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ABSTRACT

Predictive deconvolution is the use of information from the earlier part of a seismic trace to predict and deconvolve
the latter part of that trace. In processing procedure, the information recorded in the field is put into a form that
most greatly facilitates geological interpretation. Predictive deconvolution is an attempt to attenuate multiples
which involve the surface or near-surface reflectors. The prediction filter was designed which yields the predictable
component (the multiples) of a seismic trace, while the remaining unpredictable part, the error series is essentially
the reflection series. The shaping filter so designed is used to convert the recording signature to its minimum-phase
equipment and apply it to the input record. The output has been processed by predictive deconvolution using
operation length of 160ms and prediction lags. When the data from the field are fully processed, geological
interpretation could easily be harnessed. The various stages, procedure and figures are shown clearly. The theory of
predictive deconvolution of processing was exhaustively discussed. The unprocessed data got from the field
operations are fed into automatic computer whose programme is written in line with the theory.
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INTRODUCTION

The basic objective of all seismic processing isdovert the information recorded in the field imtdorm that most
greatly facilitates geological interpretation. Oolgective of the processing is to eliminate orestst suppress all
noise in form of reverberation and multiples (Egladl Ekpekpo, 2003).

Predictive deconvolution is the use of informatfoom earlier part of a seismic trace to predict dedonvolve the
latter part of that trace. Some types of systematise, such as, reverberation and multiples caprédicted. The
difference between predicted value and the actadfllevis called the prediction error; it is sengtito new
information such as primary reflections. Predictieonvolution may also be used in a multitracessgwhere one
tries to predict a trace from neighbouring tradess. also an attempt to attenuate multiples wihinstolve the surface
or near-surface reflectors.

The Levinson principle generally can be used tomaten recursively the solution of linear equatidhgan also be
used to update the error terms directly. This isdu do single-channel deconvolution directly emsic data
without computing or applying a digital filter. (Kbn and Bjorn 2007).

The Wiener prediction filter has been an effectivel for accomplishing dereverberation when theutnglata are
stationary. For non-stationary data, however thdopmances of Wiener filter is often unsatisfactofis is not
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surprising since it is derived under the stationasgumption (Wang, 2006). According to Wang, thsulteof

applying the Wiener prediction filter adaptive pmte deconvolution on non-stationary data indicétat the
adaptive method is much more effective in removingtiples. It has been found by him that the otitpace from
the adaptive predictive deconvolution is rathersgtare to some input parameters, and that the gtiedi distance is
by far the most influential parameter.

Zhang et al, (2009) arrived at a conclusion th&t) :In trace gather, the move out of multiple limegeable and to
remove multiples in entire trace gather, the smacbf predictive length must take far traces imtoccount;
(2)Predictve deconvolution to remove multiplies nompletely same as other process of enhancindutesg and
it is difficult to attenuate multiple exactly usirgvery short predictive length;(3) The length oégictive operator
must be larger than the period of multiple, becausgay increase fake energy after processing. dhese totally
in agreement with our findings.

Robinson (2006) computed the transmission energgtagm as the difference of input energy spectruch the
reflection energy spectrum. This is in agreemeili wur result. Hence from the computed energy specbf the
transmitted wave we can compute the predictionreperator that contracts the transmitted wavegpilee.

Margrave and Lamoureux (2010) are of the view tmat-stationary predictive deconvolution comparesoaably
well to gabordecon when the prediction distande isnity. That is not quite as good as gabordesaattributed to
the fact that the deconvolution operators are designdependently rather than simultaneously. Eragpog results
were obtained when cascading the algorithm witfedéht prediction lags.

Taner (1980) proposed predictive deconvolutionhi@ tau-p domain as a remedy for the first effeetet other
similar ideas have been tested such as tpredidiée®nvolution in the radical trace domain (Pered Henley,
2000). Margrave and Lamoureux, 2001, Margrave ,e2@04 developed a nonstationary spiking deconigsiun
the Gabor domain which has been very successfigating with the nonstationary effects of an etaattenuation.

Other works on this could be seen from the workeyy renowned geophysicists such as, Dobrin (19ZRerbout
(1976) and Gibson and Learner (1982)

THEORY
Assuming X(t) is the desired input anét +y) is the predicted value at some future time, whtes the

prediction lag. It can be shown that the filterdise estimatex(t + y) can be computed by using a special form of
the matrix equation shown in equation (1) (Robinsad Treitel, 1980). As the desired outpm(t + y) is the

time-advanced version of the ian)((t), we need to specialize the right side of the dqnafor prediction
problem.

r.0 rl rl2 - = rln—l a'O gO

rl rlO rll rln—2 a'l gl

r2 rll rlO r.n—3 a'2 gZ

1 1 1 1 1 = (1)
_rn—l rln—2 rln—3 rO i _an—l_ _gn—l_
If we consider a five-point input time serie§, wherei = 0,1,2,34 and y = 2. The autocorrelation oX; is
computed as shown in Table 1 below.
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Table 1. Autocorrelation lags of the input seri[sxo X0 Xy, Xg, X4]
rR=x2+x2+x2+x2+x2
= XXy + X X, + X, X5 + X5X,
r, = XX, + X X5 + X,X,
ry = XoXs + XX,

r, = XoX,4
r, =0
re =0

The cross-correlation between the desired oubr(.tt+ 2) and the inputx(t) is shown in Table 2 below.

Table 2: Cross-correlation between outp)sl(t + 2) and inputX(t)
Go = XoXp + X1 X3 + XX,
01 = XoX3 + XX,

0, = XX,
g;=0
g,=0

Comparing tables 1 and 2 and noting taggt=r, + y/,r =2, andi = 0,1,2,34. Equation

(1) could be rewritten as shown below.

rO rl r2 r3 r.4 aO r2
rl r.O r1 r2 r3 a‘l r3

b rp Iy Iy L& |=|1, (2
r; I, Iy Iy Ii[[as Is
ry 3 I, Iy Iyff[a, I

The prediction filter coefficient®, wherei = 0,1,2,34, could be computed from equation (2). The actugbat
could be computed as shown in Table 3.

Table 3: Convolution of prediction filter y(t) with input seriesto compute actual output y(t)
Yo = 89X
Yi = a;Xo ¥ 8pX;
Y2 = 8,Xo +8,X; +8pX,
Y3 = 83Xy +a,X; +8,X, +8X,
Yo = 8,Xp + 85X, + 3%, +a,X; +agX,

As we are trying to predict the time-advanced fafinput, the actual output is an estimate of thees X; + )/,

where Jy = 2. The prediction error series is shown in the taigiew.
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Table 4: The error serief3,,, = X;,, = VY, -

B = X, —agX,

Bs = X3 —a;X, =X,

B = X4 — X, —a;X; — X,

Bs =0—aX, —a,X; —a;X, =agX;

Bs =0-a,X, —a3X; —a,X; =a;X; X,

The results of table 4 shows that error seriesccbel obtained directly by convolving the input ssnivith a filter
with coefficients( 10+ drara o, ,—a4),as shown in table 5.

Table5: Correlation of filter coefficient{ 10,-a, ],i = 01234 withinputX;,i = 01234
By =%,
B =X
B, =X, =X,
By = X3 —a;X, —aX,
Bi = Xy =3, —a;X; = a,X,
Bs =0—azX, —a,X; —a;X, —ayX,
Bs =0-2a,X, —a3X; —a,X, =a,X; =X,

The results of table 4 and 5 are identical By, B,, 8, , B and B . The series( 3.4 .8 ,8 ,a4), is known
as prediction filter and the series( 10+ drara o ,—a4) is called the prediction error filter. Applying
this on the input series, the filter yields theoeseries in the prediction processes.

The prediction filter yields the predictable compaoh (the multiples) of a seismic trace, while tenaining
unpredictable part, the error series is essentiadyreflection series (Yilmaz, 1998).

Equation 2 can be generalized for the case of lamgprediction filter and ary —long prediction lag as shown in
equation (3).

p— — p— — _r ]

lo r r —==Ta || 14

r lo r M-z a ry+1

r r lo M-s a, ry+2

1 1 1 1 1 - (3)
_rn—l rln—2 rln—3 r0 i _an—l_ ry+n—1

The design of the prediction filters require onlytacorrelation of the input series. There are tywpraaches to
predictive deconvolution. The designed may be edrdut using equation 3 and applied on input seseshown in
figure 1. An alternative is to design and convdlve input series, the prediction error filter aswh in figure 2.
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Figure 3 shows a flowchart for interrelations betwevarious deconvolution filters. It shows thatain be used to
solve a wide range of problems and that predictigeonvolution is an integral part of seismic datacpssing
aimed at compressing the seismic wavelet, themtrgasing temporal resolution. Certain assumptamasnade in
predictive deconvolution during the processing peses. These assumptions according to Yilmaz, {087

(@)())  The earth is made up of horizontal layersarfstant velocity

Input
Compute {72+ ¥} —lags of autocorrelation

where 7 = length of the prediction filter and

¥ = the prediction lag.

Use eqn (3) to compute the prediction filter series [aﬂ,a_,,aj,— — —ﬂM_I]

-

!

Delay by

Prediction Lag
Subtract Result ——————— Cutput

From Input

Fig. 1: A flowchart for predictive deconvolution using predictivefilters (Yilmaz, 1988).

(a)(ii) Compressional plane wave that impingesayet boundaries at normal incidence are generateduace.
In this case no shear waves are generated.
(b) The waveform source does not change as itlsaveéhe subsurface. This means that it is statipn
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Input
Compute L’I + ¥ ! -lags of autecorrelation,
where  # = length of the prediction filter and

1

Use egn (Si to compute the prediction filter series ey, e, ¢6,,—— —¢t, |

= the prediction lag.

Design the prediction error filter by delaving the prediction filter
[jsﬂ:ﬂs_ - _sﬂs_ﬂm_aj T Ty ]

ty—1)
D_

Output
Fig. 2. A flowchart for predictive deconvolution using prediction error filters (Yilmaz, 1988)
(c) The noise component I's(t) is zero.

(d) Reflectivity is a random process meaning #israogram has seismic wavelet characteristics.
(e) The seismic wavelet is minimum phase sincastdminimum-phase inverse.

Inverse Least-squares Optimum ".leiuer Filters
Filter Desired Output
Zero-Delay
Spike Time-Advanced

Version of Input

with Predjction Lag }

¥
Unit Prediction Any Other
Lagly =1} Form
L 4
+ Spiking
. ik Y
Deconvolution Predictive Wavelet

Fig. 3: A flowchart for interrelations between various deconvolution filters (Yilmaz, 1988).
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LOCATION

The trans-Atala 3-D prospect where the data wetairmdd spans a large area of OMLS (Omission LiB&sand 46.
The total surface area of the prospect is appraxily256 square kilometers. The area is swampylawelying
with surface elevation gradually rising from 2.28nmhe south to 1.98m up north.

The prospect covers Burigbene and Ogbotobo fidlds.adjoining communities are Ekurugbene, Bassahid and
so on. These are all in Western ljaw Local Govemtmdgea of Rivers State.

FIELD DATA EXAMPLESAND DISCUSSION

Field data examples are now used to examine thengletution parameters. Figure 4 shows a CMP (Com#on
midpoint) gather that contains five reflection abwnd 1.1, 1.35, 1.85, 2.15 and 3.05s. There egigtrberations
associated with these reflections.

In figures 4 through 7 and figure 8 the input CM&hgr was 6s long, but only the first 4s are digada The
analysis of the time gate to estimate the autolaiioa function will begin with examination of thieconvolution
parameters. Figure 4 shows autocorrelation windest tised to design deconvolution operators. Thie $alrs
indicate the window boundaries. The entire 6-s tlengas included ira. The autocorrelograms are displayed
beneath the records. In general, the autocorrelatindow should include the part of the record ttw@itains useful
reflection signal and should exclude coherent oolirerent noise (Yilmaz, 1988).

@ ® (© @

Fig. 4: An autocorrelation window

Figure 5 shows test of operator length. The comedimg autocorrelation is beneath each record.\ilthdow used
in autocorrelation estimation is shown in figure Bigure 5a shows input gather Deconvolution ugiregiction lag
= 4ms (spiking deconvolution), 0.1 percent prewtiitg, and prediction filter operator lengths (b)) (c) 80ms,
(d) 160ms, (e) 240ms. From the analysis of thelsiagike, sparse spike, and reflectivity models,ghort (40-ms)
operator leaves some residual energy corresportditige basic wavelet and reverberating wave traithé record.
For a (60-ms) operator, no remnant of the energssociated with the basic wavelet and reverberstiOperator
longer than 60ms does not change the result sogmnitfly.
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() © @ (e)

Fig. 5: Test of operator length
The effect of prediction lag is examined in fig@.eHere, 160-ms operator length and 0.1 percenthgtening are
fixed while prediction lag is varied. An increasethe prediction lag will result in the deconvotutiprocess which
makes it less effective in broadening the spectrimtihe extreme, the deconvolution process is eutiffe for a
128-ms prediction lag. It is a common practicehi prediction lag are unity (spiking deconvolutiam)the first or
second zero crossing of the autocorrelation funafwedictive deconvolution).

§— —

(b) () (d)
Fig. 6: Test of prediction lag.

The test of percent prewhitening is shown in figoirélere the corresponding autocorrelation is béneach record.
The window used in autocorrelation estimation igveh in figure 4. By the deconvolution process,étbmes less

(e
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effective when the percent prewhitening is incrdag¥econvolution using prediction filter operatength of 160-
ms.

@ (b) () (d) (e}
Fig. 7: Test of percent prewhitening

Finally, figure 8 shows signature processing. As thoint a shaping filter is designed to conveg tlkecording
signature to its minimum-phase equivalent and ajigly the input record a. The output, b then hesrbprocessed
by predictive deconvolution using operator lengtii®ms and prediction lags, ¢ shows 4ms spike rdestation

while d and e are 12ms and 32ms respectively.

@ ® ©@ @ @
Fig. 8: Signature processing.
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CONCLUSION

Predictive deconvolution is a process of applyinfpimation from the earlier part of a seismic tracepredict
systematic noise such as reverberation and mugtiffl@attempts to attenuate multiples which inveltiee surface or
near-surface reflectors.

The predictive deconvolution involves the desigrihaf prediction filters which require only autoaation of the
input series. For this work, the output has beecgssed using operation length of 160-ms and greditags.
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