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ABSTRACT 
 
The aim of this problem is to study the peristaltic motion of a viscous conducting fluid through a 
porous medium in an asymmetric vertical channel by using Lubrication approach.  The 
expressions for velocity and pressure rise are obtained.  The effects of Darcy number, phase 
shipt and Hartmann number on flow characteristics are studied in detail. 
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INTRODUCTION 
 
The study of the mechanism of peristalsis in both mechanical and physiological situations has 
recently become the object of scientific research.  Several theoretical and experimental attempts 
have been made to understand peristaltic action in different situations. A review of much of the 
early literature is presented in an article by Jaffrin and Shapiro (5). A summary of most of the 
experimental and theoretical investigations reported with details of the geometry, fluid Reynolds 
number, wavelength parameter, wave amplitude parameter and wave shape has been studied by 
Srivastava and Srivastava (16). 
 
Flow through a porous medium has been studied by a number of workers employing Darcy’s law is 
given by A.E. Scheidegger (14).  Some studies about this point have been made by Varshney (18) 
and EL-Dave and EL-Mohendis (2). Elshehawey et al., (4) studied peristaltic motion of a generalized 
Newtonian fluid through a porous medium. Ramireddy et.al. (11) studied peristaltic transport of a 
conducting fluid in an inclined asymmetric channel.  Peristaltic motion of a generalized Newtonian 
fluid under the effect of a transverse magnetic field is studied by Elshehawey et al.,(3). Satyanarayana 
et a l(13) studied Hall current effect on magnetohydro dynamics Free-convection flow past a semi-infinite 
vertical porous plate with mass transfer.  Flow through a porous medium has been of considerable 
interest in recent years particularly among geophysical fluid dynamicists.  Examples of natural 
porous media are beach sand, standstone, limestone, rye bread, wood, the human lung, bileduct, 
gall bladder with stones and in small blood vessels. 
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The first study of peristaltic flow through a porous medium is presented by Elshehawey et al., 
(3).  The interaction of peristaltic flow with pulsatile fluid under the effect of a transverse 
magnetic field through a porous medium bounded by a two-dimensional channel is studied by 
Afifi and Gad (1).  Mekheimer and Arabi (8) studied the non-linear peristaltic transport of MHD 
flow through a porous medium.  Mekheimer (9) studied peristaltic flow of blood under effect of 
a magnetic field in non-uniform channels.  He observed that the pressure rise for a couple stress 
fluids (as a blood model) is greater than for a Newtonian fluid and is smaller for a 
magnetohydrodynamic fluid than for a fluid without an effect of a magnetic field.  Non-linear 
peristaltic transport through a porous medium in an inclined planar channel has been studied by 
Mekheimer (10) taking the gravity effect on pumping characteristics.  Peristaltic transport of a 
viscous fluid in an inclined asymmetric channel has been studied by Subba Reddy (17). Recently 
the effects of heat transfer on MHD unsteady free convection flow past an infinite/semi infinite 
vertical plate was analyzed by [6,7, 12, 15]. 
 
This paper deals with the effects of Darcy number, phase shipt and Hartmann number in the 
peristaltic motion of a viscous conducting fluid through a porous medium in an asymmetric 
vertical channel in the presence of magnetic field.. 
 
Mathematical formulation and Solution 
We consider the peristaltic transport of a viscous conducting fluid through an asymmetric 
channel with flexible walls and asymmetry being generated by the propagation of waves on the 
channel walls travelling with same speed c  but with different amplitudes and phases. We 
assume that a uniform magnetic field strength 0B  is applied in the transverse direction to the 

direction of the flow (i. e., along the direction of the y-axis) and the induced magnetic field is 
assumed to be negligible. Fig 1. shows the physical model of the asymmetric channel. 
The channel walls are given by 

1 1 1

2
( , ) cos ( )Y H X t a b X ct

π
λ

= = + −           (1a) 

2 2 2

2
( , ) cos ( )Y H X t a b X ct

π θ
λ

 = = − − − + 
 

      (1b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Physical Model 
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Where b1 , b2  are amplitudes of the waves, λ is the wavelength, 21 aa + is the width of the 

channel, θ is the phase difference (0≤θ≤π) and t is the time.  
 
 We introduce a wave frame of reference ( ),  x y moving with velocity c  in which the motion 

becomes independent of time when the channel length is an integral multiple of the wavelength 
and the pressure difference at the ends of the channel is a constant (Shapiro et al., (1969)). The 
transformation from the fixed frame of reference ( ),  X Y  to the wave frame of reference ( ),  x y  

is given by 
   -   ,    ,      - ,       x X c t y Y u U c v V= = = =  and  ( )  ( ,  ),p x P X t=  

where ( ),  u v and ( ),  U V  are the velocity components,  p   and  P   are pressures in the wave 

and fixed frames of reference, respectively. 
 
The equations governing the flow in wave frame of reference are given by  
 

0
u v

x y

∂ ∂+ =
∂ ∂

,         (2) 

2 2
2
02 2

,e

u u p u u
u v B u u

x y x x y k

µ µρ σ
ε
  ∂ ∂ ∂ ∂ ∂+ = − + + − −  ∂ ∂ ∂ ∂ ∂   

  (3) 

2 2

2 2
.

v v p v v
u v v

x y y x y k

µ µρ
ε
  ∂ ∂ ∂ ∂ ∂+ = − + + −  ∂ ∂ ∂ ∂ ∂   

    (4) 

 
Where eσ  is the electrical conductivity of the fluid, ε andk  are the porosity and permeability of 

the porous medium, ρ  is the density and µ  is the viscosity of the fluid. 
 
Introducing the following non-dimensional variables  

1 2

1 1

2
1 1 2 1 2

1 2 1 2
1 1 1 1

, , , , ,

, , , , .

x y u v a a
x y u v d

a c c a

pa H H b b
p h h

c a a a a

δ
λ δ λ

φ φ
µ λ

= = = = = =

= = = = =
        

 
in the governing equations (1-4), and dropping the bars, we get  
 

( )1 1 2 21 cos2 ,  cos 2h x h d xφ π φ π θ= + = − − +     (5) 

0
u v

x y

∂ ∂+ =
∂ ∂

,         (6) 

2 2
2 2

2 2

1 1
Re ,

u u p u u
u v M u u

x y x x y Da
δ δ

ε
  ∂ ∂ ∂ ∂ ∂+ = − + + − −  ∂ ∂ ∂ ∂ ∂   

  (7) 

2 2 2 2
3 2

2 2Re .
v v p v v

u v v
x y y x y Da

δ δδ δ
ε
  ∂ ∂ ∂ ∂ ∂+ = − + + −  ∂ ∂ ∂ ∂ ∂   

   (8) 
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where 1Re
a cρ
µ

=  is the Reynolds number, 
1

2

k
Da

a
=  is the Darcy number and 0 1

eM B a
σ
µ

=  is 

the Hartmann number. 
 
Using long wavelength (i.e., 1δ << ) and negligible inertia (i.e.,Re 0→ ) approximations, we 
have 

0
p

y

∂ =
∂

,             
2

2
2

u dp
N u

y dx

∂ − =
∂

.     (9) 

where 2 21
N M

Da
ε  = + 
 

. 

 
The corresponding non-dimensional boundary conditions are given as 

-1u =     at  1 2 and y h y h= =      (10) 

 
Solving equation (9) using the boundary conditions (10), we get  
 

2
1 2cosh sinh /

dp
u c Ny c Ny N

dx
= + −        (11) 

where 
[ ]

[ ]

2
2 1

1
1 2 2 1

1 / sinh sinh

cosh sinh cosh sinh

dp
N Nh Nh

dx
c

Nh Nh Nh Nh

 − + − 
 =

−
 and    

           
[ ]

[ ]

2
1 2

2
1 2 2 1

1 / cosh cosh

cosh sinh cosh sinh

dp
N Nh Nh

dx
c

Nh Nh Nh Nh

 − + − 
 =

−
. 

 
The volume flow rate in the wave frame is given as 

( ) ( )
( )

1

2

1 2
1 2 1 2

1 2
2

  sinh sinh cosh cosh

                                                                   .

h

h
q udy

c c
Nh Nh Nh Nh

M M
h hdp

dx N

=

= − + −

−
−

∫

           (12) 

 
From (12), we have 

( )
3 2

1 2

2 1 2 1

dp qN D D N

dx D h h ND

+=
− −

            (13) 

where  
 

1 1 2 2 1cosh sinh cosh sinhD Nh Nh Nh Nh= −                      and 

( ) ( )2 2

2 1 2 1 2cosh cosh sinh sinhD Nh Nh Nh Nh= − − − . 
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The instantaneous flux at any axial station is given by 
1

2
1 2( , ) ( 1)

h

h
Q x t u dy q h h= + = + −∫ .      (14) 

 
The average volume flow rate over one wave period (T= / cλ ) of the peristaltic wave is defined 
as  

1 20 0

1 1
( ) 1 .

T T
Q Qdt q h h dt q d

T T
= = + − = + +∫ ∫     (15) 

 
The pressure rise over one wave length of the peristaltic wave is given by 

 
( )

( )
( )

1 3 21
1 2

0
2 1 2 10

3 21
1 2

1 2
2 1 2 10

1
                    

dp qN D D N
p dx dx

dx D h h ND

Q d N D D N
QI I

D h h ND

+∆ = =
− −

− − +
= = +

− −

∫ ∫

∫

.   (16) 

 

where 
( )

1 3
1

1
2 1 2 10

N D
I dx

D h h ND
=

− −∫  and ( )
1 3 2

1 2
2

2 1 2 10

(1 )d N D D N
I dx

D h h ND

− + +=
− −∫ . 

 
The equation (4.16) can be rewritten as  

2

1

p I
Q

I

∆ −= .         (17) 

RESULTS AND DISCUSSION 
 

The variation of velocity u with y for different values of M with ,2.1,7.0 21 == φφ  d 
=2, 008.0,05.0,25.0,5.0 ===== θεδ andDax for 

(i)  1)(;0)(;5.0 ==−=
dx

dp
iii

dx

dp
ii

dx

dp
 as depicted in Fig 2.  It is observed that the maximum 

velocity U increases with the increase in Hartmann number M for all the three cases 
dx

dp
=- 0.5, 

dx

dp
= 0 and 

dx

dp
=1.  The similar behaviour observed for phase shipt 4/πθ = as shown in Fig 3. 

The Fig 4 shows the variation of velocity µ with λ for different values of Darcy number Da with 

φ1=0.7, φ2=1-2, d=2, n=0.5,x=0.25 ε=0.05, M=0.5 and θ=π/4 for (i) 0=
dx

dp
 and (ii) 2=

dx

dp
.  

It is observed that as the Darcy number Da decreases the maximum velocity increased. But when 
Da < 0.01, the change in maximum velocity is negligible.     
 

Using equation (17), we have plotted the variation of time-averaged volume flow rate Q  with 

pressure rise ∆p for different values of phase shipt  θ with φ1=0.7, φ2 =1.2, d=2, δ=1, ε=0.1 
M=0.5 and Da = 0.01.  The pumping increases as the phase shipt θ decreases, where as phase 
shipt θ increases.  The free pumping as well as co-pumping both increases is show in Fig 5.  
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Fig 2(i).The variation of velocity u  with y for 

different values of M with 0.5
dp

dx
= − . 
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Fig 2(ii).The variation of velocity u  with y for  

different values of M with 0
dp

dx
= . 

-2 -1 0 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

M = 2

M = 1

M = 0.5

y

u

 
Fig  2(iii).The variation of velocity u  with y for  

 different values of M with 1
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= . 
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Fig 3(i).The variation of velocity u  with y for 

different values of M with, 
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Fig  3(ii).The variation of velocity u  with y for  

different values of M with 0
dp

dx
= . 
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Fig 3(iii).The variation of velocity u  with y for 

 different values of M with, 2
dp

dx
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Fig 6 shows the variation of time-averaged volume flow rate Q  with pressure rise ∆p for 

different values of Hartmann number M with φ1=0.7,  
φ2 =1.2, d=2, δ=1, ε=0.1 θ=π/4 and Da-0.01.  As M increases the pumping is increases.   
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Fig 4(i). The variation of velocity u  with y for different values of   Da with 0
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= . 
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Fig  4(ii). The variation of velocity u  with y for different values of   Da with 2
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= . 
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Fig 5. The variation of time-averaged volume 

flow rateQ  with pressure rise p∆ for different 

values of phase shift θ  with 0.01Da = . 
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Fig 6.The variation of time-averaged volume 

flow rateQ  with pressure rise p∆ for different 

values of Hartmann number M  with 
0.01Da= . 
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