Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advances in Applied Science Research, 2011, 2 (4):156-165

Physicochemical and ion exchange studies of resin derived from phydroxybenzoic acid and phenylenediamine with formaldehyde

Dhanraj T. Masram ;*Kiran P. Kariya and Narayan S. Bhave

Department of Chemistry, University of Delhi, Delhi, India Department of Chemistry, VMV Commerce JMT Arts & JJP Science College, Nagpur, India Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India

ABSTRACT

A number of resins have been synthesized by reacting p-hydroxybenzoic acid with diamines and formaldehyde in presence of 2M HCl as catalyst, proved to be selective chelating ion-exchange resins for certain metals. The present paper reports the synthesis, characterization and ion exchange properties of a terpolymer. Chelation ion exchange properties have also been studied for Fe^{3+} , Cu^{2+} , Ni^{2+} , Co^{2+} , Zn^{2+} , Cd^{2+} , Pb^{2+} ions employing a batch equilibrium method. It was employed to study the selectivity of metal ion uptake involving the measurements of distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over wide pH range and in a media of various ionic strengths. The terpolymer showed higher selectivity for Fe^{3+} , Cu^{2+} and Ni^{2+} ions than for Co^{2+} , Zn^{2+} , Cd^{2+} , and Pb^{2+} ions. The resin pHPDF was synthesized by the condensation of p-hydroxybenzoic acid and phenylenediamine with formaldehyde in the presence of a hydrochloric acid catalyst. Terpolymer was characterized by elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and UV- Visible spectral studies. The number average molecular weight of the resin was determined by non-aqueous conductometric titration.

Key Words: Condensation, Chelation, Batch equilibrium, Metal ion uptake, Degree of polymerization.

INTRODUCTION

Ion exchangers are widely used in hydrometallurgy, antibiotic purification, analytical chemistry, separation of radioisotopes and also find large scale application in water treatment and pollution

control[1-4]. Terpolymers are found to exhibits better thermal and electrical properties than those of phenol-formaldehyde type copolymer. These terpolymers can be used as high energy materials, ion exchangers, semiconductors, bonding agent/additives, molding material, fungicides in plant and living tissues, biosensors and controlled release devices for pharmaceuticals [5-11]. Now a days renewed interest has been evidenced in the context of obtaining materials with high temperature resistance and ion exchangers. Patel and Lad [12] reported the novel terpolymers: poly (keto-amine-ureas) and studied the glass reinforcement of such terpolymer- epoxy systems. Michael and coworkers have reported the synthesis, structural and thermal degradation of a polymer derived from salicylic acid, guanidine and formaldehyde [13]. Synthesis, characterization and ion exchange properties of 4-hydroxyacetophenone, biuret and formaldehyde resin were studied by Gurnule and coworkers [14]. Ion exchange resin derived from semicarbazone and oximes of 2-hydroxy acetophenone-substituted benzoic acid formaldehyde studied by Nayak et.al.[15,16] The synthesis and characterization of 2, 4dihyroxyacetophenone with 1, 4-butanediolcopolymer and its ion exchange properties have been reported [17]. Chelation ion exchange resins derived from 2-hydroxy-4-methoxyacetophenone and thiourea with trioxane was investigated by Pancholi et. al.[18]. Parmar [19, 20] reported the ion exchange properties of resacetophenone (2, 4 dihydroxyAcetophenone) -formaldehyde and Resacetophenone oxime-formaldehyde resins. In our laboratory, extensive research work was carried out on synthesis and characterization of terpolymers and their ion exchange properties [4, 5, 21, 22]. However, the literature studies have revealed that no resin has been synthesized using the monomers p-hydroxybenzoic acid, phenylenediamine and formaldehyde. Therefore in the present communication we report synthesis, characterization and ion exchange properties of a pHPDF resin.

MATERIALS AND METHODS

2.1 Materials

All Chemicals were AR grade or chemically pure grade. p-hydroxybenzoicacid, phenylenediamine were purchased from Aldrich Chemical Co., USA while Formaldehyde from RANKEM, Ranbaxy, India. HPLC grade DMF and DMSO were used.

2.2 Instruments used

C, H and N were analyzed on Carlo Erber Elemental Analyzer Fourier Transform. Infrared spectra in the region 400-4000cm⁻¹ were recorded on a Perkin-Elmer with KBr pellets. The electronic spectrum of the terpolymer was recorded in dimethylformamide (DMF) at room temperature with a UV-240 Shimadzu double beam spectrophotometer. The NMR was scanned at 300MHz with dueterated dimethylsulfoxide (DMSO) solvent at SAIF, Chandigarh.

2.3 Synthesis of pHPDF Resin

2.3.1 Condensation of p-hydroxybenzoic acid,(pH) and Phenylenediamine (PD) with Formaldehyde (F)

A mixture of p-hydroxybenzoic acid (0.05mol), phenylenediamine (0.05mol), formaldehyde (0.05 mol) and 2M hydrochloric acid was taken in a round bottom flask fitted with water condenser and heated in an oil bath at 120^{0} C for 7 hours with occasional shaking. The temperature of electrically heated oil bath was controlled with the help of dimmerstat .The resinous solid product obtained was immediately removed from the flask as soon as the reaction

period was over and then purified. The resinous product so obtained was repeatedly washed with cold distilled water dried in air and powdered with the help of agated mortar and pestle. The powder was washed many times with hot water to remove unreacted monomers. The air-dried powder was extracted with diethyl ether and then petroleum ether was used to remove phydroxybenzoic acid phenylenediamine copolymer, which might be present along with pHPDF resin. It was further purified by dissolving in 8% sodium hydroxide solution, filtered and reprecipeted by gradual drop wise addition of 1:1 (v/v) hydrochloric acid with constant and rapid stirring to avoid lump formation [4, 5, 21, 22]. The resin so obtained was filtered, washed several times with hot water and dried (yield=14g; mp=274°C). Analytical data for C15H14N2O3•H2O as per numerical calculations and experimental evidences are mentioned below respectively. Theoretically calculated C=62.50%, N=5.32%, H=9.72%. Experimentally found C=62.54%, N=5.47%, H=9.31%.

n
$$+$$
 n H_2N $+$ 2n HCHO $+$ 120 0 C $+$ 2M HCl $+$ 2n HCHO $+$ 120 0 C $+$ 12

$$\begin{array}{c|c} OH & CH_2NH & NH \\ \hline H_2O & H_2O \\ \hline pHPDF Resin \\ \end{array}$$

Synthesis of pHPDF resin

2.4. Ion exchange properties

The purified pHPDF resin sample was finely powdered and used in all experiments carried out in the ion exchange study.

2.4.1 Determination of Metal ion uptake in the presence of Electrolytes of Different Concentration

25mg of the finely powdered resin was suspended in an electrolyte solution (25ml) of known concentration. The pH of the solution was adjusted to required value by using either 0.1M HNO₃ or 0.1M NaOH. The suspension was stirred for a period of 24 hours at room temperature. To this suspension 2ml of 0.1M solution of electrolyte was added and the pH was adjusted to the required value. The mixture was again stirred at 25°C for 24 hour and filtered. The polymer was washed and the filtrate and washings were combined and estimated for the metal ion content by titration against standard ethylenediaminetetraacetic acid. A blank experiment was also carried out in the same manner without adding the polymer sample to estimate the metal ion content. The amount of metal ion taken up by the terpolymer in the presence of given electrolyte of known concentration was determined from the difference between the blank reading and the reading in the actual experiment [4, 5, 21, 22]. The experiment was repeated in the presence

several electrolytes of known concentration with seven different metal ions such as Fe^{3+} , Cu^{2+} , Ni^{2+} , Co^{2+} , Zn^{2+} , Cd^{2+} , Pb^{2+} . The results with seven different metal ions are reported accordingly.

2.4.2. Evaluation of the Rate of Metal Uptake

In order to determine the time required to reach the state of to reach the state of equilibrium under given experimental conditions, series of experiments of the type described above were carried out, in which the metal ion uptake by the chelating resins was estimated from time to time at room temperature at 25°C. It was assumed that under given conditions, the state of equilibrium is established in the 24 hrs. The rate of metal ion uptake is expressed as percentage of the amount of metal ions taken up after a certain time related to that in state of equilibrium [4, 5, 21, 22].

2.4.3. Evaluation of distribution of metal ions at different pH values

The distribution of each of the metal ions Fe³⁺, Cu²⁺, Ni²⁺, Co²⁺, Zn²⁺, Cd²⁺, Pb²⁺ between the resin phase and aqueous phase was estimated at 25°C using 1M NaNO₃ solution. The experiments were carried out as described above at different pH values.

The distribution ratio "D" was determined by the following equation [4, 5, 21, 22, 35]:

$$D = \frac{\text{Weight of metal ions taken up by 1g of resin}}{\text{Weight of metal ions present in 1ml of solution}}$$

The results are presented accordingly.

RESULTS AND DISCUSSION

The terpolymer resin was soluble in DMF and DMSO; however it is insoluble in common organic solvents. The composition of the polymeric unit was assigned on the basis of a detailed study of the elemental analysis of the polymer, ultraviolet-visible (UV-Visible), IR and NMR spectral studies.

3.1. Characterization of Resin

3.1.1. Determination of molecular weight by conductometric titration

Molecular weight (M_n) of the terpolymer was determined by non-aqueous conductometric titration in DMF against ethanolic KOH by using 50mg of sample. A plot (Fig.1) of the specific conductance against the milieqvivalents of potassium hydroxiderequired for neutralization of 100g of terpolymer was made. Inspection of such a plot revealed the breaks in the plot. The first break at 180 miliequivalent of base and the last break at 2520 miliequivalent of base were noted. The calculations of (M_n) by this method is based on the following considerations [4, 5, 21, 22]: (1) the first break corresponds to neutralization by the more acidic phenolic hydroxy group of all the repeating units; (2) The break in the plot beyond which a continuous increase is observed represents the stage at which phenolic hydroxy group of all the repeating units are neutralized. On the basis of the average degree of polymerization (DP) is given by the following relation.

$$DP = \frac{\text{Total meq of base required for complete neutralization}}{\text{for a position of the property of the pr$$

meq of base required for smallest interval

The average degree of polymerization (DP), which is given by the following relation, is found to be 14 and the number average molecular weight (M_n) is 4032 as obtained by multiplying the DP by the formula weight of the repeating unit. [4, 5, 21, 22,35]

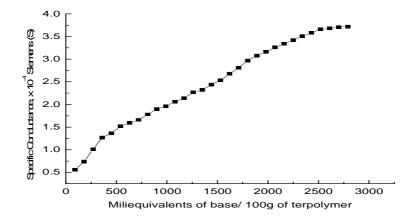


Fig.1: Conductometric titration curve of pHPDF Resin

3.1.2. UV-Visible studies

The electronic spectrum of the pHPDF resin is shown in fig.2. The spectra depicted two characteristic bands in the region of 280 nm and 340nm. The band at 280 nm indicate the presence of a carbonyl (>C=O) group containing a carbon oxygen double bond in conjugation with an aromatic nucleus and can be accounted for $\pi \rightarrow \pi^*$ transition while the latter band (less intense) may be due to $n \rightarrow \pi^*$ electronic transition. The additional shift of absorption to the longer wavelength region i.e. bathochromic shift from the basic value (237nm and 320nm, respectively) may be due to conjugation effect and presence of phenolic hydroxy group (auxochrome) is responsible for hyperchromic effect i.e. higher ϵ_{max} value [4, 5, 21, 22, 35]

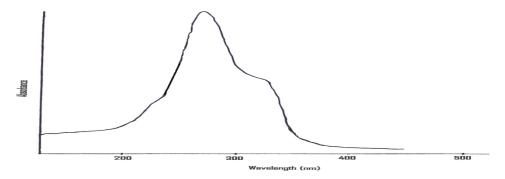


Fig.2: Electronic spectrum of pHPDF Resin

3.1.3 Infra Red Studies

IR spectrum of the newly synthesized pHPDF resin is presented in fig.3 The assignment of vibrational frequencies are mainly based on the data available in the literature. A broad band appeared at 33960cm⁻¹ might be due to the stretching vibrations of phenolic hydroxyl group

exhibiting intermolecular hydrogen bonding which exists between -OH group of different polymer chains [4, 5, 21, 22]. The band observed at 3000 cm⁻¹ may be due to the stretching vibrations of –NH (imide) [4, 5, 21-26]. The inflections around 1449cm⁻¹, 1290cm⁻¹ and 769cm⁻¹ suggest the presence of bending, wagging, rocking vibrations of methylene (-CH₂-) bridges in polymeric chains [21-26,]. The sharp band at 1660cm⁻¹ may be due to the stretching vibrations of >C=O [21-26]. The bands obtained at 1449cm⁻¹, 765 and 691cm⁻¹ may be assigned to –NH-bending, wagging and deformation out of plane vibrations in terpolymer resin respectively[4, 5, 21, 22]. The band at 1350 cm⁻¹ may be ascribed to phenolic >C-O stretching modes of vibration [21-29]. The band at 950,1029and1142cm⁻¹suggests that the aromatic ring is 1, 2, 3, 5- tetra substituted [21-29]. This fact is further supported by the presence of band at 849 cm⁻¹ for tetra-substituted benzene ring [21-26, 35].

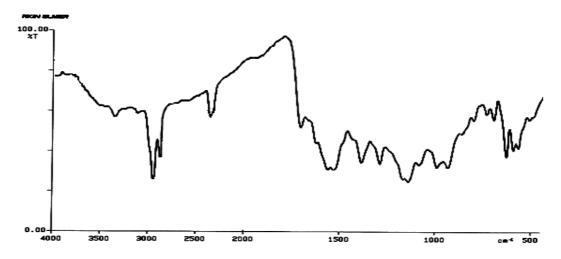


Fig.3: Infrared spectra of pHPDF Resin

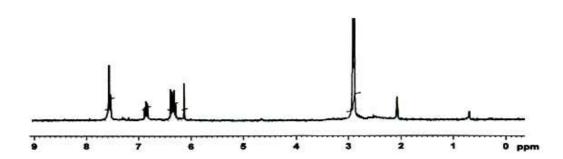


Fig.4: NMR spectra of pHPDF Resin.

3.1.4. NMR studies

The NMR spectrum of the pHPDF terpolymer is shown in fig. 4 and exhibited signal in the region of 7.62 δ (ppm), which may be due to the protons of the aromatic ring (Ar-H), and the signal in the region 7.70 δ (ppm) can be assigned to the phenolic-OH proton in hydrogen bonding (Ar-OH) [4, 5, 21,22,29,31]. The signal displayed at 7.59 δ (ppm) may be due to the carboxylic proton of Ar-COOH [29]. The presence of a broad signal around 6.53 δ (ppm) is

attributed to the presence of –NH bridge [4, 5, 21, 22, 29,35]. A methylene proton Ar-CH₂-N moiety was inferred by the appearance of a weak singlet signal at 2.92 δ (ppm) [29, 31].

3.2. Ion-exchanging properties

To ascertain the selectivity of pHPDF, we have studied the influence of various electrolytes, the rate of metal uptake and the distribution of metal ions between the resin and solution. The results of the batch equilibrium study carried out with resin sample pHPDF are presented in tables 3, 4 and 5.

Table 1: Evaluation of the effect of different electrolytes on the uptake of several metal ions of pHPDF Resin

Metal ion	Electrolyte Conc. (mole/lit)	Weight of metal ion (mg) taken up in presence of				
Metal Ion		NaNO ₃	NaCl	Na ₂ SO ₄		
	0.01	1.25	1.06	2.23		
	0.05	2.55	1.34	1.94		
Fe ³⁺	0.1	2.81	1.65	1.62		
	0.5	2.04	1.96	1.31		
	1	2.34	2.29	1.07		
	0.01	0.63	0.61	1.48		
2.	0.05	0.85	0.8	1.38		
Cu^{2+}	0.1	1.13	1.05	1.1		
	0.5	1.39	1.31	0.8		
	1	1.67	1.52	0.62		
	0.01	1.16	1.1	1.86		
	0.05	1.35	1.25	1.57		
Ni ²⁺	0.1	1.59	1.5	1.37		
	0.5	1.84	1.73	1.24		
	1	2.06	1.96	1.06		
	0.01	1.86	1.77	1.68		
	0.05	1.81	1.71	1.59		
Co^{2+}	0.1	1.67	1.61	1.48		
	0.5	1.50	1.37	1.37		
	1	1.51	1.28	1.21		
	0.01	1.36	1.58	1.46		
	0.05	1.65	1.42	1.26		
Zn^{2+}	0.1	1.49	1.23	1.2		
	0.5	1.32	1.08	1.03		
	1	0.69	1.66	1.67		
	0.01	1.19	1.51	1.37		
	0.05	1.73	1.26	1.14		
Cd^{2+}	0.1	1.56	1.12	1.07		
	0.5	1.41	0.89	0.8		
	1	1.2	1.15	1.13		
	0.01	1.29	1.07	1.05		
	0.05	1.17	0.95	0.89		
Pb^{2+}	0.1	1.05	0.83	0.75		
	0.5	0.91	0.68	0.63		
	1	0.76	1.58	1.46		

 $[M^+(NO_3)_2]=0.1\ mol/l,\ Volume=2ml,NaNO_3=0.1mol/l,\ Volume\ of\ electrolyte\ solution=25ml,\ time=24hr\ (equilibrium\ state),\ room\ temperature.$

3.2.1. Effect of Electrolyte on Metal Uptake

The data presented in table 1 reveals that the amount of metal ions taken up for a given amount of resin sample depends on the nature and concentration of electrolyte present in the solution. In presence of chloride and nitrate ions, the amount of Cu²⁺, Fe³⁺ and Ni²⁺ ions taken up by the terpolymer sample increases while in presence of sulphate ions the amount of above mentioned ions taken up by the resin samples decreases with increasing concentration of electrolyte. Moreover, The amount of Co²⁺, Zn²⁺, Cd²⁺ and Pb²⁺ ions taken up by the terpolymer samples decreases with increasing concentration of the chloride, nitrate and sulphate ions. This may be explained on the basis of stability constant of the complexes with Fe³⁺, Cu²⁺, Ni²⁺ Co²⁺, Zn²⁺, Cd²⁺, and Pb²⁺ metal cations [4,5,21,22,32,33,35].

3.2.2. Rates of metal uptake

The rates of metal adsorption by the terpolymer was measured for Fe³⁺, Cu²⁺, Ni²⁺ Co²⁺, Zn²⁺, Cd²⁺ and Pb²⁺ ions, in order to know the equilibrium time required. The term "rates" refers merely change in the concentration of metal ion in the aqueous solution, which is in contact with given terpolymer. The experimental results which are given in table 4, shows that the time taken for the uptake of the metal ions at a given stage depends on the nature of the metal ion under the given conditions. As the size of the metal ion increases time taken for the uptake metal ion also increases. The experimental results indicate that Fe³⁺ ions required less time of 4 hours for the establishment of equilibrium. Cu²⁺, Ni²⁺, Co²⁺, Zn²⁺, ion required 5 hours while Cd²⁺ and Pb²⁺ ions required about 6 hour reaching for the establishment of equilibrium. It is further revealed

that the rates of metal ion uptake follow the order: Fe³⁺ > Cu ²⁺~ Ni²⁺ ~ Co²⁺ ~ Zn²⁺ > Cd²⁺ ~ Pb²⁺ for the terpolymer [4, 5, 21, 22, 32-35].

Percentage of the metal ion uptake at different times (h) Metal ions 0.5 Fe³⁺ Cu^{2+} Ni²⁺ $\mathrm{Co}^{2^{+}}$ Zn^{2+} Cd^{2+} Ph^{2+}

Table 2.: Comparison of the rates of metal ion uptake of pHPDF terpolymer

 $[M^+(NO_3)_2] = 0.1 \ mol/\overline{l}, \ Volume = 2ml, NaNO_3 = 0.1 mol/\overline{l}, \ Volume \ of \ electrolyte \ solution = 25ml, \ time = 24hr \ (equilibrium \ state), \ room \ temperature.$

Metal ion uptake = $\frac{\text{Amount of metal ion absorbed} \times 100}{\text{Amount of metal ion at equilibrim}}$

3.2.3. Evaluation of distribution coefficient of the metal ions over wide pH range

The results of the effect of pH on the amount of metal ion distributed between two phases are incorporated in table 3. Examination of the data indicates that the relative amount of metal ions taken up by the resin samples at equilibrium increases with increasing pH of the

medium^{3,40,42,43,45}. The study was carried out only up to pH=6.5 in order to prevent hydrolysis of the metal ions at higher pH.

Perusal of data given in table 5 the selectivity of resin samples for Fe³⁺is higher than that of other metal ions .The lower distribution ratio of Fe³⁺ due to sterric hindrance imposed by polymer matrix [4,5,21,22,32-35]. Among the other metal ions Cu^{2+} and Ni^{2+} ions are taken up more selectively by resin. The other metal ions Co^{2+} , Zn^{2+} , Cd^{2+} and Pb^{2+} have distribution ratio, 'D' over the pH range of 4 to 6.5. This could be attributed to the low stability constant i.e. the weak ligand stabilization energy of the metal complexes ^{46, 47}. The possible order of selectivity of a cation-exchange resin for divalent metal ions is ⁴⁸: Pd>Cu>Ni>Co>Zn>Cd>Fe>Mn>Mg. Comparison of the values of distribution coefficients of a given metal ion for all the four molar ratio of resin reveals that there is no much difference in the values. Thus in the present study the observed order of distribution ratio of metal ions measured in the range of 1.5to 6.5pH was found to be Fe³⁺ > Cu ²⁺ > Ni²⁺ > Co²⁺ > Zn²⁺ > Cd²⁺ > Pb²⁺. Earlier workers have also suggested this order of selectivity for a salicylic acid containing polymer.

Table 3. : Distribution ra	ntio D of the m	netal ion as a	function of t	he pH of pHPDF	Resin.
	D: : !! .!		. 1	c	

Metal ion	Distribution ratio of the metal ion at different pH								
	1.5	2	2.5	3	4	4.5	5	6	6.5
Fe ³⁺	135.1	237.6	432.1	-	-	-	-	-	-
Cu^{2+}	-		-	71.2	121.3	345.6	980.2	1234.5	1467.3
Ni^{2+}	-	-	-	54.4	101.5	289.1	745.3	1031.5	1219.5
Co^{2+}		-	-	45.1	66.2	83.6	185.4	248.3	355.6
Zn^{2+}	-	-	-	33.4	52.3	75.6	127.1	193.1	307.5
Cd^{2+}	-	-	-	28.2	42.1	63.2	118.4	161.4	265.1
Pb^{2+}	-	-	-	23.6	39.2	61.2	103.9	124.1	224.5

 $[M^+(NO_3)_2] = \overline{0.1\ mol/l,\ Volume = 2ml\ ,\ NaNO_3 = 0.1 mol/l, Volume\ of\ electrolyte\ solution = 25ml,\ time = 24hr\ (equilibrium\ state),} \\ room\ temperature.$

$$^{a}D = \frac{Amount\ of\ metal\ ion\ on\ resin}{Amount\ of\ metal\ ion\ in\ solution} \times \frac{Volume\ of\ solution\ (ml)}{Weight\ of\ resin\ (g)}$$

CONCLUSION

- 1. It is selective chelating ion-exchange resin for Fe³⁺, Cu²⁺, Ni²⁺, Co²⁺, Zn²⁺, Cd²⁺ and Pb²⁺ metal ions.
- 2. These resin showed a higher selectivity for Fe^{3+} , Cu^{2+} and Ni^{2+} ions as compared to Zn^{2+} , Cd^{2+} and Pb^{2+} ions.
- 3. These polymer showed higher selectivity for Fe³⁺ at pH 2.5 as compared to other metal ions.
- 4. The results of ion exchange study are helpful in selecting the optimum pH for a selective uptake of a particular metal ion from a mixture of a different metal ion.
- 5. Thus resin can be useful in water treatment and pollution control.

Acknowledgement

The authors are thankful to the Head of the Department of Chemistry Rashtrasant Tukadoji Maharaj Nagpur University Nagpur for providing necessary facilities.

.....

REFERENCES

- [1] R.Kunin,; Ion exchange resin, 3rd Edition, Wiley New York, **1958**.
- [2] U.K. Samal,; P.L.Nayak,; S. Lenka,; J. Appl. Polym.Sci.; 1993,47,1315.
- [3] Zagorodni, A.; Ion exchange Materials, properties and Applications, Elsevier, Amsterdam, **2006**.
- [4] D.T.Masram, K.P. Kariya, N.S.Bhave; *epolymers*; **2007**, 75, 1618-7229.
- [5] W. B.Gurnule,; H.D.J uneja,; L.J. Paliwal; React. Funct. Polym; 2001,50, 95.
- [6] A.P.Das; S.Lenka; P.L.Nayak; J. Appl. Polym. Sci.; 1987, 34, 2139.
- [7] W. B.Gurnule,; H.D.Juneja,; L.J.Paliwal; React. Funct. Polym.; 2002, 50, 95-100,.
- [8] 8. G.Yu; J.Zhongguo, 4(6) 1-5, 8(1995) (Ch). C.A. 124, 233746S (1996)
- [9] 9. Nakam; Shinichi ; Jpn kokai, Tikkyo koho JP 08, 143, 750 996,143750) (Ci. C08L61/04) 4 Jun 1996. C.A. **1996**,125, 116385h.
- [10] 10. B.Zinger; J. Electronal. Chem.; 1988,244, 115.
- [11] 11. Y.Trivedi; K.P. Kariya; N.S.Bhave; *Macromolecules*; **2007**,3, 71-75.
- [12] H.S.Patel; M. J. Lad; High Performance Polym. 1996, 8, 225-231.
- [13] P.Michael; P.Lingala; H Juneja,; L.Paliwal; J. Appl. polym. Sci.; 2004, 92, 2278.
- [14] W. B.Gurnule; H.D.Juneja,; L.J.Paliwal; *React. Funct. Polym.*; **2003**,55, 255-265.
- [15] 16. T. K.Bastia; S. Lenka; P. L. Nayak; J. Appl. Polym. Sci.; 1992, 46, 739-744.
- [16] 17. U. K.Samal; P. L.Nayak; S.Lenka, ; J. Appl. Polym. Sci.; 1993, 47, 1315 1317.
- [17] H.B.Pancholi; M.M.Patel; M.R.Patel; High Perform. Polym.; 1991,3 (4), 257.
- [18] J.S.Parmar; M.M Patel; M.R. Patel; Angew .Makromol.Sci. Chem.; 1981,105, 11.
- [19] J.S.Parmar; M.M Patel; M.R Patel; Angew. Makromol. Sci. Chem.; 1982,105, 75.
- [20] M.Jadhao; L.J.Paliwal; N. S.Bhave; J. Appl. Polym.Sci.; 2005, 96, 1605-1610.
- [21] M.Jadhao; L.J.Paliwal; N. S. Bhave,; Desalination 2009, 247, 1-3, 456-465.
- [22] H.Dudley; I.Fleming,; Spectroscopic methods in Organic Chemistry, McGraw-Hill, UK, 1975.
- [23] R.M.Silverstein; G.C. Bassler; Spectrometric Identification of Organic Compounds, 2nd Edition, Willy: New York, **1967.**
- [24] W. Kemp; Organic Spectroscopy; the Macmillan Press, Hong Kong Press, 1975.
- [25] H.H. Willard; L.I. Merrit,; J.A. Dean; F.A.Seattle; Jr. Instrumental Methods of Analysis; CBS: New Delhi, **1986.**
- [26] P.S. Kalsi; Spectroscopy of Organic Compounds, 2nd ed. New Age International: New Delhi, **1995.**
- [27] I.J. Ballemy; The IR Spectra of Complex Molecules, Methuen and Wiley NewYork, 1956.
- [28] J.R. Dyer; Application of Absorption Spectroscopy of Organic and biological Chemistry; MIR: Moscow, **1975**.
- [29] A.I.Vogel; Textbook of Practical Organic Chemistry; Longman Scientific and Technical, UK, 1989.
- [30] D.T.Masram, K.P.Kariya, N.S. Bhave; Applied Science Segment, Segment Journals, APS **2010**, 1513 Vol 1, 1513.
- [31] R.M.Joshi; M.M Patel; J. Makcromol Chem. 1983, 19, 705.
- [32] R.Manavalan; M.M.Patel; *Makromol. Sci. Chem.*; **1983**,184, 717.
- [33] H.B.Pancholi; M.M.Patel; M.R.Patel; React. Polym.; 1992,17, 353.
- [34] D.T.Masram, K.P.Kariya, N.S. Bhave; *Journal of Applied Polymer Science*, **2010** 117, 1,315-321.