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ABSTRACT 
 
In this paper, the peristaltic transport in an inclined asymmetric channel with heat and mass transfer by Adomian 
decomposition method has been studied. The flow is examined in a wave frame of reference moving with the velocity 
of wave and the resulting equations have then been simplified using the assumptions of long wavelength and low 
Reynolds number approximation. The reduced equations have been solved numerically and the exact solutions have 
also been computed for velocity, temperature and concentration. The effects of various parameters of interest on 
these formulas were discussed and illustrated graphically through a set of graphs.  
 
Keywords: Adomian decomposition method, Peristaltic transport, friction force, heat and mass transfer 
_____________________________________________________________________________________________ 

 
INTRODUCTION 

 
Peristalsis is a mechanism of fluid transport that occurs widely in several physiological situations such as flow 
through ureter, mixing of food and chyme movement in the intestine, and circulation of blood in small blood vessels. 
There are also many other important applications of peristalsis such as the design of roller pumps and finger pumps 
which are used to transport blood or corrosive fluids. Peristaltic flow of non-Newtonian fluids in a tube was first 
studied by Raju and Devanathan [1]. Peristaltic transport of Newtonian fluids has been studied by Fung and Yih [2], 
Shapiro et al. [3], and Misra and Pandey [4] under different conditions. Effect of thickness of the porous material on 
the peristaltic pumping of a Jeffry fluid when the tube wall is provided with non- erodible  porous lining is made by 
Rathod and Channakote [5]. 
 
Peristaltic flow with heat and mass transfer has many applications in biomedical sciences and industry such as 
conduction in tissues, heat convection due to blood flow from the pores of tissues and radiation between 
environment and its surface, food processing and vasodilation. The processes of oxygenation and hemodialysis have 
also been visualized by considering peristaltic flows with heat transfer. Obviously there is a certain role of mass 
transfer in all these processes. Mass transfer is important phenomenon in diffusion process such as nutrients diffuse 
out from the blood to neighboring tissues. Mass transfer also occurs in many industrial processes like membrane 
separation process, reverse osmosis, distillation process, combustion process and diffusion of chemical impurities. 
Hayat et al., [6] studied the effect of heat transfer on peristaltic flow of an electrically conducting fluid in a porous 
space. Influence of heat transfer and slip on peristaltic transport is analyzed by Hayat et al., [7] Heat transfer 
analysis of peristaltic flow in a curved channel is analyzed by Ali et al., [8]. Vajravelu et. al., [9] studied the 
influence of heat transfer on peristaltic transport of Jeffrey fluid in a vertical porous stratum. A study of ureteral 
peristalsis in cylindrical tube through porous medium is made by Rathod and Channakote [10]. Rathod and Pallavi 
[11] studied the effect of slip condition and heat transfer on MHD peristaltic transport through a porous medium 
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with compliant wall. 
 
Srinivas and Pushparaj [12] have investigated the peristaltic transport of MHD flow of a viscous incompressible 
fluid in a two dimensional asymmetric inclined channel. However, the interaction of peristalsis and heat transfer has 
not received much attention, which may become highly relevant and significant in several industrial processes. Also, 
thermodynamic aspects of blood may become significant in processes like oxygenation and hemodialysis [13, 14, 
15, 16, 17] when blood is drawn out of the body. Slip effects and heat transfer on MHD peristaltic flow of Jeffrey 
fluid in an inclined channel is made by Rathod and Channakote [18]. The combined effects of magneto 
hydrodynamic and heat transfer on the peristaltic transport of viscous fluid in a channel with compliant walls have 
been discussed by Mekheimer et. al., [19, 20, 21].  
 
Nonlinear phenomena that appear in many areas of scientific fields such as solid state physics, plasma physics, fluid 
dynamics, mathematical biology and chemical kinetics can be modeled by partial differential equation. A broad 
class of analytical solutions methods and numerical solutions methods were used in handling these problems. The 
Adomian decomposition method has been proved to be effective and reliable for handling linear or nonlinear 
differential equations. Effects of magnetic field and wall slip conditions on the peristaltic transport of a Newtonian 
fluid in an asymmetric channel discussed by Ebaid [22]. Mahmoud et al. [23] have investigated the effect of porous 
medium and magnetic field on peristaltic transport of a Jeffrey fluid. Rathod and Laxmi  [24] have studied the slip 
effect on peristaltic transport of a conducting fluid through a porous medium in an asymmetric vertical channel by 
Adomian decomposition method. Wazwaz [25] obtained the numerical solution of special fourth-order boundary 
value problem by the modified Adomian decomposition method. Rathod and Laxmi  [26] have studied the effects of 
heat transfer on the peristaltic MHD flow of a Bingham fluid through a porous medium in a channel. 
 
In this paper peristaltic transport in an inclined asymmetric channel with heat and mass transfer by Adomian 
decomposition method is investigated under long wavelength and low Reynolds number assumptions. The 
expressions for velocity, temperature, and concentration are derived. The effect of Darcy number on the pumping 
characteristics is discussed. The effects of various emerging parameters on the flow, temperature, concentration 
distributions are discussed with the help of graphs.  
 
Formulation of the problem 
We consider the peristaltic transport of a viscous conducting fluid through an asymmetric channel with flexible 
walls and asymmetry being generated by the propagation of waves on the channel walls traveling with same speed c 

but with different amplitudes and phases. Uniform magnetic field of strength 0B  is applied in the transverse 

direction to the direction of the flow (i. e., along the direction of  y-axis) and the induced magnetic field is assumed 
to be negligible.   
 
The channel walls are given by 

Y = 1H  (X,t) = 1 1d a+ cos
2

( )X ct
π
λ

 − 
 

                                                                             (1) 

2 2 1

2
Y=H ( , ) cos ( )X t d b X ct

π φ
λ

 = − − − + 
 

                                                                      (2) 

 

1a , 1b  are amplitudes of the waves, λ is the wavelength, 1 2d d+  is the width of the Channel, φ  is the phase 

difference 0 φ π≤ ≤ and t  is the time. We introduce a wave frame of reference ( ),x y moving with velocity c  in 

which the motion becomes independent of time when the channel length is an integral multiple of the wavelength 
and the pressure difference at the ends of the channel is a constant (Shapiro et al., (1969)). The transformation from 

the fixed frame of reference ( ),X Y to the wave frame of reference ( ),x y is given by 

 
, , , ( ) ( , ),x X ct y Y u U c v V and p x P X t= − = = − = =  
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where ( ),u v and ( ),U V are the velocity components, p and P are pressures in the wave and fixed frames of 

reference respectively. 
 
The equations governing the flow in wave frame of reference are given by 

0,
  

U V

X Y

∂ ∂+ =
∂ ∂

                                                                                                                     (3) 

 
2 2

2
02 2

sin ,
  e

U U P U U
U V B U U g

X Y X X Y k

µ µρ σ ρ α
ε
 ∂ ∂ ∂ ∂ ∂ + = − + + − − +  ∂ ∂ ∂ ∂ ∂   

                       (4) 

 
2 2

2 2
cos ,

  

V V P V V
U V V g

X Y Y X Y k

µ µρ ρ α
ε
 ∂ ∂ ∂ ∂ ∂ + = − + + − −  ∂ ∂ ∂ ∂ ∂   

                                       (5) 

 
2 2 22 2

1
2 2

2 2

2 2

2 2
  

,m T

s

kT T T T U V U V
U V

X Y X Y X Y Y X

D k C C

c X Y

ξ γ
ρ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       + = + + + + +          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          

 ∂ ∂+ + ∂ ∂ 

             (6) 

 
2 2 2 2

2 2 2 2  
m t

m

D kC C C C T T
U V D

X Y X Y X YT

   ∂ ∂ ∂ ∂ ∂ ∂ + = + + +    ∂ ∂ ∂ ∂ ∂ ∂     
                                               (7) 

 

Where eσ  is the electrical conductivity of the fluid, ε  and k  are the porosity and permeability of the porous 

medium, ρ  is the density and µ is the viscosity of the fluid, T  is the temperature of the fluid, C  is the 

concentration of the fluid, T  is the mean value of 0 1T and T , mD  is the coefficient of mass diffusivity, γ  is the 

kinematic viscosity of the fluid, ξ  is the specific heat at constant pressure, σ  is the electrical conductivity of the 

fluid, 1k  is the thermal conductivity of the fluid, sC  is the concentration susceptibility, α  is inclination of the 

channel, ρ is the density and g is the acceleration due to gravity. 

 
Introducing the following non-dimensional variables 

2
1 2 1 2

1 2
1 1 1 1

, , , , , , , , r

d d H Hx y u v c
x y u v d h h F

d c c d d d gd
δ

λ δ λ
= = = = = = = = =  

2
0 01 1 1 1

0 1
1 0 1 1 1 0

, , , , , ,e

C C T Tpd a b cd
p a b R M B d

c C C d d T T

ρ σφ θ
µ λ µ µ

− −= = = = = = =
− −

  

1 0
2

11 0

2
1 0

1 0 1 0

( )
, , , ,

( )

( )
,

( ) ( )

m T
r a r c

m

m T
f c

s

D k T T k
S D p S

d k DT C C

D k C C C
D E

C T T T T

ρ ργξ µ
ρµ

ρ
µξ ξ

−= = = =
−

−= =
− −

                                                        (8) 
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Where eR  is the Reynolds number, M is the Hartmann number, aD  is the Darcy number, rp  is the Prandtl 

number, cS  is the Schmidt number, rS  is the Soret number, cE  is the Eckert number and fD  is the Dufour 

number in the governing equations (1-7) and dropping the bars, we get 
 

( )1 21 cos 2 , cos(2 )h a x h d b xπ π φ= + = − − +                                                                      (9)  

 
2

2
2

sin
r

u R p
N u

y F x
α∂ ∂− + =

∂ ∂
                                                                                                (10)  

 

0
p

y

∂ =
∂

                                                                                                                                (11)  

 
22 2

2 2

1
0c f

r

u
E D

P y y y

θ φ ∂ ∂ ∂+ + = ∂ ∂ ∂ 
                                                                                       (12) 

 
2 2

2 2

1
0r

c

S
S y y

φ θ∂ ∂+ =
∂ ∂

                                                                                                            (13) 

 

Where 2 21
N M

Da
ε  = + 
 

,  R  is the Reynolds number and rF  is the Froude number 

The corresponding non-dimensional boundary conditions are given as 

1, 0, 0u θ φ= − = =  at 1y h=                                                                                           (14) 

 

1, 1, 1u θ φ= − = =     at 2y h=                                                                                         (15)  

 
Solution 
Using Adomian decomposition method, the equation (10) can be written as 

 2 siny y
r

dp R
L u N u

dx F
α− = −                                                                                               (16) 

 

where 
2

2
  L=

d

dy
.Since L is a second -order differential operator , -1 L  is a second-fold integration operator defined 

by: 

-1

0 0

 L (.) (.) .
y y

dydy= ∫ ∫                                                                                                              (17) 

Operating with -1 L , Eq. (16) becomes 

1 2 u=c c y+ + -1 L 1 2sin ( )
r

dp R
L N u

dx F
α − 

− + 
 

                                                                    (18) 

 
By the standard Adomian decomposition method, one can write: 
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0
n

n

u u
∞

=

=∑                                                                                                                             (19) 

 
From (18) 

0 1 2 c sin
r

dp R
u c y

dx F
α

 
= + +  

 

2

2!

y
, 

2 1
1 ( )n nu N L u−

+ = ,       0n ≥ .                                                                                              (20) 

 
Using boundary conditions (14 and 15) to the equations from (16) to (20), we obtain 

2 3 4
2

1 1 2

( ) ( ) 1 ( )
sin

2! 3! 4!r

cNy Ny dp R Ny
u c

N N dx F
α

  
= + + −   

  
, 

4 5 6
2

2 1 2

( ) ( ) 1 ( )
sin

4! 5! 6!r

cNy Ny dp R Ny
u c

N N dx F
α

  
= + + −   

  
 

2 2 1 2 2
2

1 2

( ) ( ) 1 ( )
sin

(2 )! (2 1)! (2 2)!

n n n

n
r

cNy Ny dp R Ny
u c

n N n N dx F n
α

+ +  
= + + −   + +  

 

2
1 2

1
cosh( ) sinh( ) sin (cosh( ) 1)

r

c dp R
u c Ny Ny Ny

N N dx F
α

  
= + + − −   

  
.                                              

 
This may be simplified as: 

1 2 2

1
cosh( ) sinh( ) sin

r

dp R
u F Ny F Ny

N dx F
α

  
= + − −   

  
,                                                   (21) 

 where 

( )

( ) ( ) ( ) ( )( )
2 12

1
1 2 2 1

1
1 sin sinh( ) sinh( )

cosh sinh cosh sinh

r

dp R
Nh Nh

N dx F
F

Nh Nh Nh Nh

α
   

− + − −       =
−

 

( )

( ) ( ) ( ) ( )( )
1 22

2
1 2 2 1

1
1 sin cosh( ) cosh( )

cosh sinh cosh sinh

r

dp R
Nh Nh

N dx F
F

Nh Nh Nh Nh

α
   

− + − −       =
−

 

 
The volume flow rate in the wave frame is given as 

1

2

h

h

q udy= ∫   

 
( )1 21 2

1 2 1 2 2
(sinh( ) sinh( )) (cosh( ) cosh( )) sin

r

h hF F dp R
q Nh Nh Nh Nh

M M dx F N
α

− 
= − + − − − 

 
                       

                                                                                                                                            (22)                                                                                    
From (22), we have 
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( )
3 2

1 2

2 1 2 1

sin
r

qN D D Ndp R

dx D h h ND F
α+= +

− −
 

 
Where 

 

( ) ( )
1 1 2 2 1

2 2

2 1 2 1 2

cosh( )sinh( ) cosh( )sinh( )

cosh( ) cosh( ) sinh( ) sinh( )

D Nh Nh Nh Nh

D Nh Nh Nh Nh

= −

= − − −
 

 
The instantaneous flux at any axial station is given by 

1

2

1 2( , ) ( 1) .
h

h

Q x t u dy q h h= + = + −∫                                                                                        (23) 

The average volume flow rate over one wave period T
c

λ=  of the peristaltic wave is defined as 

1 2

0 0

1 1
( ) 1

T T

Q Qdt q h h dt q d
T T

= = + − = + +∫ ∫                                                                       (24) 

 

Using equation (13) and (21) into equation (12), the solution of equation (13) in terms of θ  in closed form is given 
by 

( )( ) ( ) ( )2 2 2 2 2 2
1 2 1 2 2 1

1 2

1 1 1
cosh 2 sinh 2

1 8 4 4
r c

f r c r

p E
Ny F F Ny F F N y F F

D p S S

A y A

θ −  = + + + − −  

+ +
    (25) 

 
Where 

( ) ( )( ) ( )1 1 2 3
1 2 1 2

1

1
r c

f r c r

p E
A B B B

h h D p S S h h
= − − + +

− − −
 

( )( )
2

2 2 2 2
1 2 1 2 14

N
B h h F F= − −  

( ) ( )( ) ( )2 2
1 2

2 2 1cosh 2 cosh 2
8

F F
B Nh Nh

+
= −  

( ) ( )( )1 2
3 2 1sinh 2 sinh 2

4

F F
B Nh Nh= −  

( )
1

2 4 5 6
1 2

h
A B B B

h h
= + + +

−
, 

( ) ( )
( )

2 2 2 2 2
2 1 2 1 12

4 1
1 24(1 )

r c

f r c r

p E N F F h h h
B h

D p S S h h

 − −
 = +
 − −
 

 

( ) ( ) ( ) ( )( )
( )

2 2
1 2 1 2 1

5 1
1 2

cosh 2 cosh 2
cosh 2

8(1 )
r c

f r c r

p E F F h Nh Nh
B Nh

D p S S h h

 + −
= + 

 − − 
 

( ) ( ) ( ) ( )( )
( )

1 2 11 2
6 1

1 2

sinh 2 sinh 2
sinh 2

(1 ) 4
r c

f r c r

h Nh NhF Fp E
B Nh

D p S S h h

 −
= + 

 − − 
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And upon substituting equation for θ  in equation (13) and solving we obtain a solution for φ  in closed form as 

( ) ( )( ) ( ) ( )

( )

2 2 2 2 2 2
1 2 1 2 2 1

1 2 3 4

1 1 1
cosh 2 sinh 2

8 4 41
c r r c

f r c r

S S p E
Ny F F Ny F F N y F F

D p S S

A y A A y A

φ  = + + + − −  

− + + +
 

(26) 

( ) ( )( ) ( )3 1 7 8 9
1 2 1 2

1

1
c r r c

c r

f r c r

S S p E
A S S A B B B

h h D p S S h h
= − − − + +

− − −
 

( )( )
2

2 2 2 2
7 1 2 2 14

N
B h h F F= − −  

( ) ( )( ) ( )2 2
1 2

8 1 2cosh 2 cosh 2
8

F F
B Nh Nh

+
= −  

( ) ( )( )1 2
9 1 2sinh 2 sinh 2

4

F F
B Nh Nh= −  

( ) ( )
1

4 1 1 2 1 1 10 11 12
1 2

c r c r

h
A S S A h A h S S A B B B

h h
= + + + + + +

−
 

( ) ( )
( )

2 2 2 2 2
2 1 1 2 1 2

10 1
1 24(1 )

r c r c

f r c r

S S p E N F F h h h
B h

D p S S h h

 − −
 = −
 − −
 

 

( ) ( ) ( )( )
( )

2 2
1 2 1 1 2

11 1
1 2

cosh 2 cosh 2
cosh 2

8(1 )
r c r c

f r c r

S S p E F F h Nh Nh
B Nh

D p S S h h

 + −
= − 

 − − 
 

( ) ( ) ( )( )
( ) ( )1 1 21 2

12 1
1 2

sinh 2 sinh 2
sinh 2

(1 ) 4
c r r c

f r c r

h Nh NhF FS S p E
B Nh

D p S S h h

 −
= − 

 − − 
 

 
RESULTS AND DISCUSSION 

 
In this section, numerical results of the problem under discussion are discussed through graphs. Numerical 
simulation is performed using the computational software Mathematica. 
 

Fig 1 to Fig 6 illustrate the variations of 
dp

dx
for a given wavelength versus x. Fig 1 shows the small amount of 

pressure gradient is required to pass the flow in the wider part of the channel in an asymmetric channel when 
compared to the symmetric channel for different values of φ  with 

2, 3, 0.01, 0.7, 10, 2, 1.2
4a e rd M D a R F and b
πα= = = = = = = =  . Fig 2 shows the magnitude of 

pressure gradient increases by increasing the Hartmann number M with 

2, , 0.1, 0.7, 10, 2, 1.2
6 4a e rd D a R F and b
π πφ α= = = = = = = = . Fig 3 shows the variation of 

pressure gradient
dp

dx
with Darcy number aD  for  

2, , 3, 0.7, 10, 2, 1.2
6 4e rd M a R F and b
π πφ α= = = = = = = = . It is found that, by increasing the 
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Darcy number aD  decreases the axial pressure gradient. Fig 4 shows the variation of pressure gradient for different 

values of inclination angel α  for 2, , 3, 0.001, 0.7, 10, 2 1.2
6 a e rd M D a R F and b
πφ= = = = = = = = . 

It is found that, increasing the  α  increases the axial pressure gradient. Fig 5 shows the magnitude of pressure 

gradient decreases by increasing the Froude number rF  with 

2, 3, , 0.001, 0.7, 10, 1.2
6 4a ed M D a R and b
π πφ α= = = = = = = = . From Fig 6 it is found that, 

pressure gradient increases with increasing eR  with 

2, 3, , 0.001, 0.7, 2, 1.2
6 4a rd M D a F and b
π πφ α= = = = = = = = . 

 
Fig 7 to Fig 10 shows the variation of temperature profile for different values of Hartmann number M , Darcy 

number Da , Prandtl number rp , Eckert number cE , Schmidt number cS , Soret number rS  and Dufour number 

fD . From Fig 8, Fig 9 and Fig 10 it is clear that by increasing  Da , rp  and cE  the temperature profile increases, 

while from Fig. 7 we observe that the temperature profile decreases with the increase in M .  
 

Fig 11 to Fig 17 are plotted to study the effects of M , Da , rp , cE , rS , cS and fD  on the concentration 

profile. Fig 11 illustrates that by increasing M the concentration profile increase.  Fig 12, Fig 13 and Fig 14 shows 

that concentration profile decreases with the increase in Da , rp  and cE . It is also seen from Fig 15 that with an 

increase in Schmidt number cS and Soret number rS , the concentration decreases. 

 

The values of rS  and fD are  chosen in such way that their product is a constant value, since the mean temperature 

is kept constant. Fig 16 shows that by decreasing fD  and increasing rS  the concentration profile decreases, while 

from Fig 17 it is clear that by increasing fD  and decreasing rS  the concentration profile increases. 

 
In the present study we conclude with the observations as, In the center of the channel, the pressure gradient 

increases with an increase in , , eM Rα . However it decreases with an increase in ,a rD F  and φ . The temperature 

profile increases with the increase in Da , rp  and cE  and decreases with an increase in  M  The concentration 

profile decrease with the increase in Da , rp  and cE  It is observed with an increase in Schmidt number cS and 

Soret number rS , the concentration profile decreases. The concentration profile decreases by decreasing fD  and 

increasing rS  It is clear that by increasing fD  and decreasing rS  the concentration profile increases. 
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