Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advancesin Applied Science Resear ch, 2012, 3 (6):3868-3877

Library
| SSN: 0976-8610
CODEN (USA): AASRFC

Peristaltic pumping of third grade fluid in an asymmetric channel under the
effect of magnetic fluid

D. Prasanth Reddy® and M. V. Subba Reddy”
®Department of GEBH, Sree Vidyanikethan Engineering College, Tirupati-517102, A.P, India.

bDepartment of CSE, Si Venkatesa Perumal College of Engineering & Technology,
Puttur-517583, A.P., India.

ABSTRACT

In this paper, we studied the MHD peristaltic motion of a third grade fluid in an asymmetric channel under the
assumptions of long wavelength and low Reynolds number. Series solutions of axial velocity and pressure
gradient are given by using regular perturbation technique when Deborah number is small. The effects of
various emerging parameters on the pumping characteristics are studied in detail through graphs.
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INTRODUCTION

Peristaltic flow occurs in a wide variety of phyleigical and engineeringpplications such as urine transport
in the ureter, motion of spermatozoa in the cehviemal, the movement of chyme in the gastroimesti
tract, swallowing of food throughesophagus, the vasomotion of small blood vesselsller and finger
pumps and many others. After the seminal workLatham [11] several researchers have analyzed the
phenomenon gberistaltic transport under various assumptions.

In recent years fluid dynamics of magnetohydrodyicaMHD) fluid has been the object of scientific dan
engineering research. Also, it is known that mdghe physiological fluids are non-Newtonian fluidéheoretical
studies of non-Newtonian fluids have been condubtedarious workers in this field (Fectecau andt€eau [5];
Fectecau and Fectecau [6]; Chen et al. [2]). Siatlif, the non-Newtonian fluids in the presenceaofagnetic
field are very useful in magnetotherophy. The oolfed application of low intensity and frequencylging
magnetic fields are modify the cell and tissue léra Moreover, the non-invasive radiological téisat uses a
magnetic field (not radiation) to evaluate orgamslbdomen prior to surgery in the small intestimat fiot always).
Hence, magnetically susceptible of chyme can bisfsat from the heat generated by magnetic fieldhar ions
contained in the chime. The peristaltic flows ofgmetohydrodynamic (MHD) have been studied by (Méakiee
[12]; El Shahed and Hourn [3]; Siddiqui et al. [LBlayat et al. [7]). Peristaltic transport of a MHilird order fluid
in a circular cylindrical tube was investigated Hgyat and Ali [8]. Hayat et al. [9] studied peri§tatransport of a
third order fluid in a uniform channel under théeef of a magnetic field. Subba Reddy et al. [1&}dinvestigated
the peristaltic flow of a fourth grade fluid in @amclined channel under the effect of a magnetitdfieJayarami
Reddy et al. [10] have studied the peristaltic flotva Williamson fluid in an inclined planar chahnmder the
effect of a magnetic field.

Eytan and Elad [4] have investigated the wall-iretbperistaltic fluid flow in two-dimensional chahveth wave
trains having a phase difference moving indepergemnt the upper and lower walls to simulate inttarine fluid
motion in a sagittal cross-section of the uterdseyrhave obtained a time dependent flow solutioa fixed frame
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by using lubrication approach. Subba Reddy etlal] have investigated the peristaltic transporagiower-law
fluid in an asymmetric channel. Ali and Hayat [Hve analyzed peristaltic transport of a micropdiiaid in an
asymmetric channel.

In view of these, we studied the MHD peristaltictimo of a third grade fluid in an asymmetric chanmeder the
assumptions of long wavelength and low Reynolds brermSeries solutions adxial velocity and pressure
gradient are given by using regular perturbatiashtéque when Deborah number is small. The effetts o
various emerging parameters on the pumping chaisiits are studied in detail through graphs.

2. Mathematical Formulation

We consider the peristaltic motion of an incompitdsselectrically conducting third order fluid thrgh a porous
medium in an asymmetric channel. A uniform magnéétd B, is applied in the transverse direction to the flow
The fluid is taken to be of small electrical contikity, so that the magnetic Reynolds number is Ismad the
induced magnetic field is neglected in comparisath whe applied magnetic field. The rectangular rdatate

system(Y,Y)is chosen in such a way th¢ -axis lies along the centre line of the channel Yndixis normal to

it. We assume an infinite wave train traveling witocity ¢ along the walls. The schematic diagarthe problem
is shown in Fig.1.

The channel walls are given by

Y=H,/(X,t)=d,+ a1C0527ﬂ X-ct) (upper wall) (2.1a)
2
Y=H,(X,t)=-d,-a, 00{7 X —ct)t+ 9) (lower wall) (2.1b)

where @, and a, are the amplitudes of the waved, +d, is the width of the channel] is the wave lengtlG is
the wave speedﬁ(OS 6< IT) is the phase difference. It should be noted #at O corresponds to a symmetric
channel with waves out of phase and 8F /7 the waves are in phase and furtigg; d,,a,,a,and & satisfies

the conditiona’ +a; +2a,a,cosf< @,+d, .

E hy i hI
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Fig. 1 The Physical model

¥

In the absence of an input electric field, the ¢éigua governing the flow field are

divw =0, (2.2)
dv _ = = =

p—=divT + I xB, (2.3)
dt

where d/d is the material derivativey - the velocity,p - the current density// - the viscosity, B - the magnetic

induction,'F is the Cauchy stress tensor add the current density.

3869
Pelagia Research Library



D. Prasanth Reddy et al Adv. Appl. Sci. Res., 2012, 3(6):3868-3877

The constitutive equation foF in a third order fluid is

T=-PI1+S, (2.4)
where P is the pressuref - porosity of the porous mediurim- the identity tensor and the extra stress teéds
given by

S=uA +a,A + G,(A2Ar+ AiA2) + B(tr A1) As (2.5)

in which  y, oy, o, bl, bz,b3are the material constants and the Rivlin-EricI@mors(A) are given through
the following relations

A= (gradV) +(gradv)"
A= %Z\n—l + An-i(gradV) + (gradV)" Ana, n>1 (2.6)

For unsteady two-dimensional flow, the velocitydiés given by

V= [U(X,Y,)V(X,Y,1),0] 2.7)

whereU andV are the velocity components in fixed frame, in Keand Y directions respectively.

Neglecting the displacement currents, the Maxwaliagions and the Ohm’s law are.

dvB=0, cuiB =43, el E=-22.  J=0(E+VxB) @)

wherea is the electrical conductivity//, is the magnetic permeability arld is the electric field. The imposed and
induced electrical fields are assumed to be ndgégiUnder the assumption of low magnetic Reynaoldmber,
J X B reduces to

JxB=-gu’B2V (2.9)
usi_ng Equ_ations (2.7) and (2.9), we can write Eiquat(2.2) and (2.3) in the following forms:
a—g +6—X =0 (2.10)
0X adY
p(i+Ui_+\71_jU:— P , 95 , 9Sw - ou?BAU (2.11)
ot 0 oY o0X 0X oY
_ _ _ P(X Yt S~ 0S._
p(iw i_+vi_jv = OPX. Y1), 05, P (2.12)
ot 0X aY oY 0X aY
where
Sxx =240 x +a, [ Uxi+ DUxx + MUxv + 4 x+ ¥ x + ¥xUy
+a,(40°% +U5 +V 'z + /xUy
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+f, [2Uxi + UiUxx + AUxxi + MiUxy + ¥Uxwi + 1 U
+6VxVxi + vV xi ++4JviVx + 14U xUxx + 1¥UxU xv

+&J x +AJVxUxy + 0VVxVxy + AVxUvw + &JVxVxx
+2U Uﬁi+2JVUﬁ?+2\/U?Uﬁ+ Y} in+ A/VyUxy

+2/UvVxy +8JvVxUx + UVxxUy + 4JVU><XY ]

+0, [8Uxer+&JVxex +8/U xev+1ﬁJ %+ DyVxi+ DyVxi

+2\/xth + ZJUYVXX ++AJVxVxx + A/UvVyy + Z/VXVXY
+2UU ?U xv + UVxUxy + MVxUxy + Z\/U Wxy + 4/iU X

+40 %0 5 + 8V xUx + a7xUYt]+ﬁ3( A0 xU e+ BV ATV x + &TYVXUX)(z.ls)
Sxy = ,u(U? +\7§) +a, (\7?{ +Uvi +UUxx +VVxy +VUy +UVxx + 2UxUy 2\7;\7?)
+a, ( 2xVx + 27;\7?)
+8, [Vxi +Uvi +UiUxy +UUxvi +ViVxy + WV xvi + VU sw +Vilxy
+HUiVxx + 20V xxi + MvVxi + M xVvi +VyVii + A xilUy + B xUv

—— — — — —2 — — —2

+5VU5Uxv + A0UsUxx + A UvUxx + 4) xUy + & Uy + ¥xU ¥
+V7Uvs +UVxxVy + NV 5y + A xUxy + MVeVxx + AV xVvy
+UUvsi +U Vixx +UVU xvy +3VU xUvy + 80V xV gy +U U xxv

+UVVxyy + VUvUxx +V VYW +UVVxyy +UVxxUY]
+, [2UxVxi + UxUsi + DUxUxv + VUxVxy + ¥UxUsy

+2UU xVxx +2\/XVYt + ZJYU Xt ++3/><U xt t ZJUYVXY + X/VXUYXY

+2UUYU xx + 2VUyUxy + ZJVxVXY + 2/UvVyy + VXV

+ZU\7xex + 37\7\(\7xx + G\/XU x + Z/YUYt + Z/YVYt + 2_/\_/x\_/YY

—_— —_— J— J— —_2 —

+2UVyUxy + 2VVyUvy + Zj YUV&YU\?+ 2/ + &/xU y+ & vUy

N WV + D7V

+L, [UZYU\? +20% +6VxUy + & YUy + 6/xU v +VxU x + & X 4V2?\7i]
(2. 14)

—2

SYY—Z,UVY"‘CY Nyi+ VVxy + MVyy + 2 Y+4/Y+ X%

@ I

ta,

—2 —2 =2 — —
Uv+4vy+V x+2\/xUY)
+0 [ZVYt + 0 iVxy + AdVsxwi + MiVyy + AUwi + vV + ¥xUvi

+2UYVXt +GJYtUY +13/YVYt + 4JUYVxx + &UvVxy + 8’ Y
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+680UvU xv + 6VUvUvy + 10ViVxy + 1¥VVyy + B Vixy
+HAUVV 5y + UVxVyy + A VW\? + 2VxVxy + ¥VxUw
+8UVyUx + WU xvVx ]

+B,[8VVyi + 80V iV sy + 8V iVyy ++16/ 5 + DyVxi + Dvi + ¥xVxi
+VUvVxv + WVxVxx + MUy +Vxx + ¥VxUvy + DVxUxy + DUURy
+NUUw + U v + A 3V + 8JyWyUx + AVxVxy + ¥ xUvi |

+,83(8V v+ 20 XV + A xVy + 4 Vv + BV iUy (2.15)

In the above equation the subscripts indicate #négh derivatives.

The boundary conditions are

U=0 at Y=H,(X1t)H,(Xt) (2.16)

Under the assumptions that the channel length isntegral multiple of the wave length and the pressure

difference across the ends of the tube is a condtenflow becomes steady in a wave fra(;e Y/) moving with

velocity ¢ away from the fixed framéY,V) .

The transformations between the two frames arendiye
x=X-ct, y=Y, u=U-c, v=V, p( ) (Xt) 12)
where (G,\_/) are components of the velocity in the moving cdimate system.

Using the transformations (2.17) and then introdgc¢he following non-dimensional variables

X y _u h, () h(x) _ d? —- d = -

:_, = :_,H xlt = 1H th l - y -—
=Y (X01) § o(X.t) = LT PO), S=- - S(4
Re:'O—dC,J:E, a:ﬁ,b:i,dzﬁ (2.18)

H A d d d

into the Equations (2.11) - (2.15) and under thsuamptions of low Reynolds numbe(rRe® 0) and long

wavelength(d << l) approximation, we obtain

0
@:iﬂw(uﬂ), (2.19)
ox oy
op
op _ (2.20)
oy
_u +2r — ou) (2.21)
oy oy
S, = Syy =0 (2.22)

, /U ,
wherel™ =, + y;is the Deborah number aldl = d, £4,B, |— is the Hartmann number.
H
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Equation (2.28) indicates thap Z p(Y), i.e., pis a function of X only. Therefore the Equation (2.27) can be
rewritten as

2 3
O S I B VET A (2.23)
dx dy ay\ oy
In the wave frame the non-dimensional boundary itimms are
u=-1 at y=h,h, (2.24)

where h(Xx)=1+acosx and h,(x)=-d-bcog 27x+06)

The volume flow rate q in the wave frame is givgn b

h
=l u 2.25
q= |, udy (2.25)
The dimensionless time averaged fik over one period in the fixed frame of referencgiven by
= 17 0 _ 1 27 ¢h _ _
Q—?J‘O jhz UdYdt _Ejo jhz (u+1)dydx=q+h —h, 28)

3. Perturbation Solution

Equation (2.23) is non-linear differential equatiand it is difficult to get a closed form solutioHowever for
vanishing , the boundary value problem is agreeable to ay aaalytical solution. In this case the equation
becomes linear and can be solved. Therefore wenexibee flow quantities in a power series of the lsparameter

Deborah numbel as follows:

u=u,+ru,+0(r?) (3.1)
%=%+I’%+O(F2) (3.2)
dx dx dx

=0, +rq,+0(r?) (33)

Upon making use of Equations (3.1) — (3.3) intoHEgmations (2.23) and (2.24) and equating the fioiefit of like
powers of[" we get

3.1 System of order zero

9%y, 2 dp
-M*(u, +1) =—=2, 3.4
ayZ ( 0 ) dX ( )
with the dimensionless boundary conditions
U, =-— at y= h,h, (3.5)
3.2 System of order one
3

d_plzi %+2 % _MZ% (3.6)
dx ody| ay oy oy

with the dimensionless boundary conditions
u =0 at y= h,h, (3.7)

3.3 Zeroth order Solution
Solving Equation (3.4) together with the boundasgditions (3.5), we get

Uy = #%gclcoshMy+ c, sintMy- - (3.8)
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where = SinthZ- SinH\/Ih;L and - COSthl- COSHV”’]2
57 sinhwm t- h) & sinhM (,- h,)

The volume flow rate(}, in the wave frame of reference is given by

1 dp, [2- 2costM B- h, } M fy- h,)sintM If,- hl])_ h
M3 dx sinhM (,- h) (h- hy) (3.9)

From Equation (3.9), we have

b =

dp, _ M3(q, + h- h,)sinhM (,- h,) -
dx [2- 2costM [ - h, } M f- h,)sintM If,- h,] '
3.3 First order Solution
Substituting Equation (3.8) into the Equation (R6J solving it using boundary conditions (3.7),atain

8
u = @gclcoshMy+c sintMy - }+@

@2M* FO) A8)

é)lsmhMy+ b, costMy- b, coshidY- b, sini\/L
where F (y)= & L,
& b,MysinhNy- b,My cosiMy L

b = f_ coshMh,- f, cosiMh, b, = f,sinhMh - f, sinhMh, b, = ¢+ 3ccl
sinhM (h- h) sinhM (h,- h) ’

4
b, = c+3c,cl +3cc b= C- cf_b'b _ Egz- &pfif,
521 4
f,= b3cosh Mh, + b, sinh B’Ihl+ bMh, sinMh,+ b Mh, cod¥ih,
f, = bycoshMh, + b, sinh®lh,+ bMh, sinMh,+ bMh, codtih ..
The volume flow rateq}, in the wave frame of reference is given by
@- 2costM - h,) H
1 dplg M(h- h,)sinhM (,- h)f p, D 3w
T M? o sinhM (.- h,) dx B M° (5:42)

} (o, + by)(coshMh,- cosiMh,)+ (b,+ b.)( sinMh,-  sinkih,)
where W= |- %(sinhsvlhl- sinh 31h,)- %‘( coshi@h, -

T

cosivg,) y
f- bMh, coshMh,- bMh, sintMh,+ bMh, cosh+ b M, sinliih §
From Equation (3.12), we have
& 8 3w U
M3y - @: inhM (h, -
dp, _ ? dx'z2M5§ LRLY
dx [2- 2costM G- h, } M b- h, )sintM t,- h, ] (319

3874
Pelagia Research Library



D. Prasanth Reddy et al Adv. Appl. Sci. Res., 2012, 3(6):3868-3877

Substituting the (3.10) and (3.13) into the equei{8.2) and using the relatiofl, = ¢ —I g, and neglecting of

d WM’
ordergreatertha@(r),we get P Ms[q+ h - hz] fs- G(q"' h, - hggT[fI

dx
(3.14)
where f, = siniM (0, - h) ; .
[2- 2coshV - h, } M - h, )sinM f,- h,]
The dimensionless pressure rise per one wavelémgfie wave frame is defined as
1dp
Ap = | —dx 3.15
P .[O dx ( )

DISCUSSION OF THE RESULTS

Fig. 2 shows the variation of pressure r&p with time averaged flu>6 for different values of Deborah number
77' PR
Mwith a=0.5,b=0.7, M =1, d =1.2and BZZ . It is found that, the time-averaged fl@ increases

with increasingl” in both the pumping regio(Dp> O) and free-pumping regio(Dp= O) while it decreases
in the co-pumping regio(Dp< O)With increasingl” .

The variation of pressure risBp with time averaged flu>(3 for different values of Hartmann numb&d with

Vi
a=0.5b=0.7,I = 0.01,922 and d =1.2 is shown in Fig. 3. It is observed that, the tiaveraged flux

Q increases on increasiniyl in the pumping region while it decreases in thes{fpemping and co-pumping
regions with increasiniyl .

Fig. 4 shows the variation of pressure ri&p with time averaged flu>(_2 for different values of phase shift with
a=0.5b=0.7, M =1, I =0.01 and d =1.2 is represented in Fig. 5. It is found that, theeiaveraged

flux Q decreases with increasinfd in both the pumping and free-pumping regions whilecreases in the co-
pumping region with an increase &h for appropriately chosdBp(< 0).
The variation of pressure risBp with time averaged qu>(_Q for different values of width of the channdl with

T
a=0.5, b=0.7, M =1, 6’22 and [ =0.01 is shown in Fig. 5. It is noted that, the time-agad flux

6 decreases with an increasediin the pumping region, while it increases in bdtle free-pumping and co-
pumping regions on increasiolg

Fig. 6 depicts the variation of pressure ri& with time averaged qu@ for different values of upper wave
T
amplitudea with ' =0.01,b=0.7, M =1, BZZ andd =1.2. It is observed that, the time-averaged flux

Q increases with an increasg in both the pumping and free-pumping regions, fiil decreases in the co-

pumping region with increasing for appropriately chosdn p(< 0).
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The variation of pressure risAp with time averaged fluXQ for different values of lower wave amplitudie with

a=0.5, N=0.01, M =1, 9=77: andd =1.2 is shown in Fig. 7. It is noted that, the time-aged fluxQ

increases on increasing in both the pumping and free-pumping regions witildecreases in the co-pumping
region with increasind for appropriately chosdBp(< 0).

4 a

s T=00L00LD 3
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=
= [ ]

0.3

Ap Ap
4 4
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4 4
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7] g
Fig. 1. The wnintion of pressime mise Ap with time averaged fhre {3 for TFig 3. The vaziation of pressure rise A with tme avaraged fhee 7 for
different values of Deborah mmher Twith a=0.5,8=10.7. different vahaes of Hartmann mamber W with a = 0.5,
Mal d=llamds=Z . Be=07, T=001, &-%mﬂd-lj.
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Fig. 4. The vanation of presoame riss Ap with tme averaged fhrc ) for different vahaes of o with o= 0.5, 6=0.7. M =1, §=2
differant vabass of phase shift Saith o= 03, b= 7, W =1, : N
T=0.01 md 4=11. Lo
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v B=i7,05,03

o o

Fiz. 7. The vanation of pressue rise Ap with time avemged fha  for

Fiz. §. The variation of pressae rise Ap with & ed s [
= R R e different values of Jower wave ampliade fwith 2 =0.5.7 =001,

differens values of upper wave amplinide ;with T = 0018 =07,

Ml 5= and g1 JJ'-]-E-%EIIL.'-H

CONCLUSION

In this paper, we investigated the effect of maigni¢ld on the peristaltic transport of a thirdade fluid in an
asymmetric channel under the assumptions of longel@agth and low Reynolds number. Series solutafrexial
velocity and pressure gradient are given by usegular perturbation techniqgue when Deborah number i

small. It is observed that, the time-averaged fQxincreases with increasirideborah numbef , Hartmann

numberM , upper wave amplitudg and lower wave amplitudb, while it decreases with increasing width of the
channeld and phase shifl in the pumping region.
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