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Reducing the Interfacial Tension (IFT) between crude oil and brine is one of surfactants' key functions 
in Enhanced Oil Recovery (EOR). Surfactants improve the mobility and displacement of oil by water or 
other fluids by lowering the IFT. This makes it easier to release and mobilize oil that has been trapped 
and would otherwise be challenging to recover. The conventional methods used to assess whether 
surfactants are effective in lowering the IFT of crude oil and brine in a reservoir entail a number of 
costly, time-consuming, and difficult processes. These include a thorough examination of the 
reservoir's characteristics, an analysis of the composition of the crude oil, a study of the surfactant's 
properties, and a battery of extensive laboratory tests to ascertain the surfactant's efficacy in lowering 
the IFT and enhancing oil recovery. These difficulties will be resolved by using Machine Learning (ML) 
techniques to artificially intelligently predict crude oil-brine IFT based on surfactant properties. 
Machine learning, a branch of artificial intelligence, is essentially the use of computer algorithms to 
predict the future with (supervised learning) or without (unsupervised learning) prior knowledge of 
the past. In order to forecast crude oil-brine IFT using surfactant properties as dependent variables, 
this work concentrated on developing a high-level ensemble machine learning model based on the 
"boosting" algorithms, namely the Gradient Boosting Decision Tree (GBDT) and the Adaptive Boosting 
(ADABOOST) algorithms. Four models were created, two for each algorithm, depending on the base 
learner and the quantity of dependent variables. The models were trained, tested, and assessed to 
identify the optimal model after being fitted with surfactants and crude oil-brine IFT data. The impact 
and effects of training the models with different data sizes, functional forms, and decision-making 
processes to predict are investigated in the early stages of the simulation. As is recommended for 
predictive machine learning models, the models were then assessed using the statistical metrics of 
Root Mean Squared Error (RMSE), coefficient of determination (R2), Standard Deviation (SD), and 
Average Absolute Relative Deviation (AARD). The GBDT model-2 performed the best out of the four 
developed models, according to the evaluation results, with an R2 value of 99.70%, an RMSE of 0.103, 
an AARD of 1.32%, and an SD value of 0.0327.
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INTRODUCTION
The interactions between crude oil, brine, and minerals result 
in increased oil recovery during flooding of low- or high-
salinity water body. The majority of studies have concentrated 
on the brine-mineral interactions in an effort to gain further 
understanding of this recovery technique [1]. Nonetheless, 
there is a growing body of evidence suggesting that fluid-fluid 
interactions play a major role in the enhanced oil recovery. 
The increased oil recovery has been attributed to a number of 
oil-brine system-related mechanisms, including wettability 
alteration, viscoelasticity of the brine-oil Interface Interfacial 
Tension (IFT) alteration, emulsion formation, and viscosity 
decrease. With the exception of wettability modification, each 
of these processes is solely related to fluid-fluid interactions 
[2].

Interfacial Tension (IFT) is one of the most significant critical 
parameters in describing the behavior of immiscible systems. 
This parameter primarily pertains to the tension present at 
the boundaries between liquids. Engineers can make better 
decisions regarding the future of oil reservoirs if they have a 
thorough understanding of the behavior of crude oils and how 
they interact with reservoir formations and other in situ 
fluids. Because it affects the capillary number and residual oil 
saturation, Interfacial Tension (IFT) between crude oil and 
brine is a significant property that has a significant impact on 
the oil production efficiency in various recovery stages [3].

For many processes in petroleum and chemical engineering, 
an accurate estimation of the Interfacial Tension (IFT) in the 
crude oil-brine system is absolutely crucial. Understanding the 
interfacial phenomena involved in unconventional petroleum 
production, such as oil liberation from host rocks, oil–water 
emulsions, and de-emulsification, is essential for developing 
novel processes that improve oil production while lowering 
operating costs and mitigating the effects on the environment 
and Greenhouse Gas (GHG) emissions. This understanding is a 
fundamental science. While many environmental and 
production challenges still exist, tremendous efforts and 
progress have been made in the last ten years in applying the 
principles of interfacial sciences to better understand complex 
unconventional oil-systems.

The IFT between hydrophobic and hydrophilic liquids has 
numerous industrial applications in chemical and petroleum 
engineering. These consist of water flooding, liquid-liquid 
extraction, generating stable emulsions, Enhanced Oil 
Recovery (EOR) procedures, and two-phase liquid 
displacement. IFT the transition between the hydrocarbon 
and aqueous phases is a crucial topic that is frequently 
utilized in operation units from an industrial and economic 
perspective [4]. This attribute is especially significant when it 
comes to the extraction of crude oil from hydrocarbon 
reservoirs.

Capillary force, which establishes the volume of trapped oil in 
the reservoir, is a crucial component in all phases of oil 
recovery. The oil recovery factor increases when this 
parameter decreases, with the exception of a few special 
circumstances like spontaneous imbibition processes [5].

Capillary forces, a crucial factor in trapping a lot of oils in a
reservoir's porous space, have an impact on crude oil
production at every stage of recovery. These capillary forces
must be lowered in order to release the trapped oil. By using
Capillary Number (NC), the impact of capillary forces in the
reservoir is examined. The ratio of the capillary force to the
viscous force defines this dimensionless parameter as follows:

According to Barati-Harooni, et al., µ, v, σ, and θ stand for
viscosity, velocity, interfacial tension between oil and brine,
and contact angle, respectively. An increase in capillary count
will result in an increase in total oil production. Several EOR
techniques are screened for each crude oil reservoir to
determine which one provides the greatest NC. The EOR
process is effective when a method is selected to raise the
capillary number to four or five order of magnitude [6]. One
important strategy for raising NC in EOR is IFT reduction [7].
The capillary number is also considered in the water/brine
flooding process, which is the primary means of secondary
recovery stage before EOR operations. To identify the most
effective operating conditions, it is also crucial to look into the
IFT variations in various scenarios.

Interfacial Tension and Machine Learning
The IFT between crude oil-brine systems is affected by
different temperature, pressure, and injection brine
compositions for each type of crude oil. The most effective
method of obtaining actual values is through laboratory-based
experimental measurement of the IFT. That isn't always easy,
though, particularly when it comes to the high temperatures
and pressures found in oil reservoirs. IFT measurement can be
costly and time-consuming in certain situations. As a result, in
these situations, using mathematical models and estimating
techniques is very beneficial.

Numerous Machine Learning (ML) techniques, such as fuzzy
interference systems, Artificial Neural Networks (ANN),
Support Vector Machines (SVM), Response Surface Model
(RSM), Genetic Programming (GP), and other various
evolutionary algorithms, have been developed (some based
on the surface tension of two liquids) and applied in
predicting crude oil–brine IFT.

In a recent study, Menad, et al., presented two innovative and
potent machine learning techniques for calculating the IFT of
crude oil-brine systems: "Gradient Boosting Decision Tree
(GBDT)" and "Adaptive Boosting Support Vector Regression
(AdaBoost SVR)." With each of these two data-driven
techniques, two different types of models have been created.
Pressure (P), Temperature (T), and four parameters
characterizing the characteristics of crude oil (specific gravity
(SG), Total Acid Number (TAN), and brine (pH, NaCl equivalent
salinity (Seq), are the six inputs in the first kind, whereas the
second kind only deals with four inputs (pH, TAN, and seq are
not included). Nevertheless, their research was restricted to
brine with high salinity, which forms the basis of the current
study [8].
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In the current study, medium and low salinity brine has been 
subjected to the Gradient Boosting Decision Tree (GBDT) and 
Adaptive Boosting Support Vector Regression (AdaBoost SVR) 
models. Additionally, additional parameters, such as 
polarizability per volume and dielectric constant, have been 
incorporated into the model to aid in its prediction of the 
impact of surfactants on the crude oil-brine IFT.

Role of Surfactants in Interfacial Tension Reduction
Often referred to as a surface-active agent, surfactants are 
substances like detergents that, when added to liquids lower 
their surface tension and improve their spreading and wetting 
capabilities. Surfactants aid in the uniform dye penetration of 
the fabric during textile dying. Aqueous suspensions of 
insoluble dyes and perfumes are dispersed using them. A 
portion of the surface-active molecule needs to be lipophilic 
(soluble in lipids or oils) and partially hydrophilic (soluble in 
water). In order to function as an emulsifying or foaming 
agent, it concentrates at the interfaces between bodies or 
droplets of water and those of oil, or fats [9].

Due to the ongoing depletion of conventional oil reserves and 
the sharp rise in the world's energy consumption, there is 
currently a great deal of interest in the various chemical 
Enhanced Oil Recovery (EOR) techniques. Chemical EOR is 
well-established with surfactant flooding as a method. This 
approach has shown to be effective because it uses a variety 
of mechanisms to improve oil recovery. They consist of 
emulsification, foam production, wettability modification, and 
Interfacial Tension (IFT) reduction. Surfactant flooding is still 
plagued by problems, such as excessive adsorption and 
instability in harsh or typical reservoir conditions, despite its 
widespread use. These problems have an impact on the 
anticipated oil recovery, which lowers the EOR projects' 
financial returns. However, surfactants can be chosen 
appropriately based on the type of rock and the conditions of 
the reservoir. Surfactant screening techniques are typically 
used for this, and they impose limits on the IFT, surfactant 
adsorption, and other factors under specific salinity and 
temperature conditions [10].

Time affects the Interfacial Tension (IFT) values between 
aqueous solutions and crude oil. Pre-equilibration of the oleic 
and aqueous phases does not completely eliminate changes 
with time, though this could be partially attributed to slow 
diffusion of certain components across the interface. IFT 
values that vary with interface age may also be caused by 
molecular rearrangement at the interface [11].

At very high or very low aqueous phase pH, reactions 
between the acidic and basic functional groups of heavier 
crude oil components can occur, producing in situ surfactants 
that can further change the IFT as a function of time. As noted 
by Bartell and Niederhauser and often observed since (e.g., 
Asekomhe, et al. and references cited therein), the gradual 
development of rigid films provides visible evidence of slow 
changes to the oil/brine interface [12].

According to research, low concentrations (∼0.05–0.2%) of 
various surfactant types can be used to achieve low  interfacial

tension, with values as low as 10-2 dynes/cm or less. When a 
surfactant is present in water without oil, it lowers surface 
tension because its molecules partially replace the water 
molecules at the water's surface. Less attraction exists 
between the molecules of surfactant and water than there is 
between the molecules of water. As a result, there is a 
decrease in the contraction force that causes surface tension 
[13]. On the other hand, in water-oil-surfactant systems, a 
process known as surfactant adsorption causes surfactant 
molecules to partially replace some of the water and oil 
molecules at the initial oil-water interface. The interaction 
between the surfactant's hydrophobic components and oil on 
one side of the interface and its hydrophilic components and 
water on the other is a result of this new arrangement of 
molecules. Actually, compared to the initial interaction 
between water and oil before surfactant addition, the new 
interaction across the oil–water interface is noticeably 
stronger. Consequently, there is a decrease in interfacial 
tension [14].

The kind and quantity of ions present in the brine have a 
significant impact on surfactants' capacity to lower the 
interfacial tension between crude oil and brine. As was 
previously mentioned, there is an ideal salinity at which the 
interfacial tension between brine and crude oil drops to 
extremely low levels. This ideal salinity is typically described in 
terms of the amount of dissolved NaCl in the solution [15]. 
Nevertheless, investigations revealed that the ideal salinity 
value is decreased when divalent or multivalent cations are 
added to a surfactant solution with a specific NaCl 
concentration. This indicates that the presence of these 
divalent/multivalent cations reduces the surfactant's 
tolerance to NaCl salinity, which has a negative impact on the 
interfacial tension between brine and oil. The impact of 
divalent cations on the interfacial tension characteristics of a 
surfactant formulation was examined in a study by Bansal and 
Shah. Both ethoxylated and petroleum sulfonates were 
present in the formulation. It has been shown that the ideal 
salinity of surfactant-oil-brine systems is significantly 
decreased when the concentration of divalent cations (Ca2+ 

and Mg2+) increases. Similar findings were made by Kumar et 
al., who demonstrated that surfactant solutions containing 
petroleum sulfonate and lignosulfonate would not be able to 
lower the oil-brine interfacial tension when Ca2+ and Mg2+ 

concentrations were increased.

Since these divalent cations are typically present in natural 
connate water, this effect should be taken into account during 
surfactant screening. This phenomenon is actually most 
commonly associated with anionic surfactants, which are 
known to precipitate out of the bulk solution when they react 
with divalent or trivalent cations. As a result, it is anticipated 
that oil recovery will be diminished [16].

Characterization of Surfactants
For technical and financial reasons, surfactants must be 
characterized. Verifying a surfactant's efficacy and stability 
over time is crucial before using it in any application.
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Critical Micelle Concentration (CMC): According to Naseri, et 
al., and Bhosle, et al., a micelle is an aggregate form of 
surfactant molecules dispersed in a liquid colloid, as 
illustrated in Figure 1. The concentration of surfactant above 
which micelles can form is known as the Critical Micelle 
Concentration (CMC). Several of the solution's 
physicochemical characteristics, such as its viscosity, surface 
tension, and thermal and electrical conductivities, abruptly 
change at the CMC. Surfactant molecular structure (e.g., 
hydrophobic chain length), pressure conditions, solution 
salinity, ionic composition, pH, temperature, and other factors 
are some of the variables that affect a surfactant's CMC.

Figure 1: Micelle formation upon reaching the CMC

The CMC can be measured using more than thirty different 
techniques. These consist of the solubilization method, dye 
adsorption method, surface tension method, and others. 
Nesmerak and Nemcova have classified the methods used to 
measure the CMC into two categories: Direct methods and 
indirect methods. Through the use of direct methods, variations 
in surfactant concentration are seen to cause changes in certain 

properties of the surfactant solution.  Consequently, the 
observed solution property, such as viscosity, electrical 
conductivity, refractive index, and slope change, is used to 
calculate the CMC. Conversely, indirect methods determine 
the CMC by monitoring a change in a particular property of a 
probe (a material added to the surfactant solution) in 
response to a variation in the surfactant concentration.

Nesmerak and Nemcova cite the voltammetric and 
spectrometric methods as examples of such techniques. IFT 
measurement is the most widely used technique to ascertain 
the CMC in surfactant EOR applications.

Hydrophilic–lipophilic balance: The Hydrophile–Lipophile 
Balance (HLB) is a crucial criterion for surfactant 
characterization. According to Kondo et al., and Reham et al., 
this criterion quantifies how lipophilic or hydrophilic a 
surfactant is. A surfactant's relative propensity to dissolve in 
water or oil is indicated by its HLB, which is a number on a 
scale from 0 to 20. A molecule made entirely of hydrophilic 
components has a value of 20, whereas a molecule that is 
completely hydrophobic (lipophilic) has a value of 0. Predicted 
surfactant properties based on HLB values are displayed in 
Table 1. Low-salinity formations require the selection of a low-
HLB surfactant in order to form appropriate micro emulsions 
during oil recovery. Likewise, for formations with high salinity, 
a high-HLB surfactant ought to be chosen.

HLB Value Property/application

0-3 Anti-foaming agent

04-06 W/O (Water in oil) emulsifier

07-09 Wetting agent

08-18 O/W emulsifier

13-15 Detergent

10-18 Hydro-trope or solubilize

Analysts created a few conditions for calculating the HLB
values of surfactants. Investigate detailed by Griffin and
Davies was among the most punctual inquire about to supply
such conditions. Royer, et al. expressed Griffins condition for
calculating the HLB for nonionic ethoxylated surfactants as
follows:

Where MH denotes the molecular mass of the hydrophilic part 
of the surfactant molecule and MT denotes the total 
molecular mass of the surfactant molecule. Royer et al., 
Davies discovered that group numbers can be used to 
calculate the HLB values of surfactants from their chemical 
formulae. As shown in the following equation:

According to Davies, given a surfactant containing a number n 
of –CH2– groups, the HLB value is calculated as follows:

where Davies's tables are used to obtain the hydrophilic group
numbers and the value of the CH2-group number is
substituted with 0.475. Later, in order to ascertain the HLB
values, additional researchers created experimental
techniques. The Phase-Inversion Temperature (PIT), the
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molecular mass of the surfactant molecule. Royer et al.,
Davies discovered that group numbers can be used to
calculate the HLB values of surfactants from their chemical
formulae. As shown in the following equation:

Table 1: Relation between HLB values and the expected properties/applications of surfactants.



Emulsion Inversion Point (EIP), and other techniques are the 
basis for some of these techniques.

Molecular Packing Parameter (MPP): The relationship between 
the geometry of a surfactant molecule and its aggregate 
structure in aqueous solutions is described by the term 
molecular packing parameter, or PC. Micelles in the form of 
spheres, rods, bilayer vesicles, etc. are examples of aggregate 
structures.

To calculate the PC, the following equation is used:

where vo is the volume of the surfactant tail, lo is the length of 
the surfactant tail, and a is the surface area of the hydrophilic 
head group at the surface of the aggregate. Figure 2 depicts 
the terms used in the equation of the packing parameter.

Figure 2: Definition of the terms used in equation of the 
packing parameter.

Different micelle geometries are formed by the surfactant 
molecules self-assembling based on the value of the packing 
parameter. These geometries have an impact on the solution's 
bulk characteristics, including its solubilization capacity and 
viscoelastic qualities.

Solubility ratio: The volume of oil (or water) solubilized per 
surfactant volume in a micro-emulsion phase is known as the 
oil (or water) solubilization ratio. The Solubilization Ratio (SR) 
can be expressed as follows, per Abalkhail, et al.:

According to research by Bera, et al. and Hamidi, et al., SRwater 
and SRoil must be equal for the best solubilization to take 
place, which creates the perfect micro-emulsion formulation 
required for oil recovery [17]. Figure 3 illustrates how to 
obtain this by drawing the oil-SR curve and the water-SR 
curve, with the intersection point between the two curves 
representing the optimal solubilization occurring at the 
optimal salinity. According to Khaledialidusti, et al. and 
Liyanage, et al., understanding the solubilization parameters is 
crucial to optimizing the oil recovery process. This is due to 
the fact that optimal salinity is typically where the lowest oil-
water IFT is found.

Figure 3: Intersection point between the two curves of SR-Oil 
and SR-Salinity.

Machine Learning Techniques
The branch of Artificial Intelligence (AI) known as Machine 
Learning (ML) focuses on creating systems that learn from the 
data they use and enhance their performance. The term 
artificial intelligence is used to describe a wide range of 
devices or systems that simulate human intelligence. Though 
the terms are sometimes used synonymously and are 
frequently discussed together, machine learning and artificial 
intelligence are not the same. The fact that not all AI is 
machine learning, even though all machine learning is, is a 
crucial distinction.

In various fields of study, various machine learning 
technologies have been presented in literature for parameter 
estimation, including Particle Swarm Optimization (PSO), 
Genetic Programming (GP), Artificial Neural Network (ANN), 
Imperialist Competitive Algorithm (ICA), and Generalized 
Regression Neural Networks (GRN).

Abooali, et al., used genetic programming for the first time to 
estimate IFT in crude oil-brine. Menad, et al., employed an 
empirical correlation as a system. Temperature, oil density, 
pressure, salinity, pH, and Total Acid Number (TAN) were 
among the input parameters. With an overall correlation 
coefficient (R2) of 0.9745, a root mean square error of 1.86 
mN/m, and an average absolute relative deviation of 3.39%, 
the correlation's performance was very satisfactory [18].

In order to provide reliable, affordable, and quick paradigms 
for IFT prediction in crude oil-brine systems, Menad, et al. 
employed two data-driven techniques: "Adaptive Boosting 
Support Vector Regression (AdaBoost SVR)" and "Gradient 
Boosting trees (GBDT)." These approaches were put into 
practice and verified. In order to achieve this, a sizable data 
bank (560 data sets) was taken into consideration. These data 
sets covered a wide range of reservoir conditions, including 
Pressure (P) and Temperature (T), as well as the 
characteristics of crude oil, brine, and total acid number (TAN, 
SG, and pH). Using each of the aforementioned data-driven 
techniques, two types of models were implemented based on 
the inputs of the collected data. Six inputs are taken into 
account in the first kind, and four inputs (minus pH and TAN) 
are included in the second. Various statistical assessment 
criteria and graphical error analyses were used to assess the 
strength and suitability of the proposed models in predicting
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IFT of crude oil-brine systems and compare their results with 
the established correlations. Furthermore, a trend analysis 
was carried out on the most developed model to thoroughly 
assess its efficacy in comprehending how the variables used 
affected the IFT values.

Ultimately, the Leverage approach was employed to ascertain 
the predictive capability of the optimal model and to identify 
potential ambiguous data. There exist noteworthy disparities 
between this investigation and other previously published 
works in this particular domain: (1) Novel categories of 
machine learning (ML), namely Gradient Boosting trees 
(GBDT) and Adaptive Boosting Support Vector Regression 
(AdaBoost SVR), were utilized to establish more precise 
frameworks for Forecasting Interfacial Tension (IFT), (2) Two 
distinct scenarios were examined for each ML technique, 
taking into account various input parameters, and (3) The 
developed models are not only applicable for estimating IFT of 
pure components in brine, but also for predicting IFT between 
crude oil and brine.

Turgay and Qian reached the conclusion that although various 
AI techniques have achieved success in predicting petroleum 
reservoir properties, the knowledge and insights obtained from 
current research and applications suggest that intelligent 
models cannot fully substitute traditional reservoir engineering 
models, such as high-precision numerical simulators and 
analytical tools. However, the review provided no insight into 
the difficulties that arise when attempting to tap into the 
significant hydrocarbon reserves that are naturally confined 
within unconventional oil and gas reservoirs. This particular 
aspect is of utmost importance when it comes to the 
development of advanced AI models [19].

In order to model the surfactant enhanced drying of poly 
(styrene)-p-xylene coatings, Raj et al., employed a machine 
learning technique based on a regression tree. The developed 
model based on regression trees shows very good agreement 
between its predictions and the experimental data. Through 
experimentation, 16,258 samples in total were obtained. 
These samples were divided into two groups: 3298 samples 
were used to assess the prediction accuracy of the regression 
tree, and 12,960 samples were used to train the tree. 
Regression tree growth was done using MATLAB software. 
8.8415 *10-6 was determined to be the mean squared error 
between the actual outputs and the values predicted by the 
model. He model exhibits strong generalization capabilities as 
it accurately predicts weight loss based on specific values of 
time, thickness, and triphenyl phosphate. Furthermore, it 
demonstrates a maximum error of only 1%. Its robustness 
allows it to be applied to various compositions and thicknesses 
within the system, thereby significantly minimizing the 
necessity for additional experiments to elucidate diffusion and 
drying processes. 

In their study, Seddon, et al. employed a hybrid machine 
learning approach to forecast the surface tension profiles of 
hydrocarbon surfactants in aqueous solutions. The 
researchers proposed this approach based on the recognition 
that predicting the surface tension-log (c) profiles of

hydrocarbon surfactants in aqueous solutions is not an easy 
computational task. This difficulty arises from the intricate 
and diverse architecture and interactions of surfactant 
molecules, making it empirically challenging as well [20].

Three characteristic parameters (Γmax, KL, and Critical Micelle 
Concentration, or CMC) were extracted from a datasets of SFT 
for 154 model hydrocarbon surfactants at 20–30 C by fitting it 
to the Szyszkowski equation. These parameters are correlated 
to a number of 2D and 3D molecular descriptors. After 
subtracting co-correlation, key (~10) descriptors were chosen, 
and Recursive Feature Elimination (RFE) was performed using 
a gradient-boosted regressor model to rank feature 
importance. To increase prediction accuracy and decrease 
over-fitting, the hyper-parameters of each target-variable 
model were adjusted through a randomized cross-validated 
grid search. With an R2=¼ 0.69-0.87 favorable correlation 
between the ML models and test experimental data, the 
approach's advantages and disadvantages are examined based 
on hydrocarbon surfactants that are "unseen." By adding a 
knowledge-based framework, the experimental data can be 
appropriately smoothed, making the data-driven approach 
more straightforward and broadly applicable.

MATERIALS AND METHODS
For the present study, a set of 300 data points was collected 
from literature. These data contain interfacial tension of oil-
brine systems, Pressure (P), Critical Miselle Concentration 
(CMC), Temperature (T), surfactant molecular packing 
parameter, surfactant HLB, and solubility ratio, KCl and MgS 
(Seq). The GBDT (Gradient Boosting Decision Tree) and the 
ADABOOST SVR (Adaptive Boosting Support Vector Regressor) 
algorithms where implemented with the collected data to 
predict the crude oil brine interfacial tension by developing 
two models for each of the algorithms and evaluated them 
using statistical parameters (Root Mean Square Error (RMSE), 
Coefficient of determination (R2), Average Absolute Relative 
Deviation (AARD) and Standard Deviation (SD)) to determine 
the best model to use for API development.

The first AdaBoost model (Model-1) was fitted with 5 input 
parameters (Interfacial Tension (IFT), Critical Micelle 
Concentration (CMC), Solubility Ratio (SR), Molecular Packing 
Parameter (MPP) and Hydrophilic–Lypophilic Balance (HLB)) 
with IFT set as the target variable. The hyper-parameters were 
tuned accordingly to obtain the best generalization for the 
model

Since the AdaBoost algorithm can be used for classification 
and regression, both algorithms were explored to determine 
which will perform better with the available data set. The 
regression model performed better with an accuracy of 84%.

The AdaBoost model-2 was implemented using a regressor 
algorithm and added two new surfactant parameters (density 
and molecular weight) to the five of model 1. An algorithm 
known as a regressor uses a given output to predict a 
continuous numerical value, in this case the IFT. A collection 
of characteristics or variables that are connected to the 
output value can be the input. Neural networks, decision
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trees, and linear regression are a few examples. The kind of 
output that a classifier and a regressor generate is the 
primary distinction between them.

The GBDT models were developed with similar alternations of 
the variables as that of the AdaBoost algorithm. The model 
one was fitted with 5 variables while the model 2 was fitted 
with 7 variables and the hyper-parameters tuned accordingly. 
The models of both the AdaBoost and the GBDT were 
evaluated using the previously mention performance metrics. 
The results of the evaluation metrics were compared with 
those from previous programs from literature to ascertain 
their competitiveness and authenticity.

Web application was developed using python with the flask 
API to connect the trained machine learning model to the 
user interface developed with HTML. The user interface 
connects the end user to the ML model while the flask API 
connects the user interface to the ML model.

RESULTS AND DISCUSSION
A statistical measure frequently used in machine learning to 
assess a regression model's performance is the coefficient of 
determination (r2). It is a metric for assessing how well the 
data fit the regression line. Higher values denote a better fit. 
The range is 0 to 1. A model that perfectly fits the data is 
indicated by an r2 value of 1, while a model that does not 
explain any variability in the data is indicated by a value of 0. 
The r2 values for each of the developed models are displayed 
in Figure 4 below.

Figure 4: Performance summary of models.

Comparing the results of the GBDT models we see that the 
GBDT model-2 gave a better performance in predicting the IFT 
with an R2 of 99%

The R2 values of the GBDT model-2 and AdaBoost model-2 
obtained in this study are compared to those of previous 
correlations and comparable machine learning models in 
Figure 5. Our GBDT model-2 has an r2 value of 0.9941 against 
0.9967, which is still very good, ranking second to that of 
Amar et al.

Figure 5: R2 value comparison of models.

Cross-plots can be used to evaluate the model's generalization 
performance. It is a sign that the model is over fitting to the 
training data and may not generalize well to new, unseen data 
if the model performs significantly better on the training 
dataset than it does on the testing dataset. Conversely, if the 
model's performance on the training and testing datasets is 
similar, it suggests that the model is not over fitting and could 
potentially generalize well to new data (Figure 6). To enhance 
the model's generalization performance, we can experiment 
with different algorithms or modify the model's hyper 
parameters by examining the cross plots (Supplementary 
Table).

Figure 6: Comparison between predicted and experimental 
IFT computed from the model-2 of the GBDT algorithm with 
the predicted target variables IFT, SR, MPP, MW, Density and 
CMC. The blue dashed line corresponds with the slope.

From Figure 7, it can be seen that the fitted line in the GBDT 
model-2 tracks mostly actual data points, further demonstrating 
the high prediction performance of this approach.
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Figure 7: Comparison between predicted and experimental 
IFT computed from the model-2 of the AdaBoost algorithm 
with prediction R2 score of 0.84.

On the other hand, model-2 of the AdaBoost algorithms data 
points are far apart from the fitted line implying a lesser 
accuracy compared to the former as shown in Figure 7.

One other way to gauge a machine learning model's accuracy is 
to look at its average absolute relative deviation, or AARD. It's 
a metric for assessing how accurately the model predicts the 
intended variable. The average of the absolute differences, 
divided by the actual values, between the predicted and actual 
values is known as the AARD. This works model is contrasted 
with literary models in the chart below (Figure 8).

Figure 8: Comparison between this study’s best models and 
other correlations.

The AARD is a useful metric because it measures the relative 
error, rather than the absolute error. This means that it is 
insensitive to the scale of the target variable, and can be used 
to compare the performance of models that predict different 
units of measurement. A lower AARD value indicates better 
accuracy of the regression model, as it indicates that the 
predicted values are closer to the true values.

A statistical tool for estimating the degree of variability or 
dispersion in a set of data is the standard deviation. The 
standard deviation specifically calculates the degree to which 
the data deviates from the mean or average. The standard 
deviation in regression analysis can be used to evaluate how 
well the model predicts the future. As can be seen in Figure 9, 
the GBDT model-2 yielded the lowest standard deviation of all 
the developed models, indicating low variability and high 
prediction accuracy.

Figure 9: Standard deviation values of the developed models.

The AdaBoost models produced the highest SD values, with 
model 1 performing the worst with 0.5385. A smaller 
standard deviation suggests that the model's predictions are 
more accurate and consistent, while a larger standard 
deviation would indicate that the model's predictions are 
more variable and less accurate. Based on the metrics results, 
it is evident that the GBDT algorithm outperforms the 
AdaBoost algorithm in terms of overall performance.

Here is a cross-section of the model's predicted values 
compared to the actual IFT values found in the literature to 
further demonstrate the GBDT model-2's prediction accuracy. 
A sample prediction of the model based on the available 
dataset is shown in Table 2 below. The very small deviations 
are evident, which is further consistent with the performance 
metrics analysis's findings. A graphical representation of the 
prediction accuracy is shown in Figure 10.

Table 2 indicates that the sample data's total deviations 
account for approximately 7.5% of the total predictions. This 
consistently translates into an accuracy of 93%, which is 
consistent with the 99.7% R2 result for the entire dataset's 
prediction accuracy. The GBDT model-2's prediction accuracy 
with only one significant deviation is graphically illustrated in 
Figure 10.
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0.007 0.003 0.0011

0.0031 0.0028 0.0003

0.0026 0.0026 0

0.352 0.28 0.072

0.0082 0.0082 0

0.0026 0.00258 0.0002

0.035 0.0338 0.0012

1.3 1.3 0

4.4 4.4 0

Based on its performance in all metrics, the GBDT model 2 is 
the best model; its deployment in an industrial environment 
comes next. This can be accomplished in a few ways, though 
they are outside the purview of this study: By integrating the 
model with already-existing software or systems; by 
establishing infrastructure to support the model; by making 
sure the model can process incoming data in real time; or by 
creating a mobile or web application specifically for the 
model. Creating the User Interface (UI) as well, so that people 
can communicate with the model. A simple web application 
was developed to demonstrate the models capability using 
flask API and a user interface with HTML. The homepage of 
the web app is shown in Figure 10.

Figure 10: Comparison of predicted and actual IFT values of 
the GBDT model.

CONCLUSIONS
The objective of this work was to use surfactant properties 
together with their crude oil/brine IFT data to create widely 
applicable, affordable, and accurate models for predicting 
crude oil-brine IFT. For this, "Gradient Boosting Decision Tree 
(GBDT)" and "Adaptive Boosting-Support Vector Regression 
(AdaBoost SVR)" are two potent machine learning techniques. 
During the modeling phase, a database containing 300 data 
sets was used. Based on the inputs taken into consideration, 
two different types of models were created for both 
algorithms: The first model uses six inputs (CMC, MPP, SR, 
HLB, Density, and Molecular Weight), while the second model 
uses four inputs (all of the above except for Density and

Molecular Weight). As previously indicated, four models were
created using the AdaBoost algorithms, the GBDT, and the
available data set. The definitions of these models are
provided in section 3. The GBDT model-2 results allow for the
drawing of the following conclusions:

• Surfactant properties data with their corresponding
experimental crude oil/brine IFT values is effective in
modelling a machine learning program to predict IFT
values with the surfactant variables as input parameters
for the trained model.

• Four different models (two for each algorithm) were
proposed to predict the IFT of crude oil-brine system
among which GBDT model-2 with six inputs was found to
be the best model. The developed GBDT model-2 can
predict the IFT with high level of precision (the overall
AARD% of this model is 1.32%; R2 of 99.41% and RMSE of
0.103).

• The comparison between the outcomes of the GBDT
models and those of preexisting correlations further
confirmed the superiority of the algorithms as previously
shown in works by Amar et al and Seddon et al.
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