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ABSTRACT 
 
Peristaltic pumping of a conducting Jeffrey fluid in a vertical porous channel with heat transfer 
is presented. The perturbation method is used to find the solution. The expressions for 
temperature, velocity, pressure rise and volume flow rate are obtained. The effect of various 
parameters on the temperature and the pumping characteristics are discussed through graphs.  
 
Keywords: Peristalsis; Jeffrey fluid; heat transfer.     
______________________________________________________________________________  
                   

INTRODUCTION 
 

Peristaltic motion in a channel/tube is now known as an important type of flow occurring in 
several engineering and physiological processes. The peristalsis is well known to the 
physiologists to be one of the major mechanisms of fluid transport in a biological system and 
appears in urine transport from kidney to bladder through the ureter, movement of chyme in the 
gastrointestinal tract, the movement of spermatozoa in the ductus effeerentes of the male 
reproductive tract and the ovum in the female fallopian tube, the transport of lymph in the 
lymphatic vessels and vasomotion of small blood vessels such as arterioles, venules and 
capillaries. Such mechanism has several applications in engineering and in biomedical systems 
including roller and finger pumps. 
 
The need for peristaltic pumping may arise in circumstances where it is desirable to avoid using 
any internal moving part such as pistons in pumping process. After the experimental work of 
Latham [1] on peristaltic transport, Shapiro et al. [2] made a detailed investigation of peristaltic 
pumping of a Newtonian fluid in a flexible channel and a circular tube. Sud et al. [3] analyzed 
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the pumping action of blood flow in the presence of a magnetic field. Even though it is observed 
in living systems for many centuries, the mathematical modeling of peristaltic transport began 
with trend setting works by Shapiro et al.[4] using wave frame of reference and Fung and Yin[5]  
using laboratory frame of reference. 
 
Hayat et al. [6] studied the peristaltic flow of a micropolar fluid in a channel with different wave 
frames. Hayat and Ali [7] investigated the peristaltic motion of a Jeffrey fluid under the effect of 
a magnetic field. Vajravelu et al. [8] studied the peristaltic transport of a Casson fluid in contact 
with a Newtonian fluid in a circular tube with permeable wall.   In physiological peristalsis, the 
pumping fluid may be considered as a Newtonian or a non- Newtonian fluid. Kapur [9]  made 
theoretical investigations of blood flows by considering blood as a Newtonian as well as non-
Newtonian fluids. 
 
Radhakrishnamacharya and Srinivasulu [10] studied the influence of wall properties on 
peristaltic transport with heat transfer. Mekheimer and Abd Elmaboud [11] analyzed the 
influence of heat transfer and magnetic field on peristaltic transport of Newtonian fluid in a 
vertical annulus. Hayat et al. [12] studied the effect of heat transfer on the peristaltic flow of an 
electrically conducting fluid in a porous space. Krishna Kumari et.al[13] studied the peristaltic 
pumping of a magnetohydrodynamic casson fluid in an inclined channel. Ravi Kumar et.al[14] 
considered power-law fluid in the study of peristaltic transport. 
 
In this paper, peristaltic flow of a conducting Jeffrey fluid in a vertical porous channel with heat 
transfer is studied. Using the perturbation technique, the nonlinear governing equations are 
solved. The expressions for velocity, temperature and the pressure rise per one wave length are 
determined. The effects of different parameters on the temperature and the pumping 
characteristics are discussed through graphs.   
                          
MATHEMATICAL FORMULATION 
We consider the motion of a MHD Jeffrey fluid in a two-dimensional vertical porous channel 
induced by sinusoidal waves propagating with constant speed ‘c’ along the channel walls. For 
simplicity, we restrict our discussion to the half width of the channel. We assume that a uniform 
magnetic field strength B0  is applied as shown in Figure .1 and the induced magnetic field is 
assumed to be negligible. 
 
The wall deformations are given by 

( ) 2
, cos ( )Y H x t a b x ct

π
λ

 = = + − 
 

    (right wall)                                                             (1) 

( ) 2
, cos ( )Y H x t a b x ct

π
λ

 = − = − − − 
 

  (left wall)                                                              (2) 

 
where 2a is the width of the channel, b is amplitude of the waves and λ  is the wave length. 
 
The constitutive equations for an incompressible Jeffrey fluid are 
 T p I s= − +                                                                                                                           (3) 
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. ..

2
11

s
µ γ λ γ
λ
 

= + 
 +  

                                                                                                             (4) 

where T and s  are Cauchy stress tensor and extra stress tensor respectively, p  is the pressure, I  

is the identity tensor,1λ is the ratio of relaxation to retardation times 2λ is the retardation time , 
.

γ  
is shear rate and dots over the quantities indicate differentiation with respect to time. 
 

 
 

Figure .1 Physical model 
 
 
In laboratory frame, the continuity equation is           

0
U V

X Y

∂ ∂+ =
∂ ∂

                                                                                                                         (5) 

 
The  equations of motion are 

0 0 0( )
XX XYU U P S S

U V U g T T
kX Y X X Y

µρ ρ α
 ∂ ∂ ∂ ∂ ∂+ = − + + − + − ∂ ∂ ∂ ∂ ∂ 

                                     (6) 

0

XY YYU U P S S
U V V

kX Y X X Y

µρ
 ∂ ∂ ∂ ∂ ∂+ = − + + − ∂ ∂ ∂ ∂ ∂ 

                                                                (7) 
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The equation of energy is 
2 2 2

2 2
2

0 0 2 2
( ) 2p

T T T T U V V U
c U V k U

kX Y X Y X YX Y

µρ µ µ
      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + = + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂   ∂ ∂       

   (8)                                                                                                                          

 
The  boundary conditions on velocity and temperature fields are 

( )10U and T T at Y H X= = =                      

0 0 0
U T

and at Y
Y Y

∂ ∂= = =
∂ ∂

                                                                                               (9) 

 

where ,U V are the velocity components in the laboratory frame 0( , ),X Y ρ  is density, µ  is the 

coefficient of viscosity of the fluid, pc  is the specific heat at constant pressure, α  is the 

coefficient of linear thermal expansion of the fluid, 0k  is the thermal conductivity, k is 
permeability and T is temperature of the fluid. 
 
We shall carry out this investigation in a coordinate system moving with the wave speed c, in 
which the boundary shape is stationary. The coordinates and velocities in the laboratory frame

( , )X Y  and the wave frame ),( yx  are related by  

, , , , ( , )x X ct y Y u U c v V p P x t= − = = − = =   
 
where vu,  are the velocity components and Pp,  are the pressures in wave and fixed frames. 
 
Equations (5)-(9) can be reduced into wave frame as follows 

0=
∂
∂+

∂
∂

y

v

x

u
                                                                                            (10)        

( ) ( ) ( )0 0 0

xx xyu u p S S
u c v u c g T T

kx y x x y

µρ ρ α
 ∂ ∂ ∂ ∂ ∂+ + = − + + − + + − ∂ ∂ ∂ ∂ ∂ 

                               (11) 

( )0

xy yyv v p S S
u c v v

kx y y x y

µρ
 ∂ ∂ ∂ ∂ ∂+ + = − + + − 

∂ ∂ ∂ ∂ ∂ 
                                                 (12)                                                 

( ) ( )
2 2 2

2 2 2

0 0 2 2 2p

T T T T u v v u
c u c v k u c

kx y x y x yx y

µρ µ µ
         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 + + = + + + + + + +          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          

              (13)                                                                                                                         

 
Boundary conditions in wave frame are 

10 ( )u c and T T at y H x+ = = =  

0 0 0
u T

and at y
y y

∂ ∂= = =
∂ ∂

                                                                                                (14) 

 
we introduce the following non–dimensional quantities : 
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2 22 2 2 2
, , , , , , , ,

x y u v a a p ct H
x y u v p t h

a c c c a

π π π πδ
λ δ λ µ λ λ

= = = = = = = =                                    

( ) ( ) 3
1 0

1 0 0 2
0

, , , , , ,
g T T aa b a

S S T T T T Gr
c a k

αµφ σ γ θ
µ ρ γ

−
= = = = = − + =    

 
( )

2
0

0 1 0

Pr , , , , Prp

p

c ca ca Gr c
R G Ec N Ec

k R c T T

µ ρ
µ γ

= = = = = =
−

                                      (15)               

 
where R is the Reynolds number, δ  is the dimension less wave number, σ  is the permeability 
parameter, Gr is the Grashof number, Pr is the Prandtl number, γ  is the Kinematic viscosity of 
the fluid, Ec is the Echet number and N is the perturbation parameter. 
 
The basic equations (10)-(13) can be expressed in the non-dimensional form as follows  

0
u v

x y

∂ ∂+ =
∂ ∂

                                                                                                                                 (16) 

( ) ( )2 21 ( ) 1xyxx
SSu u p

R u v M u G
x y x x y

δ δ σ θ
∂∂ ∂ ∂ ∂+ + = − + + − + + + ∂ ∂ ∂ ∂ ∂ 

                                   (17) 

( )3 2 2 2 21 ( )xy yyS Sv v p
R u v M v

x y x x y
δ δ δ δ σ

∂ ∂ ∂ ∂ ∂+ + = − + + − + ∂ ∂ ∂ ∂ ∂ 
                                           (18) 

( )

( )

222 2
2 2

2 2

2
22 2 2

Pr 1 2

( ) 1

u v
R u v N

x y x yx y

v u
N N M u

x y

θ θ θ θδ δ δ

δ σ

     ∂ ∂ ∂ ∂ ∂ ∂ + + = + + +      ∂ ∂ ∂ ∂∂ ∂         

 ∂ ∂+ + + + + ∂ ∂ 

                                             (19) 

where 

2

1

2
1

1xx

c v u
S u

a x y x

δλδ
λ δ
  ∂ ∂ ∂= + +  + ∂ ∂ ∂  

 

2

1

1
1

1xy

c v u v
S u

a x y y x

δλ δ
λ δ
    ∂ ∂ ∂ ∂= + + +    + ∂ ∂ ∂ ∂    

 

2

1

2
1

1yy

c v u
S u

a x y y

δλδ
λ δ
  − ∂ ∂ ∂= + +  + ∂ ∂ ∂  

 

And 
 

2

2
10

1

1
xys u

y yδ
λ

→

∂  ∂= ∂ + ∂ 
  

 
The non-dimensional boundary conditions are  
 1 1u and at y hθ= − = =                                                            
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0 0 0
u

and at y
y y

θ∂ ∂= = =
∂ ∂

                                                                                           (20)         

 
Using long wave length approximation and dropping terms of order δ   and higher , 
 
It follows equations (17) to (20) are 

2
2 2

2
1

1
0 ( )( 1)

1

p u
M u G

x y
σ θ

λ
∂ ∂= − + − + + +
∂ + ∂

                                                                        (21)             

0
p

y

∂= −
∂

                                                                                                                                    (22) 

2
2 2 2 2

2
0 ( ) ( )( 1)

u
N N M u

yy

θ σ∂ ∂= + + + +
∂∂

                                                                                 (23) 

 1 1u and at y hθ= − = =                                                            

0 0 0
u

and at y
y y

θ∂ ∂= = =
∂ ∂

                                                                                            (24) 

 
The dimensional volume flow rate in the laboratory and wave frames are given by  

  Q = 
( , )

0

( , , )
h x t

U X Y t dY∫   ,       
( )

0

( , )
h x

q u x y d y= ∫  

and now these two are related by the equation  
Q  = q + c )(xh   
 

The time averaged flow over a period T at a fixed position x  is  

0

1 T

Q Q d t
T

= ∫
 

SOLUTION OF THE PROBLEM 
Equations (21) and (23) are non-linear because they contain two unknowns u and θ  which must 
be solved simultaneously to yield the desired velocity profiles. Due to their nonlinearity they are 
difficult to solve. However the fact N is small in most practical problems allows us to employ a 
perturbation technique to solve these non-linear equations. We write 
 

0 1u u Nu= +  

0 1Nθ θ θ= +                                                                                                                              (25) 

 
Using the above relations, the equations (21), (23) and (24)   become 

2
2 20 1 0 1

0 1 0 12
1

( ) ( )1
0 ( )( 1) ( )

1

d p Np u Nu
M u Nu G N

dx y
σ θ θ

λ
+ ∂ +

= − + − + + + + +
+ ∂

                   (26) 
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22
2 2 20 1 0 1

0 12

( ) ( )
0 ( )( 1)

N u Nu
N N M u Nu

yy

θ θ σ∂ + ∂ + = + + + + + ∂∂  
                                      (27) 

0 0 11 1u Nu and N at y hθ θ+ = − + = =  

0 0 1( ) ( )
0 0 0

u Nu N
and at y

y y

θ θ∂ + ∂ +
= = =

∂ ∂
                                                               (28)     

 
Zeroth order solution 
By comparing constant terms on both sides of the above equations we get the zeroth order 
equations as below 

2
2 20 0

0 02
1

1
0 ( )( 1)

1

dp u
M u G

dx y
σ θ

λ
∂

= − + − + + +
+ ∂

                                                                  (29) 

2
0

2
0

y

θ∂
=

∂
                                                                                                                                   (30) 

0 01 1u and at y hθ= − = =  

0 00 0 0
u

and at y
y y

θ∂ ∂
= = =

∂ ∂
                                                                                        (31) 

 
Solving the equations (29) and (30) with the boundary conditions (31), we obtain  

20 0

1
0 2 2

1

cosh 1

cosh 1

dp dp
G Gydx dxu

h

ββ λ
β ββ λ

− + −+
= −

+
                                                                      (32) 

0 1θ =                                                                                                                                         (33) 

where � = ���� � ��� 
 
Using the relation (7.25) we obtain zeroth order dimensionless mean flow in the laboratory and 
in the wave frame  

	
 � � 

�


  �� =F0 + 1     

     

2
1 10

2 23 3
1 1 1 1

sinh 1 nh 1 ( )

1 cosh 1 1 cosh 1

h Gsi hdp h Gh

dx h h

β λ σ λ β
β ββ λ β λ β λ β λ

 + + −
= − − − 

 + + + + 
                          (34) 

 
The pressure gradient is given by 

2
1

0 23
1 10

1
23

1 1

nh 1 ( )

1 cosh 1

sinh 1

1 cosh 1

G si h h G
F

hd p

dx h h

h

β λ β
ββ λ β λ

β λ
ββ λ β λ

+ −+ +
+ +

=
 +

−  + + 
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2
1

0 23
1 1

1
23

1 1

nh 1 ( )
1

1 cosh 1

sinh 1

1 cosh 1

G si h h G
Q

h

h h

h

β λ β
ββ λ β λ

β λ
ββ λ β λ

+ −− + +
+ +

=
 +

−  + + 

                                                (35)                                                  

 
The non-dimensional zeroth order pressure rise is given by 

1
0

0

0

dp
p dx

dx
∆ = ∫                                                                                                                           (36) 

Time mean flow (time averaged flow rate)   	
��� = 
�
�
 � 	
 ���


  =F0 +1                     (37) 

 
First order solution 
From equations (7.26), (7.27) and (7.28) we obtain the first order equations 

2
2 21 1

1 12
1

1
0 ( )

1

dp u
M u G

dx y
σ θ

λ
∂

= − + − + +
+ ∂

                                                                           (38) 

22
2 2 201

02
0 ( )( 1)

u
M u

yy

θ σ∂∂  = + + + + ∂∂  
                                                                                 (39) 

1 10 0u and at y hθ= = =  

1 10 0 0
u

and at y
y y

θ∂ ∂
= = =

∂ ∂
                                                                                         (40) 

 
Solving the equations (38) and (39) with the use of boundary conditions (40) we obtain  

1 1 8 9 101
1 1 1022

1 1

2 32 4
1 1 1 12 2

cosh 1 ( )1
cosh 1

cosh 1 cosh 1

cosh 2 1 1 h 1
2 3 2

y GA A A Adp
u y A

dx h h

AA A
GA y y ySin y

β λ
β λ

ββ β λ β λ

β λ λ β λ
β β β

   + + −= − + + +      + +   

 − − − + + + + 
 

                   (41) 

2

1 1 2 3 1 4 1 2cosh 2 1 cosh 1
2

y
A A A y A y Dθ β λ β λ 

= − + + + + 
 

                                              (42) 

where  

2

0

1 2

dp
G

dx
A

β

 − 
 =

,

1
2 2

1

1
2cosh 1

A
h

λ
β λ

= −
+

 

1
3 2 2

1 1

2

8 (1 )cosh 1
A

h

λ
β λ β λ

+=
+ + ,

4 2
1 1

2

(1 )cosh 1
A

hβ λ β λ
=

+ +
 

( )2 1 5 6 7D A A A A= − −
, 5 3 1cosh 2 1A A hβ λ= +

,

2

6 2 7 2
1

2
,

2 (1 )

h
A A A

β λ
= =

+
 

2 32
8 12 2

cosh 2 1
2 3

AA
A h hβ λ

β β
= − − +

,

4
9 1 11 sinh 1

2

A
A h hλ β λ

β
= + +  
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1 2
10 22 2

1(1 )

A AG
A D

β β λ
 

= + + 
 

 
Using the relation (7.25) we obtain first order dimensionless mean flow in the laboratory and in 
the wave frame  

	�= 1 1

0

h

F u dy= ∫  

( )1
1 11 12 1 13 14 10

dp
F A A GA A A A h

dx
= + − + +                                                                                (43) 

 
The pressure gradient is given by 

( )( )1 12 1 13 14 101

11

F A GA A A A hdp

dx A

− + + −
=                                                                       

( )( )1 12 1 13 14 10

11

Q A GA A A A h

A

− + + −
=                                                                                      (44) 

 
where 

1
11 23

1 1

inh 1

1 os h 1

S h h
A

C h

β λ
ββ λ β λ

+
= −

+ + ,

11 8 9 10
12

1 1

nh 1( )

osh 1 1

Si hG A A A A
A

C h

β λ
β λ β λ

  ++ −=   + + 
 

3 132
13 2 3

1

inh 2 1

6 6 1

A S hA
A h

β λ
β β λ

+
= − −

+ ,

 

 
The non-dimensional first  order pressure rise is given by 

1
1

1

0

dp
p dx

dx
∆ = ∫                                                                                                                           (45) 

 
The expression for the velocity is given by  
 0 1u u N u= +                                                                                                                            (46) 

 
where 0u  and 1u  are given by the equations (32) and (41) 

 
The expression for the temperature is obtained as  

0 1Nθ θ θ= +                                                                                                                              (47) 

 
where 0θ  and 1θ  are given by the equations (33) and (42) 

 
The expression for the pressure rise is  

( )
1 14

14 1 2
1 1

sh 1 inh 1
1

2 1 1

h Co h S hA
A

β λ β λ
λ

β β λ β λ

 
+ + = + − + +
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0 1p p N p∆ = ∆ + ∆                                                                                                                      (48) 

 
where 0p∆  and 1p∆  are given by the equations (36) and (45) 

 
RESULTS AND DISCUSSION 

 
Temperature is calculated from the equation (47) to study the effects of various parameters such 
as permeability parameter, material parameter ��(Jeffrey parameter), Grashof number Gr, 
Reynolds number R and perturbation parameter  N on it. 
 
Figure.2 is drawn to study the effect of Jeffrey parameter on the temperature with fixed values of 
the remaining parameters. It is observed that the temperature increases with increasing 1λ  . The 

curve 01 =λ  corresponds to Newtonian fluid.  
 
The effect of permeability parameter σ  on the temperature is studied from figure. 3. It is 
observed that the temperature decreases with increasing .σ   
 
From figure .4 it is noticed that the temperature increases with increasing Grashof number Gr 
with fixed a = 0.5, b = 0.5, ,1.0=σ  x =0, M = 5. It is observed from figure .5, that the 
temperature decreases with increasing values of Reynolds number R. The effect of perturbation 
parameter N on the temperature is shown in figure .6. It is noticed that the temperature increases 
with increasing N. Figure .7 is plotted to study the effect of magnetic parameter M on the 
temperature. It is observed that the temperature decreases with increasing magnetic parameter M. 
Using equation (47) we have calculated the variation of time averaged flux 	�  with ∆� 
 
For different values of Jeffry parameter �� ���� � � 0.8 , � � 0.2, " � 0.1, $% � 0.1, & �
0.1 '(� � � 1 as shown in Figure .8. It is observed that the pressure rise ∆� decreases when 
	�  increases. Also it is noticed that for a given mean flow, ∆�  increases with increasing ��. 
 
Figure .9 shows the variation of pressure rise ∆p with time averaged flux 	� for different values 
of N with Ø =0.8, σ = 0.2,  ��= 1, Gr = 0.1, R = 0.1 and M=1. It is observed that the pressure rise 
∆p decreases when 	� increases. Also for a given 	� , ∆p increases with increasing N. For a fixed 
∆p the mean flow 	�  increases with increase in N.  
 
The variation of pressure rise ∆p with time mean flow rate 	� for different values of permeability 
parameter σ with Ø =0.8, N=0.1, ��= 1, Gr = 0.1, R =0.1 and M=1 and is shown in figure .10. It 
is shown that the pressure rise decreases with the increase in the mean flow rate. Also for a fixed 
	� pressure rise ∆p decreases when σ increases. It is observed that for a fixed pressure rise ∆p, 	� 
decreases with the increase in σ. 
 
The variation of pressure rise ∆p with time averaged volume flow rate 	� for different values of 
Magnetic parameter with Ø =0.8, N=0.1, ��= 2, Gr = 0.1, R =0.1 and σ =1 and is shown in figure 
.11.It is observed that for a given ∆p, 	� increases as the Magnetic Parameter M increases. Also it 
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is observed that an increase in Magnetic Parameter M, increases the peristaltic pumping rate, 
pressure rise in pumping region. 
 

 
Figure.2 Temperature profiles for different values  of Jeffrey parameter )* with fixed 

� � 1.0, � � 0.5, " � 0.1, $% � 0.1, & � 0.1, � � 5,
�,


�-
� .1,

�,�

�-
� .1 

 
 

 
Figure .3 Temperature profiles for different values  of permeability parameter  /  with fixed 

 

� � 1.0. � � 0.5, �� � 1, " � 0.1, $% � 0.1, & � 0.1, � � 5,
�,


�-
� .1,

�,�

�-
� .1 
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Figure .4 Temperature profiles for different values  of Grashoff number with fixed 

� � 1.0, � � 0.5, �� � 1, " � 0.1, $% � 0.1, & � 0.1, � � 5,
�,


�-
� .1,

�,�

�-
� .1 

 
Figure .5 Temperature profiles for different values  of Reynolds number with fixed 

                    � � 1.0, � � 0.5, �� � 1, " � 0.1, $% � 0.1, � � 5, 012

03
� .1, 014

03
� .1 
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Figure .6 Temperature profiles for different values of Perturbation parameter with fixed 
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Figure.7  Temperature profiles for different values  of magnetic parameter with fixed 
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Figure.8.The variation of 
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Figure .9. The variation of 
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Figure.8.The variation of p∆  with Q  for different values of λ1
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Figure .9. The variation of p∆  with Q for different values of N with
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