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ABSTRACT

The expression for the equations of motion for a particle in Cartesian cylindrical and spherical coordinates and
their applications in mechanics are well known. It is however, now well known that the planets, the sun and all
rotating astronomical bodies are more precisely Spheroidal in geometry and the motions of test particles in them
require spheroidal coordinates. Consequently, in this paper we derive the expression for the equations of motion for
any test particle in oblate spheroidal coordinates to pave way for the corresponding extension of the well-known
mechanics of spherical bodies.
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INTRODUCTION

In Newtonian mechanics, the motion of particlexksas projectile, satellites and pendulli) in Earégitmosphere
are treated under the assumption that the Eadlpirfect sphere [10]. Similarly, in the solar eystthe motion of
bodies (such as planets, cornets and asteroid#jeated under the assumption that the sun isfagtesphere [2,9].
Also in Einstein’s theory, the motion of bodiesdBuas planets) and particles (such as photondjemted under the
assumption that the sun is a perfect sphere (Seheald's space-time). It is well known that thelyoneason for
these restrictions are mathematical conveniencesanglicity. The real fact of Nature is that altating planets,
stars, and galaxies in the universe are spher¢ij@j7]. It is obvious that their spheroidal geomewill have
corresponding consequences and effects in the mofiall particles in their gravitational field. &se effects will
exist in both Newtonian mechanics and in Einstethisory. Consequently, we hereby prepare the wayhe
solution of the equation of motions of spheroidatlies by deriving the equations of motion for oblaphroidal
bodies.

Mathematical Formulations
Consider a homogenous oblate spheroidal body daf mes34,.Let S be the reference frame whose origin O
coincides with the centre of the body as showngri fbelow
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Fig.1 Oblate spheroid
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Then the oblate spheroidal coordinatgs (¢) are defined in terms of the Cartesiany, z) by [1,4]:

x=a(l— nz)%(l + 52)%c059 1)
y = a(1 - 72)i(1 + §2ising (2)
z =ané (3)

where a is a constant and
0<é<0,-1<n<1,0<¢p<2m 4)

Also in the spheroidal coordinates, the surfacthefspheroid is given by:

§=% ®)
where &, is a constant

Now if the body is homogeneous, its dengityis given by:

p=po; €< ) (6
Py =0;¢>¢ ) (7

wherep, is the constant density of rest mass. It is wetwn that the Newton’s gravitational field equation the
gravitational scalar potential F due to a distiidmutof mass density is given by:

V2F = 4ntGp (8)
where G is the universal gravitational constanfollows from the explicit expression for the Lagiln operator in

oblate spheroidal coordinates that the interior axigrior gravitational scalar potentigl} and f~ respectively,
satisfy the equation.

— |5l S P P
a2p2.e2) [an [(1 %) ]+ r CRER) E] a nz)(1+§2)r®2]p &)
= 4nGp, o
and
+§ a -
aZ[n2+§2] 67] [( - 2) _] *ta o0& [(1 + EZ 6{] (IZZ)WTQZ] (nf(p) =0 (10)

By the symmetry of the distribution of the mass wbthe polar axis, the potential will be indepertdehthe
azimuthal angle. Hence (9) and (10) becomes:

@ =) 2 @O)] + 52|+ € 20D = 4mGpoa? e, g2 (12)
And
Sla-ms o)+ A+ e o] =0 (12)

General complementary solution of (11) is given as:

fo@.9) = ) ARG + BOGDIGRM) + D) (13)

=0

We seek particular solution of (11) as:

frm®) =T(=n*+§*) (14)
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By using (14) in (11), we have:
T = Sa%Gpo (15)

Hence general solution of (11) and (12) are gidag

0

8§ = Z[Alpz(if) + BQ,GOICP M) + DQi(m)] + T(E* —n?) (16)

and =

Fr@,8) = Y THP=i) + LQGOTIKP () + M,Q, ()] (17
=0

where A;B,, C;, D;andH,, ], K;, M, are arbitrary constanandQ; are the two linearly independent Legendre
functions of orderl = 0,1,2,...  Now since the interior and exterior region botintain the Coordinatg = 0
which is a singularity of,;, we choose:

DlEMlEO;IZO,].,Z... (18)
in the general solutions of (16) and (17). Alsasifi = 0 is a singularity of;, we choose:

B,=0;1=0,1,2,.. (29)
Also, sinceP,; is not defined fof — « in the exterior region, we choose:

H=0;1=012,.. (20)

It follows that (16) and (17) becomes:

£ =D ARGOGP +TE)
=0

= D ARGORG) + TEn?) 1)

ani:izo

£ =) JQUOKP) = ) BQUEPG) 22)
1=0 1=0

whereA;and B,are arbitrary constant.

Consequently by the conditions of the continuitytbé potentials and their normal derivatives at §he &,
boundary of the spheroid, it follows that:

T{[ZQOEO -(&-3) % Qo(if)L:{ ]}
" [rE) e - e Era]
r[(s - Diren +2rae]

" [P00) £ 000 - 0o £ RaD)]

Al = Bl = 0 ° (25)
2 da ,

—35T [d—f Q; (lf)]g:go

" [0(@) L0 - PO - 0]
2((i9)) 3z P20 2(i8) 27 Q2 (0 -

(23)

(24)

(26)
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U AGI

A, = (27)
(@) 2P, - P

and

Consequently the final solutions are:

F*(m,8) = AgPoy(mPy (i) + AP, ()P, (i€) + T (% —n?) (29)

And

F*(,8) = BoPy(m) Qo (i&) + B, P,(11)Q,(i&) (30)

These are the Newtonian interior and exterior gaéieinal scalar potentials of the oblate spheraiderms of its
constant rest mass density, surface coordinatg and parameter a [5].

Newton’s equations of motion, in oblate spherowtardinate are defined as:
a =—=(VF)®,$ ¢) (31)
at =—(VFH[®,¢ ¢) (32)

And a is the instantaneous acceleration in terms oftelspheroidal coordinates as:

a = af+ afé + a¢¢3 (33)
where

2 2>

_am® +¢§%)2

o = {..+ 28 . n(1-¢%?) n(1—1n?)
K (1_,]2)% 7 (772"‘52)17

— =2
R R ety L Ay ey Yo M

n(1-nH1+¢%) .
T wr e } Gh
CaP e[, 2 . A+, ia-pd
T et -G mer ™ o
Q-1 +¢%) ,,

T oy ¢ } =

and
1 1(.. 2 , 2 ..
R B e et (36)
Also, the del or nebl&V| is expressed interm of oblate spheroidal cootdiaa:
A1-n?2 0  EQ+ED2 0
Z(U, ¢, ¢) = 1, 1537
a 4527 a2
+¢ Y G7)
al(1 - n?)(1 +§2)]2 9%
Then;
, a~(m) =2—(VF m ; )

) 28 . n1-¢§%) | nd-n) ., n@-n)10+<¢%) .
Tt T Ao e A et T iy ORI

=0 (38)
a (§)=—-(VF))(©)
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. ow ., a-ey F-nd) . Ed—D(1+E) |
Sttt Aoee)! Tarom e T ey AR
+ %A2(3n2 — DPI(i€) + 2T€ = 0 (39)
(@) = —(VF) (@)
- i+ s =0 (40)
at(n) = —-(VFH) ()
. 28 . n1—¢&%) . n1—n% L (A=) +EHP? .
ey LAl ety Tty L M s Wi Torany =) L A i) R UG
=0 (41)
And
g+(§) 2 2 2 2 2
I S (b o NP 1 ot o IR (e D R 0T
=~ (vF Xf)i* ) T Ao pm e Tarom e’ D)
+ B,Q3 (i) + EBZQ%(iS()(-?rIZ -1)
—0 (42)
And
(@) = —(VF*) (@)
¢ - (122)’7‘{’ + (122)5‘{’ =0 (43)

Equation (42) integrates exactly to yield
L

Pama-o i
Where L is a constant. It follows that (37),(38))4nd (41) becomes:
. 28 . n1-¢ ., nd-7H nlL?
ot Ao T Grmer e’ TrErea-ma+ e

+ 77(3A2P2 (i& —-2T)=0 (45)
T R o 7% o
R R e L B e O M G DR DR O R

+ §A2(3T]2 - 1)P21(if) + 2T¢

=0 (46)
And
. 28 . n1-¢ ., -7 nlL? .
eyt Ao e Grmr e’ TErea-mare S”BZQZ(“()( )

=0 47
I e R e o 2 .
e T Ao Tar e mrea-mas e el

1 1c; 2
+ EBzQz @)@n* -1
=0 (48)
This is the completion of the equation of motiofislolate speroidal coordinate system.

RESULTS AND DISCUSSION

In this paper we have derived the Newton’s equatiohmotion for the interior and exterior scalaagtational
potential in oblate spheroidal coordinates as (46),(47) and (48) respectively.

These equations (45) to (48) extend Newton's thedrglassical mechanics from the well-known splartmodies
to those of spheroidal bodies, and hence sphereffidts. Consequently, the door is now open ferttieoretical
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solution of these equations of motion of non-zexst masses in the gravitational fields of sphetdiddies such as;
the planets, comet, asteroids in the solar systehsatellites in earth orbits.

CONCLUSION

Finally, the work in this paper is an excellent d&stration of an application in gravitation thedoy orthogonal
curvilinear coordinate systems other than the uSaatesian, cylindrical, and spherical coordinates.
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