

Physiochemical properties of crystalline etch products for CR-39 track detector after α -particles irradiation

Hussain A. Al-Jobouri¹, Nasreen R. Jber², Abbas H. Al-Shukrawi² and Mazin K. Hamid¹

¹Department of Physics, College of Science, AL-Nahrain University, Baghdad, Iraq

²Department of Chemistry, College of Science, AL-Nahrain University, Baghdad, Iraq

ABSTRACT

The effect of α - particles from radiation source Am-241 with activity $1\mu\text{Ci}$ on the nuclear track detector - NTD type CR-39, dimensions $(28 \times 28 \times 1.2) \text{ mm}^3$ were measured. The measurements included the changes in physical and chemical properties for the solution of etch crystalline products for CR-39 after irradiation by α -particles irradiation at two periodic times 0.3 h and 23 h for low and high doses respectively. The changes in organic compounds for etch products were measured by using of FTIR - spectroscopy and transmission electron microscope - TEM. FTIR - spectroscopy shown there was decrease in the values of transmission percent ratios - Tr of wave numbers 1787 , 2800 , 839 and 1650 cm^{-1} relative to wave number 792 cm^{-1} respectively with increase of irradiation time of α -particles. The etch products after α -particles irradiation of CR-39 detectors were change to low molecular weight organ compounds as a results of degradation bonds and may be formed compounds 2.2-oxy diethanol and 2-propen as the reaction products. Also, shown from transmission electron microscope -TEM there was increase in the degradation amount of etching organic compounds with increase of irradiation time of α -particles. While the change in inorganic compounds for etch crystalline products after α -particles irradiation of CR-39 detectors were describe by using of polarized optical microscope - POM , which shown from its images there was broken in crystalline layers to small crystal with increase of irradiation time . The physiochemical properties which measured by FTIR spectroscopy and transmission electron microscope-TEM for organic etching products were better than the analysis of inorganic crystalline etching products by Polarized microscope-PM .

Keywords: CR-39, nuclear track detector-NTD, crystalline etch products, α - particles.

INTRODUCTION

CR-39 represent of one type of polymers which employed as a detectors in field of science and technology [1, 2 , 3] . one of these field was measurement the radiation effects for non-particle radiation as ionizing radiation[4] and particle radiation as ion beam , neutron and α -particle[5] , and so named since named nuclear track detector-NTD[6,7] . The main strength of these detectors is that the damage produced by the ionizing particle can be enlarged through chemical etching [8] . These enlarged tracks, and physical properties can be viewed under the optical microscope and fourier transform infrared spectroscopy – FTIR [9,10] .

Nuclear track detector – NTD type CR-39 is one of the trade names of the family of Poly Allyl Diglycol Carbonate – PADC etch track detectors. When it is etched in sodium hydroxide – NaOH solution , a variety of inorganic and organic compounds are formed as the reaction products , which also effect on the thickness of CR-39 [11, 12]. Many products were formed after CR-39 etched in NaOH solution as poly allyl alcohol , 2.2-oxy diethanol [13] , allyl alcohol , isopropyl alcohol , sodium carbonate , sodium bicarbonate , and CO_3^{2-} ions [14 , 15] as well as crystalline products as nahcolite (NaHCO_3) , natrite ($\text{Na}_2\text{CO}_3 \cdot 7\text{H}_2\text{O}$) , thermonatrite ($\text{Na}_2\text{CO}_3 \cdot \text{H}_2\text{O}$) , natron ($\text{Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O}$) and trona ($\text{Na}_2\text{CO}_3 \cdot \text{NaHCO}_3 \cdot 2\text{H}_2\text{O}$)[14]. When the physical and chemical products of crystalline etch products is changes with type of radiation damage. So, in the present work , we examined the

properties of crystalline etch products of CR-39 after irradiation with α - particles . The effect of α - radiation on CR-39 detector through their crystalline etch products was measured by analysis of organic compounds of these products from using of FTIR – spectroscopy [9] and transmission electron microscope –TEM [16] , when the analysis of inorganic compounds [17] of these products from using of polarized microscope.

MATERIALS AND METHODS

Three pieces sample of nuclear track detector-NTD type CR-39 was munched from Xuchang Tianhe Welding Products Co. , Ltd. Having dimensions (28 x 28 x 1.2) mm³ . Two pieces samples of CR-39 were irradiated by α -particle from Am-241 source with activity 1 μ Ci . One of these samples irradiated at 0.3 h (for low radiation dose) and another sample irradiated at 23h (for high radiation dose) . Third sample of CR-39 was un-irradiated as a control .

Three sample above were dissolved in 200 ml of 6:0 M sodium hydroxide - NaOH solution contained in a 300 ml Pyrex beaker . The beaker was placed in a water bath maintained at 70.2 - 70.3°C and shacked for 70 h to prepare a super-saturated solution of the etch products . The separation of organic compounds solutions for CR-39 during etching process for three sample above were sampled as EC , ER₁ and ER₂ for un-irradiated , 0.3 h α - irradiated and 23 h α - irradiated respectively .

EC , ER₁ and ER₂ were separated in pure forms by solvent extraction with 50 ml diethyl ether with the aid of 250 ml separating funnel for three steps , then the organic extracting evaporated at room temperature up to 2 ml concentrate sample , and the FTIR spectra in the range (4000 – 400) Cm⁻¹ were recorded using NaCl sandwich cell on FTIR instrument , model - 8000 Shimadzu spectrophotometer . Separation of organic compounds was also analysis by transmission electron microscope - TEM , Model - Philips CM10 with an optimal operating voltage of 200 keV , to show the images of organic compounds after irradiation comparing with un-irradiated samples . The separation of inorganic compounds for EC , ER₁ and ER₂ by splitting the aqueous layer samples and left this layer to evaporate at room temperature to grow the formed inorganic products for 2 months , different needle crystalline for each sample were separated manually upon a glass microscope for image analysis by polarized optical microscope – POM , model Meiji MT9000. The texture of the compounds were observed using polarized light with crossed polarizer , the sample being prepared as a thin film sandwiched between a glass slide and a cover slip . A camera –Lumenera was installed on the polarizing microscope.

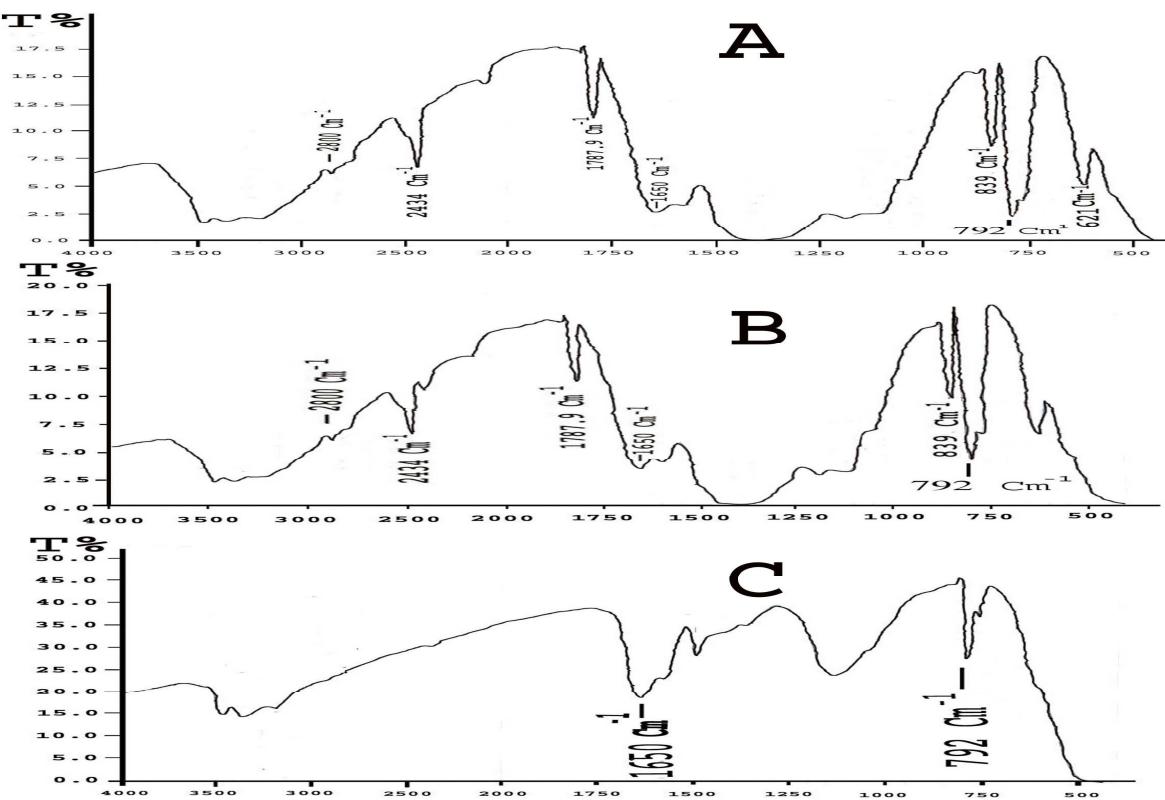

RESULTS AND DISCUSSION

Figure 1 shown the FTIR spectrum at the wave number rang 4000-400 Cm⁻¹ for chemical etching products of EC , ER₁ and ER₂ samples for un-irradiated , 0.3 h irradiated and 23 h irradiated of CR-39 respectively . The FTIR spectrum for EC sample , show the presence of band at 1787.9 Cm⁻¹ due to the stretching of carbonyl group of ester and band at 839 Cm⁻¹ for out of plane bending , these two band also appeared for ER₁ while this two bands disappeared for ER₂, which can attributed to the decomposition of compound ER₂ by the action of radiation and converted to another compounds (alcohol and ether) . Other bands like aliphatic C-H stretching at 2800 Cm⁻¹ and C = C stretching at 1650 Cm⁻¹ having small effect relative to wave numbers 1787.9 Cm⁻¹ and 839 Cm⁻¹ .

As we see from figures all the functional group decreases this due to as we said the decomposition of compound to lower molecular mass alkane during etching of CR-39, as shown in figure 2 .

The FTIR spectra show the appearance of OH stretching group for samples EC , ER₁ and ER₂ , because the reactant and the products contain hydroxyl group. Also from the spectra we have bands for carbonyl stretching at 1787.9 cm⁻¹ for sample EC and ER₁ and disappeared for sample ER₂ this can be explain as follows : sample EC contain two carbonyl groups, after radiation produce sample ER₁ which contain one carbonyl group, while sample ER₂ don't have carbonyl group as show in figure 2 .

Table 1 show the wave numbers and assignment for crystalline etch products for EC , ER₁ and ER₂ of CR-39 detector measured by FTIR spectroscopy , which shown the mains bonds still appear with increase of irradiation time at wave numbers 2800 , 1787 , 1650 , 839 Cm⁻¹ as well as to another wave numbers 3300 , 1402 , 1109 Cm⁻¹ .

Fig. 1 : Transmission percent –T% from FTIR – spectrum at wave number range 4000- 400 Cm⁻¹ for organic etching products of EC , ER₁ and ER₂ samples after α –particle irradiated of CR-39 detector respectively . A: un-irradiated , B: 0.3 h irradiated , C: 23 h irradiated

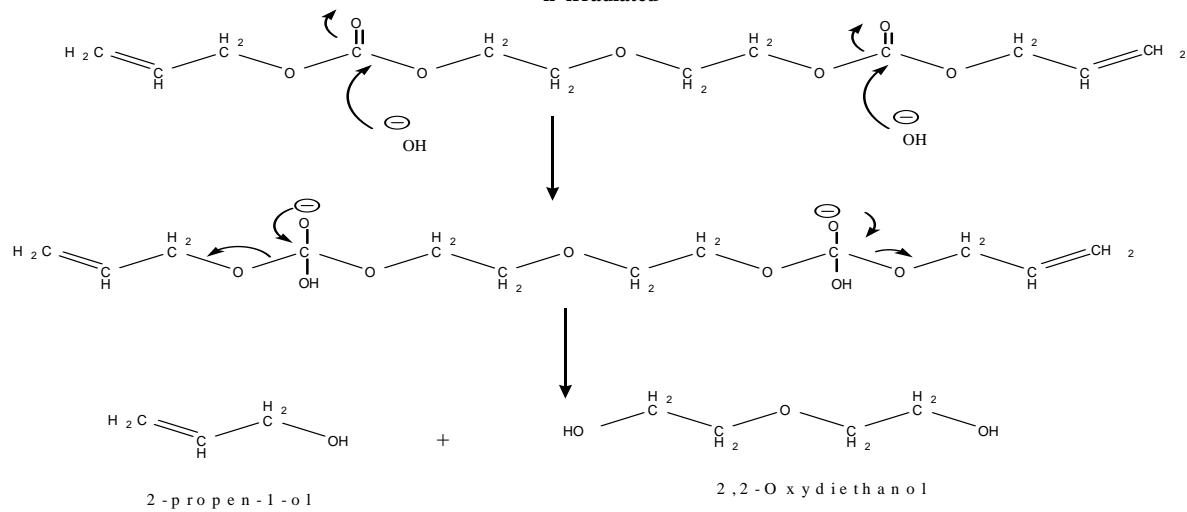
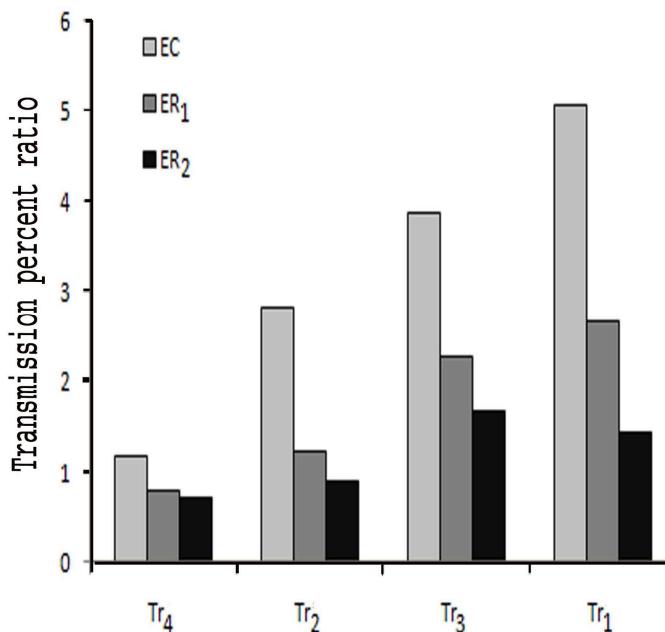


Fig. 2 : Scheme for the possible positions which are subjected to cleavage by the hydroxide ion [13].


Table 1 : Wave numbers – Cm⁻¹ and assignment crystalline etch products of for chemical etching products of CR-39 detector measured by FTIR spectroscopy as per Figure 1

ESC (Cm ⁻¹)	ESR ₁ (Cm ⁻¹)	ESR ₂ (Cm ⁻¹)	Assignment
3300 3193	~ 3300 3192	3348 3190	OH stretching C=C-H stretching
2800 2761	2800 2761	~ 2860 -----	Symmetric CH ₂ stretching Symmetric CH ₂ stretching
1787.9	1787.9	-----	C=O stretching
1650 -----	1650 -----	~ 1635 1577	C=C stretching of vinyl group OH bending
1402	1400	~ 1492 1367	C-H bending C-H bending
1109 1043	1109 1043	---- ~1134	C-O-C stretching C-O-C stretching
839 769	839 769	---- 794.6	C-H rocking out of plane C-H rocking out of plane

Figure 3 show the transmission ratio Tr of the wave numbers 1787 , 2800 , 839 and 1650 Cm⁻¹ relative to wave number 792 Cm⁻¹ for each samples of EC , ER₁ and ER₂ samples of CR-39 detector . Transmission ratios Tr of the wave numbers 1787 , 2800 , 839 and 1650 Cm⁻¹ named to Tr₁ , Tr₂ , Tr₃ and Tr₄ calculated by following equations respectively .

$$*Tr_1 = \frac{[T\%]_{1787}}{[T\%]_{792}}, \quad Tr_2 = \frac{[T\%]_{2800}}{[T\%]_{792}}, \quad Tr_3 = \frac{[T\%]_{839}}{[T\%]_{792}}, \quad Tr_4 = \frac{[T\%]_{1650}}{[T\%]_{792}} \quad (1)$$

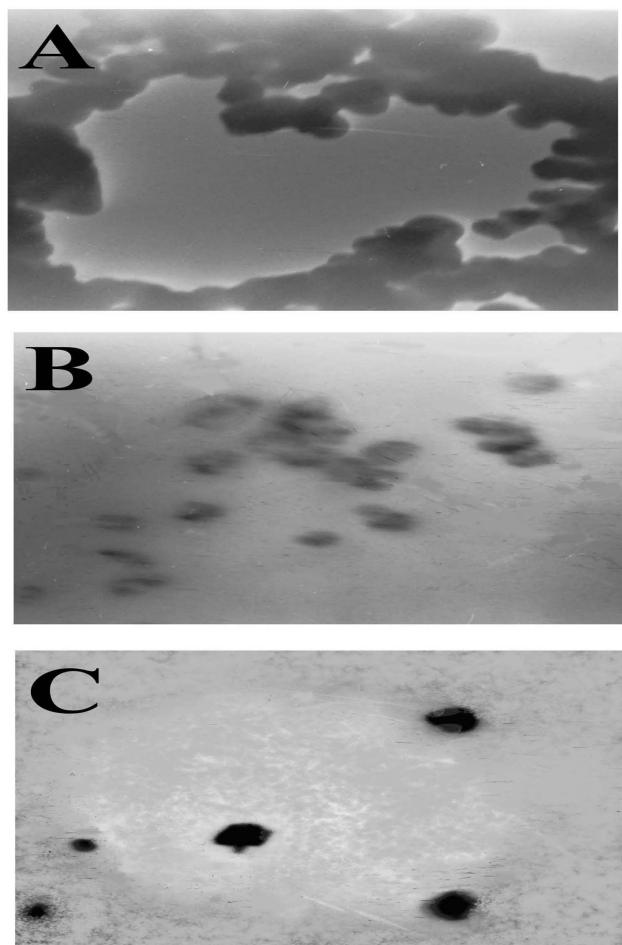

The values of Tr₁ , Tr₂ , Tr₃ and Tr₄ were dropping with increase of time of irradiation of α - particles as shown in fig. 3 .

Fig. 3 : Transmission percent ratios Tr₁, Tr₂, Tr₃, and Tr₄ (1) for wave numbers 1787 , 2800 , 839 and 1650 Cm⁻¹ relative to wave number 792 Cm⁻¹ respectively . EC , ER₁ and ER₂ samples to un-irradiated , 0.3 h irradiated and 23 h irradiated for α - particle irradiation of CR-39 detector respectively

Tr₁ and Tr₃ for C=O group stretching and C-H group rocking respectively were a good agreement for radiation response better than Tr₂ and Tr₄ for CH₂ group starching and C=C respectively , figure 3 .

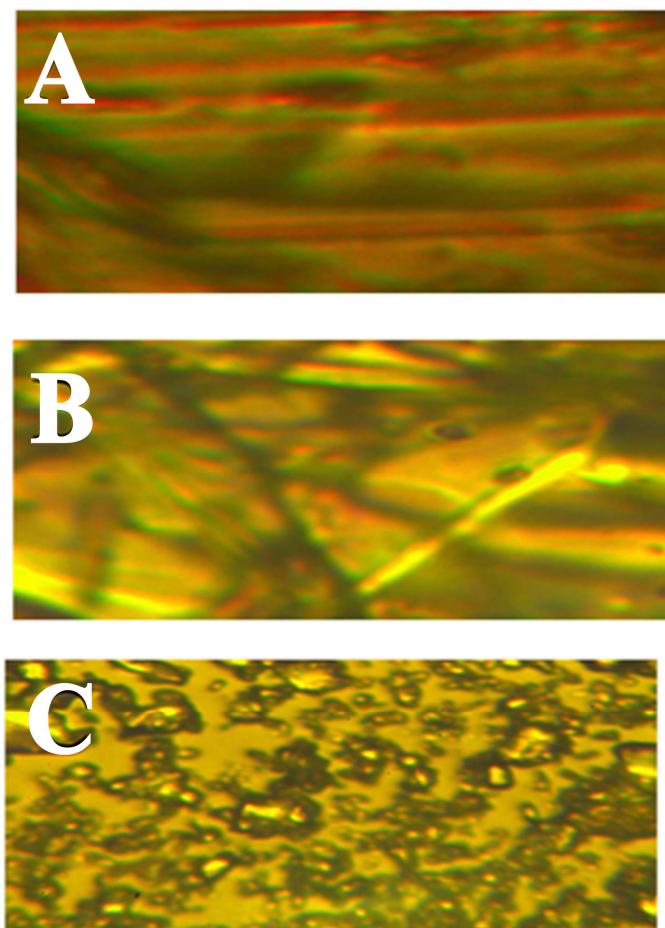

For high doses of α - radiation at time of irradiation more than 23 h represent degradation for all chemical etching products to low organic compound as appearing the stability of Tr₁ , Tr₂ , Tr₃ and Tr₄ after the irradiation time 23 h . And the degradation of organic compounds with increase of irradiation time was clear appearing in the images of transmission electron microscope - TEM as shown in figure 4 .

Fig. 4 : Transmission microscope -TEM* images for organic etching products of EC ,ER₁ and ER₂ samples after α - particle irradiated of CR-39 detector respectively . A: un-irradiated , B: 0.3 h irradiated , C: 23 h irradiated .
 * Transmission electron microscope -TEM model Philips CM10

The average diameter ranges of organic compounds which measured by TEM for sample B and C were 70-90 nm . The α -radiation effect below irradiation time 0.3 h , figure 4 may be assessment the radiation effect for low doses by measured of relative transmission percent Tr_1 and Tr_3 for 1789 and 1650 Cm^{-1} respectively equivalent to image analysis process by programming software for diameter ranges . The POM - analysis of inorganic compounds of chemical etching products were appear these compounds as layers at un-irradiated samples as shown in the image A for EC sample , figure 5 .

When α -irradiation at time 0.3 h for ER₁ sample the crystalline layers were broke to small crystal as shown in the image B for ER₁ sample . while α - irradiation at time 23 h these small crystal were degradation to vary small crystal as shown in image C for ER₂ . The degradation of small crystals in image C , Figure 5 also may be measured by image analysis process using programming software to produce good agreements which reflected the effect of α - radiation on CR-39 detector. From this study shown the properties of chemicals etching products after α -irradiation CR-39 detector with α - particles for 0.3 h and 23 h was change depended on the time of radiation , and these properties measured by FTIR spectroscopy and transmission electron microscope -TEM for organic etching products were better than the analysis of inorganic crystalline etching products by Polarized microscope - PM .

Fig. 5 : Polarized optical microscope – POM* images for inorganic crystalline etching products of EC , ER₁ and ER₂ samples after α -particle irradiated of CR-39 detector respectively . A: un-irradiated , B: 0.3 h irradiated , C: 23 h irradiated .

*Polarized optical microscope-POM , model - Meiji MT9000 .

CONCLUSION

The physiochemical properties which measured by FTIR spectroscopy and transmission electron microscope-TEM for organic etching products for CR-39 track detector after α - particles irradiation were better than the analysis of inorganic crystalline etching products by Polarized microscope-PM .

REFERENCES

- [1] Khan HA , Qureshi , IE. *Radiat Meas* , **1999** , 31, 25 .
- [2] Buford Price P. , **2005** , *Radiation Measurements* 40 , 146 .
- [3] Nada F. Tawfiq , Lamya T. Ali , Hussain A. Al-Jobouri , *J Radioanal Nucl Chem* , **2013** , 295, 671.
- [4] Renu Guptaa, V. Kumara , P.K. Goyala , Shyam Kumara , P. C. Kalsib and Sneh Lata Goyalc , *Advances in Applied Science Research* , **2011**, 2 (1): 248-254
- [5] A. M. Vatsa , R. Adamu , A. K. Abubakar , Y. I. Zakari and U. Sadiq , *Advances in Applied Science Research* , **2013**, 4(3) , 338-343
- [6] Huda R. Algaim, Rifat M. Dakhil and Isa J. Al-Khalifa , *Advances in Applied Science Research* , **2012**, 3 (2) , 950-961
- [7] Thaer. M. Salman and Muntadher. A. Qasim , *Advances in Applied Science Research* , **2013**, 4(1):105-112
- [8] Husaini SN , Khan EU , Khattak NU , Qureshi AA , Malik F, IE, Qureshi IE , Karim T , Khan HA , *Radiation Measurements* , **2002**, 35 , 3.
- [9] Chong CS, Ishak I , Mahat RH, Amin YM. , *Radiation Measurements* , **1997** , 28 , 19.
- [10] Hussain A. Al-Jobouri , Sulaiman JMA , SJ Ahamed , *Journal of Al-Nahrain University* , **2012** . 15 , (4) , 318.
- [11] Malik F , Khan EU, Qureshi IE, Husaini SN , Sajid M , Karim S, Jamil K. , *Radiation Measurements* , **2002** , 35 , 301 .
- [12] Mukhtar Ahmed Rana. , *Radiation Measurements* , **2012** , 47 , 50.

- [13] Bruice PY (2011) *Organic Chemistry* , 6th ed. , Prentice Hall P. 696.
- [14] Gruhn, TA , Li WK , Benton EV, Cassou RM , Johnson CS . *Proceedings of the Tenth International Conference on Solid State Nuclear Track Detectors*, Lyon , **1979** , 291.
- [15] Dethlefs J , Siegmon G, Enge W. *Nucl. Tracks Radiat Meas* , **1991** , 19 , 881.
- [16] Wielunski LS , Clissold RA , Yap E , McCulloch DG , McKenzie DR , Swain MV , *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* , **1997** , Volumes 127-128 , 698.
- [17] Stejny J, Portwood T. *International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements* , *Special Volume Solid State Nuclear Track Detectors* , **1986** , 12 , 121.