subcutaneous tumor formation is 
easy to operate and suitable for large-scale experiments, 
it is limited to subcutaneous growth, without distant 
metastasis, or internal organ invasion, and it cannot truly 
reflect the tumor microenvironment of pancreatic cancer. 
In this way, the model does not match the real human 
pancreatic cancer, and it is therefore used to assess the 
response of tumors to specific drugs, including antibody-
based and cellular drugs, but not for mechanism studies.

In situ Tumor Formation: In situ pancreatic cancer can 
be induced using in situ injection or pancreatic capsule 
implantation of tumor cells. In the latter case, tumor cells 
grow subcutaneously for 4 weeks to form a tumor. The 
tumors are then excised and cut into pieces of 1~2 mm3. 
In recipient mice, the pancreatic capsule is then opened, 
and the tumor is implanted into the tail of the pancreas. 
The tumor formation period is 4 weeks, and the rate is 
100%; the injection of tumor cell suspension has a lower 
tumor formation rate than the transplantation method, 
and the injection port is likely to cause cell shedding, 
resulting in extensive transplantation metastasis. For 
this reason, the method is rarely used [40]. However, 
researchers have implanted pancreatic cancer cells into a 
recently developed thermosensitive biogel. The cells then 
develop into tumors. The gel is liquid at a low temperature 
and turns into jelly at body temperature, which prevents 
cell shedding; the gel can also dissolve any intervention 
drugs and is an excellent model for studying such drug. In 
general, in situ tumor formation of pancreatic cancer can 
fully simulate the internal environment of tumorigenesis 
and development, and it can affect the whole body during 
the tumor evaluation period. With the in situ tumor model, 
the tumorigenesis time is short and the tumorigenesis rate 
is high, so the original tumor structure is maintained, as 
are most biological characteristics of the human tumor, 
including the growth of primary tumor, local invasion, and 
subsequent distant visceral metastasis. The model is an 
indispensable for studying the tumor microenvironment 
and is important for exploring new surgical approaches, 
nutritional support, and other ancillary treatments for 
pancreatic cancer.

Liver Metastasis Model: At the time of presentation, 
patients with pancreatic cancer are usually at an advanced 
stage, with tumor invasion into adjacent structures or 
metastasis into the peritoneum via direct extension, as 
well as into the regional lymph nodes or distant organs, 
such as the liver and lungs [41]. The most commonly 
used liver metastasis models involve spleen injection 
and direct intrahepatic implantation. In such models, the 

spleen is injected with a pancreatic cancer cell line at the 
logarithmic phase, and a 1×106/mL single-cell suspension 
is prepared using ice-cold sterile PBS. Experimental 
animals are then anesthetized and disinfected, and the 
spleen is exposed at a distance of 0.5 cm left of the ventral 
midline. Next, 100 μL of cell suspension is injected slowly 
using an insulin syringe. Immediately after injection, tissue 
glue or an alcohol cotton ball are used to prevent bleeding 
and transplantation metastasis into the abdominal cavity. 
This liver metastasis model is mainly used to study the 
invasive ability of pancreatic cancer; it is not applicable 
to the study of blood flow dissemination. The intrahepatic 
implantation model is a supplement to the model. In 
this model, the tumor cell suspension is directly injected 
into the liver through the portal vein. Tumor tissue from 
human or experimental animals can then be cut into a 
1-mm3 tumor mass and directly implanted under capsule 
of the left lobe using a 16-gauge needle. The above models 
can complement each other and be used to systematically 
study various cascade processes in which pancreatic 
cancer develops from the primary tumor, invades and 
migrates into the blood vessels, and acclimates the 
microenvironment of the metastatic tumor, allowing the 
secondary tumor to grow.

Lung Metastasis Model: The lung metastasis model is 
established by injection of tumor cells through the tail 
vein. After the tumor cells enter the capillary network of 
the lungs through the systemic circulation, they gather in 
the microvessels of the lungs, and metastatic tumors 1~2 
mm in diameter are formed in the lungs after around 1 
month. By labeling tumor cells with fluorescent proteins, 
tumor colonization and growth can be continuously 
observed under an in vivo imaging system. This method 
also causes tumor formation in ograns other than the 
lungs, such as the liver, so this method is also used to study 
the hematogenous metastasis.

Lymph Node Metastasis Model: The presence or absence 
of lymphatic metastasis has a guiding role in the treatment 
of pancreatic cancer, but no imaging method or technique 
can satisfactorily track lymph node metastasis [42, 43]. 
Therefore, to better study this phenomenon, a stable 
lymph node metastasis model for pancreatic cancer is 
needed. No cell lines have been reported to confer specific 
lymph node metastasis, and researchers usually screen 
for such cell lines by continuous screening and planting 
in vivo. For example, Li et al. used the BxPC-3 cell line to 
produce a highly lymphatic metastatic pancreatic cancer 
cell line, dubbed BxPC-3-LN5, through repeated screening. 
They then injected 100 µL of 1×109/mL cell suspension 
into the left hindpaw of BALB/C nude mice and observed 
swollen lymph nodes in the popliteal fossa of the left knee 
after about 5 weeks [44].

Perineuronal Invasion Model: Patients with pancreatic 
cancer often have severe pain due to peripheral nerve 
invasion, which considerable impacts quality of life. 
Pancreatic cancer has a high incidence of invasion and 
metastasis into the nerves and plexuses surrounding 
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the arteries, and this is one e important factors in local 
recurrence of pancreatic cancer after excision. Therefore, 
reseachers must further explore perineuronal invasion 
of pancreatic cancer, with a view to reduce patient 
suffering and improve clinical treatment. Both human 
and mouse perineuronal invasion models of pancreatic 
cancer are used. In the former case, the celiac plexus 
and superior mesenteric artery nerve are obtained from 
a donor 6 hours after death by postmortem autopsy. 
Under aseptic conditions, the nerves are then cut into 1 
cm pieces and immediately placed in RPMI-1640 medium 
containing antibiotics. The isolated tissues are implanted 
subcutaneously in non-obese diabetic (NOD)/SCID mice. 
After 4 weeks, 7×106 pancreatic cancer cells are injected 
near the plantation site. After 5 to 8 weeks, the tumor 
volume is around 1.5 cm3. The mouse model also uses 
NOD/SCID mice: 7×106 pancreatic cancer cells are injected 
into the midline of the mouse. In this model, it is better to 
choose a cell line with a tendency towards perineuronal 
invasion, such as Capan-1 or Capan-2 [45, 46].

Patient Derived Tumor Xenografts (PDTX)
In this model, researchers implant small tumors 

from a patient's pancreas into experimental immune-
compromised mice, simulating their native growth 
environment [47, 48]. Tumors cultured using this method 
can better preserve matrix heterogeneity and retain more 
human tumor matrix components in the early generations 
(within 10 generations) [49]. They can also retain the 
histological characteristics of the original tumor, such as 
morphology, lymphatic and vascular systems and necrotic 
areas [50]. Moreover, they retain molecular diversity, 
with at least the first 10 generations showing microarray-
comparative genomic hybridization, microsatellite 
instability, and higher genetic stability—genesequencing 
shows that neither the DNA copy number nor the gene 
expression profile differs significantly between the early 
and late generation models [51]. This model can reflect 
the tumor characteristics in individual patients and is 
necessary to study individualized treatment. However, 
the cycle time is long and the model’s success rate is low. 
In addition, the most typical feature of pancreatic cancer 
is rich stromal cells. With the passage of the tumor, the 
human stromal cells in the tumor are gradually replaced 
by the mouse cells, so they still cannot truly reflect the 
original biological behavior.

Establishment and Application of Pancreatic Cancer 
Organoid

Cell lines, genetically engineered mouse models and 
transplanted tumor models all have important clinical 
significance and scientific research value, but each 
also has clear shortcomings, especially with regards to 
individualized treatment. The establishment of xenograft 
tumors requires effort and time, as well as materials. In 
addition, in situ tumor models based on cell lines never 
truly reflect the patient’s condition. Organoid models 
are artificially controllable and can reproduce the three-

dimensional structure of PDAC; it has attracted increasing 
attention because it can overcome the limitations of 
the traditional model. Organoids can be used to study 
tumorigenesis and tumor development, including the solid 
and interstitial components of the tumor, and also as a 
"test bed" to help determine specific treatment options for 
patients using in vitro testing.

In vitro culture of the pancreas can be traced back 
to 1938, when Carrel and Lindberg used the irrigation 
method to culture a cat's pancreas in vitro for 4 weeks [52]. 
In the 1980s, researchers began to explore how to culture 
isolated pancreatic cells in a three-dimensional structure 
[53]. On the basis of previous experience, Speier et al. sliced   
the pancreas of the mouse and then successfully cultured it 
for 7 days in agarose [54]; the normal human pancreas and 
pancreatic tumors can be cultured in the same way for 6 
days [55]. In a further improvement of this method,part of 
the normal pancreas and tumor were placed in a collagen 
or matrix gel and used for drug sensitivity testing [56]. In 
addition, PDAC cell lines have been directly cultured in a 
three-dimensional structure [57], using various physical 
methods to prevent cell adhesion and form a polarized 
spheroid structure. Lorenzo Moroni’s team were aimed to 
investigate the interactions between human primary PDAC 
cells and take polymeric scaffolds with different design and 
composition to create biomimetic models of PDAC [58].
The cultivation of pancreatic cells in a three-dimensional 
space has allowed researchers to realize the possibility of 
organoids, but no uniform definition of organoids has yet 
been agreed. 

Clevers et al., working with Tuveson Laboratories [59], 
found that cells isolated from PDA or PanIN lesions in mice 
can be cultured into organoids. They prepared pancreatic 
ductal organoids from multiple murine primary tumors 
(mT) and metastases (mM). Orthotopic transplantation 
of mT organoids initially generated low- and high-grade 
lesions that resembled mPanINs . Over longer periods of 
time (1–6 months), transplants developed into invasive 
primary and metastatic mPDA. Similarly, this kind of tumor 
model is applicable to human pancreatic cancer cells. They 
researchers modified the culture conditions to support 
human normal and malignant pancreatic tissues. These 
Patient-Derived Organoids (PDO) can be cryopreserved 
and passaged indefinitely, and they can be genetically, 
transcribed, proteinized, and biochemically analyzed. 
Therefore, this system is an ideal model for exploring tumor 
progression at each stage . Melissa Skala et al. [60] used a 
similar method to isolate PDA cells in transgenetic mice 
with the following genotype: Ptf1a Cre/+; Kras LSL-G12D/+, 
Tgfbr2 fl/fl mice. These cells were cultured in mixed medium 
and serum-containing medium to develop into an organoid. 
This method can be used to culture tumors that have been 
removed from human pancreatic cancer.

Senthil Muthuswamy et al. [61] established three-
dimensional culture conditions to induce differentiation 
of human pluripotent stem cells into exocrine progenitor 
cells, forming ductal and acinar structures in vitro and in 
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vivo; they also identified culture conditions for cloning 
freshly collected PDAC cells into tumor organoids, which 
can maintain the differentiation status, histological 
structure, and phenotypic heterogeneity of the primary 
tumor, as well as preserve the unique physiological 
changes seen in the patient, including hypoxia, oxygen 
consumption, epigenetic marks, and sensitivity difference 
to histone methyltransferase EZH2 inhibition.

 Calvin Kuo et al. [62] used an "Air-Liquid Interface" 
(ALI) method in which embryonic tissue fragments were 
cultured in type I collagen gels built on a permeable 
substrate with a medium underneath that allows nutrients 
to diffuse from the bottom. The top of the medium was 
exposed to the air so that the cells could obtain a higher level 
of oxygen than in conventional culture methods, thereby 
preventing hypoxia. In the ALI culture, a pancreatic tissue 
from newborn mice formed an organoid surrounded by 
stromal cells and containing ductal epithelial cells. It could 
survive for 50 days without exogenous growth factors, 
but cannot be passaged. Later, the researchers cultured 
pancreatic organoids from KrasLSL-G12D/+ and Trp53fl/fl mice.

 In most organoid studies in the cancer field, primary 
carcinoma samples have been generated under Adult 
Stem Cell (ASC)-organoid conditions. However, CRISPR 
mutagenesis technology has been applied to Pluripotent 
Stem Cell (PSC)-based organoids to generate cancer-
causing mutations. Organoid cultures allow several 
parameters to be observated: (1) Interpatient variation 
can be captured and maintained, (2) Patient material can 
be xenotransplanted with high efficiency, (3) The drug 
response of the corresponding patient can be faithfully 
reproduced, and (4) Drug sensitivities of PDOs can be 
recapitulated in PDX settings. The organoid model is highly 
efficient, so a corresponding organoid biobanks can be 
established on the basis on different tumor types. Indeed, 
several studies have reported that organoids can be 
derived from needle biopsies taken from liver cancer [63], 
pancreatic cancer [64, 65], or human colorectal cancer 
metastases [66]. In the studies of colorectal cancer, two 
laboratories separately have established human intestinal 
cell organoids containing mutant tumor suppressor genes 
and oncogenes, which can be used to study the mechanism 
of tumorigenesis and invasion [67, 68]. In the near future, 
pancreatic organoids will likely play a key role in the 
development of precision medical treatment against PDAC, 
which will have its own unique advantages [69-95].

CONCLUSION

Because pancreatic cancer shows no specific early 
clinical manifestations and has high mortality, medical 
researchers find it difficult to study the biological behavior 
and internal mechanisms of early pancreatic cancer, 
and our understanding of the mechanism underlying 
tumorigenesis is limited. Early diagnosis allows patients 
to receive timely treatment in the curable phase. Use of 
experimental animal models is an important method for 
gaining insight into the etiology, risk factors, prevention, 

and treatment of this tumor. This approach requires a 
model that is similar in biology, morphology, and clinical 
characteristics to human tumors. Although many mouse 
models can be obtained using transgenic technology, there 
is still a lack of specificity for clinical research.

 Perhaps importantly, 70% of pancreatic cancers are 
induced by carcinogens, with nitrosamine and polycyclic 
aromatic hydrocarbons in tobacco being high risk factors 
for inducing pancreatic cancer. Therefore, to induce 
tumorigenesis of pancreatic cancer, chemically induced 
models are more useful. However, the transplantation tumor 
model has been used to study etiology, diet, modification 
factors, and some natural products, as well as early diagnosis, 
prevention and treatment of pancreatic cancer.

 In summary, current animal models can mimic the 
characteristics of most human pancreatic cancers, but no 
model has become a “gold standard” that meets the needs 
of all research. By simply focusing on specific needs and 
combining the characteristics of each model, researchers 
can better study the overall process of tumorigenesis and 
development of pancreatic cancer. Ultimately, to reduce 
PDAC mortality, judgments based on genetic and non-
genetic risk factors must be improved. As such, researchers 
must explore new biomarkers and high-resolution imaging 
techniques to screen for patients with early-stage, high risk 
cancer, and must carry out drug interventions to prevent 
PDAC progression and prolonging survival time. In the past 
few decades, improvements in animal models have driven 
advances in these areas, and these models will continue to 
make significant contributions in the coming years.
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