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ABSTRACT

In a paper Kar [17] proposed and analyzed a non-linear mathematical model to study the dynamics of fishery
resource having two zones. In this paper we have reanalyzed the model by considering a more general transmission
function of prey species from unreserved zone. Biological equilibria of the system along with the conditions of their
existence are obtained. Criteria for local and global stability along with optimal policy are also obtained. It has
been observed that as predation increases, the optimal equilibrium level decreases. However, the increase of new
parameter raises the equilibrium level. As such, appropriate control of both parameters can be used to maintain the
desired level.
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INTRODUCTION

The dynamic relationship between predators and thedy has long been and will continue to be onehef
dominant themes in both ecology and mathematiaalbgg due to its universal existence and importabeer the
past three decades, mathematics has made a cefdeémpact as a tool to model and understand dpicdd

phenomena. Braza [9] analyzed a two predator, oy podel in which one predator interferes sigaifitty with

other. The analysis centers on bifurcation diagrémnsvarious levels of interference in which harigg is the

primary bifurcation parameter. Kar.et. al. [18]tleir paper, offer some mathematical analysihefdynamics of a
two prey, one predator system in the presencdiofedelay. Sisodia et.al. [3] proposed a genezdlimathematical
model to study the depletion of resources by twud&iof populations, one is weaker and others sétoribhe

dynamics of resources is governed by generalizgidtio equation where as the population of inténgcspecies
follows the logistic law. Dubey et.al. [2] proposadd analyzed a mathematical model to study thamiecs of one
prey, two predators system with ratio dependerdatas growth rate.

The excessive and unsustainable exploitation ofwanine resources has led to the promotion of raakserves as
a fishery management tool. Marine reserves, areasiich fishing is restricted or prohibited, cafieofopportunities
for the recovery of exploited stock and fishery amtement. Study of population dynamics in preseicefuge for
one of the species is not new. In most of the waltse in this area, the environment is assumecetpdichy;
usually two patches where one patch is assumeed soilrce and other is assumed to be sink.

Some works in context of source-sink dynamics aietd Newman et.al. [13].His results show thatgitesence of
refuge can greatly stabilize a population that otiiee would exhibit chaotic dynamics. Dubey et{4].proposed a
dynamic model for a single species fishery whichedls partially on a logistically growing resouince two patch
environment. They showed that both the equilibridensity of the fish population as well as the maxm
sustainability yield increases as the resource agsnuensity increases. Further, Kar et.al. [16]ifisntdthe model
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proposed by Dubey et.al. [1] in the presence ofigi@r, which seems to be more realistic. They dised the local
and global stability. The optimal harvesting poli@s been discussed using Pontryagin Maximal Pahci

Chattopadhyayet. al. [7] studied a resource basatpetitive system in three species and deriveditiond for the
persistence and global stability of the system. Eaal. [8] studied on harvested population witffugional
migration. Taha et.al. [12] studied the effect iofié delay and harvesting on the dynamics of thelaioe prey
model with a time delay in the growth rate of theypequation. A model of non-selective harvestingiprey-
predator fishery is given by Kar et.al. [14].Inithirther work [15], they described the regulatoina prey-predator
fishery by taxation as the control instrument.

Kar [17] proposed and analyzed a non-linear mattieaianodel to study the dynamics of a fishery tgse system
in an aquatic environment that consists of two soaefree fishing zone and a reserve zone whenfjss strictly
prohibited. Biological equilibria of the system aetained and criteria for local stability and ghblstability of the
system derived. An optimal harvesting policy isoadéscussed using Pontryagin Maximal Principal.

In this paper we have reinvestigated the modelaf[K7] with an asymptotically modified transmigsifunction.

2. Description of the M odel

We study a prey-predator system in a two patchrenment: one accessible to both prey and pred§patsh 1)
and the other one being a refuge for the prey (pajcEach patch is supposed to be homogeneougrégeaefuge
(patch 2) constitutes a reserve area of prey arfitshimg is permitted in the reserve zone while tineeserved zone
area is an open access fishery zone. We suppoaeththprey migrate between the two patches randohfile
growth of prey in each patch in absence of predat@ssumed to be logistic. The transmission foncfrom
unreserved zone due to predation is considered asyanptotically modified function of general natur

Following Kar [17], the mathematical formulationtbe model takes the form

%—rx(l—lj—OXHI y_—mxz - gEXx

dt K) 7 7% A+Bx+Cz '

dy y

—=8y| I-=|+0,X-0,Y.

Y o1 froyeoy

dz mot Xz

—=—dz+—.

dt A+Bx+Cz (2.1)

Where A, B, C are positive constants and other sjsihave the same meaning as defined in [17].

3. Existence of Equilibria
Equilibria of model (2.1) can be obtained by equatright hand side to zero. This provides threeiléxia

R (O'O’O) ’Pl(x Y Q PZ(X y Z) The equilibrium pointl%is trivial. For equilibrium poinﬁ, we have

a, x> +bx*+cx+d, =0 (3.1)
s
T w2 A2
where, K'Lo,
Iol:_2rs(r—al—qE)
KLo?

_s(r —al—qE)2 _ (s—a,)r
“ La; Ko,
g :(s—az)(

1

r-o,-qg)-o.
2

Equation (3.1) has a unique positive solutrr X if the following inequalities hold:
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s(r-o,-qE)’ § (s-o,)r
Lo K

2
(s-o,)(r-0,-qE)<o,0, 3(2)
and for Y to be positive, we must have
K ,
—(r-o0,-qE)>0. (3.3
r

Hence the equilibrium poinl'?l(x’ Y, 0) exists under the above conditions.

For the equilibrium poinltDZ(X’ Y Z) , we have,
ax'+b,x*+c x’+dx+e,=0 (3.4)
where,
2
I
LoZK?’

2rs m _Bd
=————|r-0,-E-| =— ||,
b2 LUZZK( 1A (c CaD
S m Bd)Y r(s . 2Ads
=——|r-o-E-|z—— || | —+ — -1,
Lo, C Ca K\o, LCoa
[ s 2Ads m Bd
d,=| —+ -1l r-0,-gE-| = ——||- 0o,
o, LCoa C Ca

(s, A
Calo, LCola )

The equation (3.4) may have a positive solutforr X if the following inequalities hold

m_Bd
(E—ajqr—q—qE),

S 2Ads Ks m Bd 2
—+ = -l|<——|r-0,-qE-| ——— || ,
o, LCoa rLo; C Ca

2Ads (m Bd j
s+ -0,||r-0,-gE-| =—— | |<00,
LCo,a C Ca

Using the value OPA(, we get,

Eyz ~(s-0,)y-ox=0.
(3.5)

The above equation has at least one positive soIMn: y. Substituting the value & we get2 as
5= (ma - Bd)x- Ad
Cd (3.6)

It will be positive if
Ad
>0.

ma — Bd

1980
Pelagia Research Library



H. Mehtaet al Adv. Appl. Sci. Res., 2012, 3(4):1978-1985

4. Dynamical Behaviour of Equilibria
The dynamical behavior of equilibria can be studi®d computing variational matrix corresponding tacle

equilibria. The variational matrix abmﬁ) (O’ 0, 0) will provide the characteristic equation as
A +ad+b,=0 (4.1)

a,=—(r +s—(o,+0,+qE)),
where. b,=(r -qE)(s-0o,)-0os.

+5)<(01+Uz+qE)

4.1 r
The roots of equatior( )Wi|| have positive real part i( ,under this condition

R (0’ 0, O) will be unstable.
The characteristic equation abo@t(x’ Ys 0) is
A t+ad+b,=0 (4.2)

a4:—(r+s (0’ +0 +qE+2r—X+23yjj

where, K L
(2% 25y o5

b4 —(r _?_qu(S_T_sz_Jl(S_Tj.

(r+s)> (J +JZ+qE+2Kﬁ+

ZSyj
If L then ! (X ys 0) is locally asymptotically stable.

The characteristic equation abolf,ﬁ (X Y: Z)
AP +aA*+bA+c,=0 (4.3)
re. S.. X _ Y mBxZ maX( A+ BX)
& =—X+—y+0,— +a2 +d- ——— = —
Ko L y X (A+Bx+C2)" (A+Bx+C2)
where

[]S:L)A(+02¥— B || TYto - +d- 2
K X (A+BR+C2) y (A+B%+C2)

S
L
s, X maX( A+ BR) nfaz( A+ BR)(A+C2)
+ —y+0 — d = —0. + " —
L y (A+BX+C32) (A+Bx+C2)

% . mak(A+BX) J

NI, Y nBR (SA Rj moR( A+BX)
G=| XH O~ | “y+o | dm——
K X (A+Bx+C2)° \L YU (A+B+C)
nmox(A+BX) | nfase(A+BR)(A+C2)(s. X
-0,0,| d- - 5 |+ - Z —y+o,= |
(A+B+Q2) (A+Bx+C2) L
Here 8 > 0’b5 > 0and G > 0provided
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r. y mBXZ
—X+0,=>
K X (A+BX+C2)

maX( A+ BX)

(A+Bx+C2)
r. % mBX2 S.. X maX( A+ BX)
XA Oy e || =Y +o o td -
K X (A+Bg+Cz)" )| L y (A+BX+C32)

> 0,0,,

s.. X maX(A+BX) | nmfaxz(A+BR)(A+C2)
—y+J d- - > | * - "

L y (A+Bx+C2) (A+BX+C2)

r. y mBXz S . X

Xt S || TYTO

K X (A+Bx+Cz)" (L y

maX(A+BR) | nfakz(A+BX)(A+ CZ)( x] maX( A+ BX)
- — > |+ - y+o, 0,0, d————=|.
(A+BX+C2) (A+Bx+C2)* (A+BX+C2)

Performing simple calculations it can easily befied that a5b5 Cs under the above conditions. Thus by Routh

.9.2)

o . 4.3 . :
Hurwitz criterion, all Eigen values og )WI|| have negative real part. Hence ? ( is asymptotically

stable.

Q={(x,y,z)DR§ W= X+ y+iz<,uu}
a

Lemma: The set is a region of attraction for all solutions

initiating in the interior of the positive octant, where Y >d jsa positive constant and

,uz%(r +v-qE)* +2£S(s+u)2.

wft) = x(t) + y(t) + = 2(t)

Proof: Let a and¥ > Ope a constant.
Then we have,
dw r, s , d v
— +tUW=—-—X"+(r+U-qE)X-—y“+(s+tU)y—-| ———|Z
dt K ( ) ) Ly ( )y a a
K
<—(r+v-qE)’ +—(s+u) _
2r 'U(Say)
Thus U This proves the lemma.

Theorem: The equilibrium point R is globally asymptotically stable.
Proof:Let us consider the Lyapunov function

Vv :(x—i—ﬂné)+ Kl(y—y—ym%}
X y

Differentiating V w.r.t. t, we get,
d_V: X_X%+ Kl_y_ yﬂ
dt x dt y dt

ya
Xo,’

Choose
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dv _ r 2 Y N2 O, [ — _ 2
—=——(X- - - —-—=(Xy - 0.
dt K(X X) YUIL(y y) XXy (Xy Xy) )

Thereforepl (Y’ Y, O) is globally asymptotically stable.

5. Optimal Harvesting Policy
Our objective is to maximize the present vaieof continuous time stream of revenue given by

J :J'e‘“(pqx(t)—c)E(t)dt (5.1)
0
where is instantaneous rate of annual discount. Thusobigctive is to maximizeJ subject to state equation

(2'1) and to the control constraints
0< E(t) < Epu (5.2)

To solve this optimization problem, we utilize tRentryagin Maximal Principle. The associated Hamilin is
given by

H=e?(pgx=c)E+A (1)) rx——x?—gx+o,y—— & _ Exj
(pax—c) 1()( X TOXF Oy

+, (t)(sy—% y? +0'1X—0'2yJ
A, (t)(—dﬁﬂj. (5.3

A+Bx+Cz
A, A

. . ag
where 1’ 2’/]3are adjoint variables and

(t) = (pgx-c) - Aax

is called switching function.

Since H is linear in control variablE , the optimal control will be a combination of balpgng control and singular

control. The optimal controF( )wh|ch maximizesH must satisfy the following conditions:

c
At <p-— (5.4)
= > 1
E Emax, Whena(t) , i.e. when ax
Cc
At >p-— ( 5.4)
— < 1
E= 0, whena(t) O, i.e. when ax
p- C
et . Ox . . . .
17 is the usual shadow price and is the net economic revenue on the unit harvesis $hows that

E= EmaXor zero according to the shadow price is less tiregreater than the net economic revenue on a unit

harvest. Economically, conditioK15'4a)impIies that if the profit after paying all the exqses is positive then, it is

beneficial to harvest up to the limit of availablfiort. Condition(5'4b)implies that when the shadow price exceeds
the fisherman’s net economic revenue on the umitdsd, then the fisherman will not exert any effort

o(t)=0. : . . Lo
When ( ) i.e. the shadow price equals the net economicntev®n the unit harvest, then the Hamiltonian

H o

t
H pecomes independent of the control variaEkg ) ie. OE This is the necessary condition for the singular

E(t _ <Ec<
control ( ) to be optimal over the control sgt E < Enax

A~
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E.,..Ot)>0
Et)=s0 ot)<O (5.5)
The optimal harvest policy is E ’J(t) =0
- _s Ol
. Aagx=e” (pax—c)=e" —. (5.
When a(t) = Oit follows that ' ( ) oE

This implies that the user’s cost of harvest pét effort equals the discounted value of the futonarginal profit of

the effort at the steady state.

Now, in order to find the path of singular contreé utilize the Pontriagin Maximal Principle, ancethdjoint

AL A, A

variables”1’" 2" 3must satisfy

A+C
d/11=_a_H:_ !e&qu—ﬂl{r—E—al— mz( Z) _qE}

dt  ox K (A+ Bx+Cz)2
+ dy0, 1, TOAACZ) (5.7)
(A+Bx+Cz)
dA oH 2
?2:_5:— {UZAl_MZ{S_TSy_aZH (5.8)
dh_oH_ | m(ATB) |, ARG [
at 0z (A+Bx+C2) (A+Bx+Cz)

Considering the interior equiIibriur‘rlwz'2 (X,y,z) r(5'6)’(5'&can be written as

dAz —Ot
—2-Al =-Ag¢e

and the equatio

_SY X _c
A—TJfUl?Az—Uz[p j

where, oX
e ( )
A, =A, 5.10
whose solution is given by A *o
A= mx(A+ BX)Jip_ije—a (5.11)
from(5'9), we get (A+ Bx+ CZ) ax
dAl — Ot
——BA, =-Bg
from(5'7),we get dt ' ’
where,
nr A+C
Bl:Lx+0'2X—L2,Bzz DQE+ JlAz _ a'XZ( + Z)s( _i}
K X (A+Bx+Cz) A+0 S(A+Bx+Cz) X

whose solution is given by
e
A =B,

5.12
XY (5.12)

from(5'6) and (5'12), we get the singular path
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[p—£j= B, (5.13)

gx) B +0

Equation(3'5) together with equatior(s'ls) gives the optimal equilibrium populatio)r(l XY= Y527 25

Then the optimal harvesting effort is given by

E:Edzl{r(l—ﬁj—aﬁazﬁ——mzd }
q K Xs A+ Bx;+Czs

6. Numerical Simulation

Using the parametersr = 3.0, K= 189~ 0.5,6,=0.5, m=2.5,a=12.0,g=0.01,s=0.4, L08,d = 0.01p. =
0.006, p = 15, ¢ = 1.4, = 0.005 and performing sensitivity analysis Kar][fpresented a table to study the effect of
predation on optimal solution. For m = 2.5, theilgium level shown by them is (24.0, 56.4, 16.@)we consider

m = 3.4 and c = 0.8, we obtain an equilibrium l&i24.0, 56.4, 16.2), Thus an appropriate contrddath parameter
can be made to obtain a desired level.

CONCLUSION

In this paper we have proposed and analyzed a mati@l model to study the dynamics of a foresagource
with prey dispersal in two patch environments, nigmeserved and unreserved. The response functiomdified
and considered in more general form. Global stghdliteria and optimal harvesting policy are atlrived. It has
been observed that predation parameter decreasesptimal equilibrium level. However the increasenew
parameter can increase this level as seen in ncaheimulation. The appropriate control of bothgmaeters can be
used to obtain a desired level of reserved andserved zones.
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