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ABSTRACT 
 
This paper is devoted to a study of the peristaltic motion of a Casson fluid in an inclined channel 
under the effect of magnetic field. Long wave length and low Reynolds number assumptions are 
used in solving the problem. Expressions are derived for the pressure rise, volume flow rate and 
frictional force .The effect of magnetic parameter, amplitude ratio, yield stress, angle of 
inclination and plug flow on theses are discussed. 
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INTRODUCTION 
 

Peristalsis is defined as a wave of relaxation – contraction imparted to the walls of a flexible 
conduit, thereby by pumping the enclosed material. In Physiology, it has been found to be 
involved in many biological organs,e.g., urine transport from kidney to bladder through the 
ureter, in movement of chime in the gastro-intestinal tract, in transport of spermatozoa in the 
ductus efferentes of the male reproductive tract and in the cervical canal, in movement of ovum 
in the fallopian tubes, in the vasomotion of small blood vessels as well as blood flow in arteries. 
Also, peristaltic finger and roller pumps are frequently used for pumping corrosive or very pure 
materials so as to prevent direct contact of the fluid with the pump’s internal surfaces.    
 
Fung and Yih [6] presented the early theoretical work on peristaltic transport primarily with 
inertia-free Newtonian flows driven by sinusoidal transverse waves of small amplitude. Burns 
and Parker [3] and Hanin[7] contributed to the theory of peristaltic pumping with reference to 
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physiological applications. Barton and Raynor [1] made a calculation based on peristalsis theory 
of the time required for chime to traverse the small intestine and found that this calculation 
compared favourably with observed values. 
 
Most of the theoretical investigations have been carried out by assuming blood and other 
physiological fluids behave like a Newtonian fluid. Although this approach may provide a 
satisfactory understanding of the peristaltic mechanism in the ureter, it fails to provide a 
satisfactory model when the peristaltic mechanism is involved in small blood vessels, lymphatic 
vessels, intestine, ductus efferentes of the male reproductive transport, and in the transport of 
spermatozoa in the cervical canal. It has now been accepted that most of the physiological fluids 
behave like non – Newtonian fluids. 
 
It is known that the flow bahaviour of blood in small vessels and low shear rate can be 
represented by power law model( Charm and Kurland,[4],[5]. Merill et al. [9] pointed out that 
Casson model hold satisfactory for blood flowing in tubes of 130 - 1000µ . Moreover, Blair and 
Spanner [2] reported that blood obeys Casson model for moderate shear flows. 
 
Srivastava and Srivastava [11] investigated the problem of peristaltic transport of blood 
assuming a single layered Casson fluid and ignoring the presence of a peripheral layer. Mernone 
and Mazumdar [8] studied the peristaltic transport of Casson fluid. They used the perturbation 
method to solve the problem.Nagarani and Sarojamma [10] studied the peristaltic transport of a 
Cason fluid in an asymmetric channel and discussed the effect of yiels stress of the fluid on the 
pumping characteristics.  
 
In view of this the peristaltic pumping of a Casson fluid in an inclined channel under the effect of 
magnetic field is studied. The effect of various parameters of interest on the pumping 
characteristic is studied. 
 
Mathematical formulation of the problem 
Consider the peristaltic pumping of a conducting Casson fluid in a channel with permeable wall 
of half width a. A longitudinal train of progressive sinusoidal waves take place on the upper and 
lower walls of the channel. For simplicity, we restrict our discussion to the half-width of the 
channel as shown in fig 1. 
 
The region between y = 0 and y = y0 is called plug flow region. In the plug flow region ,����� �
�� . In the region y = y0 and y = H , ����� � �� . 

The wall deformation is given by H( X, t) = a+ b sin
2

( )X ct
π
λ

−          (1) 

where b is the amplitude , � is the wavelength and c is the wave speed. 
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Under the assumptions that the channel length is an integral multiple of the wavelength � and the 
pressure difference across the ends of the channel is a constant, the flow becomes steady in the 
wave frame ( x,y) moving with the velocity c away from the fixed ( laboratory) frame ( X,Y) . 
The transformation between these frames is given by x = X – ct , y = Y , u(x,y) = U(X-ct,Y) , 
v(x,y) = V(X-ct,Y).                                 (2) 
 
Using the non – dimensional quantities  
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The non-dimensional form of equation governing the motion (dropping the bars) are 
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The non-dimensional boundary conditions are 
�	
��

 ��                  at      y=0                                                                                       (6) 

0τ=
∂
∂

y

u
                   at     y=h                                                                                       (7) 

 
Solution  
Solving equation (4) , (5)  together with boundary conditions (6), (7) 
we get the velocity as  
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by taking y= y0 , we get plug flow velocity as  
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The volume flux through each cross section in the wave frame is given by  

 21
2 )( kkSinM

x

p
q +−−

∂
∂−= θη                                                                                   (10) 

 where  )()([
1

)(
)( 0202

0
1 aySinhahSinh

aM

h
ayCosh

ahCoshM

y
k −++−=    

)()(

)(
)(

)()()(

0
00

0
0

0
0

0
00

2
0

2

ayCoshahTanh
b

y

ayCosh
ahCosh

y
byCosh

b
bySinh

b

y
ahCosh

b
k

τ

τττ

+

+−+=
 

From, equation   (10) we get  

)( 2
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 (11) 

The dimensionless average volume flow rate �� over one wavelength is obtained as   

∫ +==
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Q  (12) 
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Pumping Characteristics 
Integrating the equation (11) with respect to x over one wavelength, we get the pressure rise 
(drop) over one cycle of the wave as 

dxSinM
k

kQ
p ])(

)1(
[

1

0

2

1

2∫ +−+−−=∆ θη                                                                    (13) 

 
The pressure rise required to produce zero average flow rate is denoted by ∆�� , given by  

dxSinM
k
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The  dimensionless frictional force F at the wall across one wavelength is given by  
 

dx
dx

dp
hF ∫ −=

1

0

)(                                                                                                        (15) 

 
RESULT AND DISCUSSION 

 

From equation (13),we calculated the pressure difference p∆  as a function of  Q  for different 

values of magnetic parameter M and is shown in figures 2 and 3.Figure 2 is drawn for 00 =τ  

and Figure 3 is drawn for 1.00 =τ  .From Figures 2 and  3 it is observed that for 0>∆p             

( pumping) and 0=∆p (Free pumping), Q  decreases as the magnetic parameter increases. For 

a given flux  Q  , the pressure  rise p∆  depends on M and it decreases with increasing  M. And 

also it is observed that for a given p∆ , the Q  decreases as the yield stress increases. 
 

The variation of p∆  with Q  for different values of θ   with φ =0.6, M = 2, 1.00 =τ , 

1.0,2.00 == ηy  is shown in figure.4.It is observed that for a given p∆ ,the flux  Q  increases as 

the angle of inclination θ  increases. For a given flux  Q  , the pressure rise p∆  increases with 
increasing θ . 
 

The variation of p∆  with Q  for different values of yield stress 0τ  with φ =0.6, ,2.00 =y  

2.0=η , 2,3/ == Mπθ  is shown in figure .5 it is observed that for a given p∆ ,Q  increases as 

0τ  increases.  
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Figure 2. The variation of p∆  with Q  for different values of M with φ =0.6, 

1.0,2.0,0,6/ 00 ==== ητπθ y . 

Figure 3. The variation of p∆  with Q  for different values of  M with  φ =0.6, 

1.0,2.0,1.0,6/ 00 ==== ητπθ y . 
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Figure 4. The variation of p∆  with Q  for different values of θ  with φ =0.6, M = 2, 

1.0,2.0,1.0 00 === ητ y .

 

Figure .5. The variation of p∆  with Q  for different values of 0τ  with φ =0.6, 
           

.2,3/,2.0,2.00 ==== My πθη  
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Figure. 6. The variation of p∆  with Q  for different values of φ  with ,1.00 =τ   

           
.2,3/,2.0,2.00 ==== My πθη  

 
Figure 7. The variation of p∆  with Q  for different values of φ  with ,1.00 =τ  

.2,3/,2.0,2.00 ==== My πθη  
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The variation of p∆  with Q  for different values of amplitude ratio φ  with ,1.00 =τ  

,2.0,2.00 == ηy 2,3/ == Mπθ  can be seen in figure.6. It is observed that the pressure rise 

increases with the increasing amplitude ratio. From figure 7 it is also observed that for a fixed  

Q , p∆  increases with an increase in the width of the plug flow region. 
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