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ABSTRACT  
 
Peristaltic transport of a conducting fluid in a composite region between two flexible walls is investigated under the 
assumptions of long wavelength and low Reynolds number. The composite region consists of  core and  peripheral 
layers. The core layer is a free flow region consisting of a conducting Newtonian fluid and the peripheral layer is a 
porous region filled with conducting fluid. An infinite train of peristaltic waves is moving on the walls of the 
channel. The fluid flow is investigated in the wave frame of reference moving with the velocity of the peristaltic 
wave. Brinkman extended Darcy equation is used to model the flow in the porous layer. A shear-stress jump 
boundary condition is used at the interface. The physical quantities of importance in peristaltic transport like 
pressure rise  etc. are discussed for various parameters of interest   governing the flow like viscosity ratio, magnetic 
parameter and amplitude ratio. The results found will have applications for understanding the physiological flows 
in small blood vessels which can modeled as channels bounded by finite permeable layers (Fung and Tang, [5]). 
 
Key words: peristaltic transport, conducting Newtonian fluid, porous peripheral layer, low Reynolds number.  
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 
Peristaltic transport of a biofluid through a channel with permeable walls is of considerable importance in biology 
and medicine. Peristalsis is an inherent property of many of the smooth muscle tubes such as the gastrointestinal 
tract, bile duct, ureter and other glandular ducts. The fluids present in the ducts of a living body are called biofluids. 
The biofluid has to be treated as Newtonian or non-Newtonian depending on the physiological situation. Peristaltic 
pumping through a tube and a channel under the assumptions of low Reynolds number and long wavelength is 
discussed by Shapiro [18]. Lu [10] studied the influence of two Newtonian fluids with different viscosities on 
peristaltic pumping. Kavitha et al. investigated the Peristaltic flow of a micropolar fluid in a vertical channel with 
longwave length approximation. Brasseur et al. [3] discussed the influence of a peripheral layer of different viscosity 
on peristaltic pumping with Newtonian fluids. 
 
The boundary conditions to be satisfied at the interface of a two fluid system are the matching of tangential velocity, 
normal velocity, shear stress and normal stress. Beavers and Joseph [2] have studied the fluid flow at the interface 
between a porous medium and fluid layer experimentally and proposed a slip condition in velocity at the interface. 
There exist numerous subsequent studies in the literature which suggest different boundary conditions at the 
interface between  porous and fluid layers (Chen and Chen [4], Neale and Nader [11], Poulikakos and Kazmierczak 
[15], Saffman [17], Vafai and Kim [20]. Ochoa-Tapia and Whitaker [14] introduced a new boundary condition 
which accounts for the jump in the shear stress  at the interface between porous and fluid layer by applying a 
sophisticated averaging volume technique. Kuznetsov [8,9] discussed the significance of the shear stress jump 
condition at the interface and applied this condition to investigated the fluid flow in a channel partially filled with a 
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porous medium. Alazmi and Vfai [1] investigated the fluid flow and heat transfer between porous medium and a 
fluid layer by considering various types of interfacial matching of shear stress conditions reported in the literature.  
              
The mathematical modeling of the two fluid system involves the determination of the interface between the core and 
peripheral layers. Ramachandra Rao and Usha [16] analyzed the peristaltic transport of two immiscible Newtonian 
fluids in a circular tube. Mishra and Ramachandra Rao [13] studied the peristaltic transport  in a channel with a 
porous peripheral layer. Most of the physiological fluids (for eg : blood) are observed to be electrically conducting. 
Further the behavior of such fluids under a magnetic field  in various organs of a human/animal body has to be 
analyzed due to its applications in medical diagnosis.   
              
Motivated by these facts, the peristaltic transport of a conducting fluid in a two-layered system with a porous and 
core layers is investigated. The fluid flow is studied in the wave frame of reference moving with the velocity of the 
peristaltic wave. Brinkman extended Darcy equation is used to describe the flow in the porous layer. The interface is 
obtained as a part of the solution using the conservation of  mass in both the porous and fluid regions independently. 
Ochoa-Tapia and Whitaker [14] shear-stress jump boundary condition is used at the interface. The physical 
quantities of importance in peristaltic transport like pressure rise etc. are discussed for various parameters of interest 
governing the flow like viscosity ratio, amplitude ratio and magnetic parameter.     
 
2. Mathematical formulation 
 
Consider the peristaltic transport  in  a two dimensional channel, with a porous  peripheral layer consisting of a 

conducting Newtonian fluid of viscosity 1µ  and an incompressible conducting Newtonian fluid of viscosity 2µ  in 

the core region. A uniform transverse magnetic field of strength 0B  is applied perpendicular to the channel walls. 

We assume that the porous medium is isotropic and homogeneous. The channel wall is flexible and infinite wave 
train is moving on the walls of amplitude b with wave length λ  in the axial direction with a constant speed c . The 

walls are taken by ( )y H X ct= ± −  in Cartesian coordinate system ( ),X Y  with t as the time.  The mean width 

of the channel is 2a and the deformed interface separating the core and the peripheral regions is denoted by 

( )1y H X ct= − . Under the assumptions that the tube length is an integral multiple of the wavelength and the 

pressure difference across the ends of the channel is constant (Shapiro et al. [18]) and an additional condition of 
periodicity of the interface with the same period as the peristaltic wave (Brasseur et al. [3]), the flow becomes steady 
in a  wave  frame of reference (x, y)  moving with speed  c  in the direction of the wave propagation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Physical Model 
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The wave frame is connected to the fixed frame by the following equations: 

( )
, , ,

, ( ) ,
i i

i i i i

x X ct y Y u U c

v V p x P X t

= − = = −
= =

                                                                                                                         (1) 

Here ( ),i iu v  and ( ),i iU V  are the velocity components in axial and transverse directions ip  and iP  are the 

pressures in wave and fixed frame of references and  the subscripts i  takes the value 1 for the core layer and 2 for 
the peripheral layer .  
  
The governing equations of motion in the fluid region in the core layer 
  

( )10 y H≤ ≤  are 

2 2
21 1 1 1 1

1 1 1 1 1 0 12 2

u u p u u
u v B u

x y x y x
ρ µ σ

 ∂ ∂ ∂ ∂ ∂ 
+ = − + + −  ∂ ∂ ∂ ∂ ∂   

                                                                         (2) 

1

2 2
1 1 1 1 1

1 1 1 2 2

v v p v v
u v

x y y y x
ρ µ

 ∂ ∂ ∂ ∂ ∂ 
+ = − + +  ∂ ∂ ∂ ∂ ∂   

                                                                                            (3) 

1 1 0
u v

x y

∂ ∂
+ =

∂ ∂
                                                                                                                                                           (4) 

where 1µ , 1σ , 0B and 1ρ  are viscosity , electrical conductivity, magnetic flux  and density in the fluid region. The 

governing equations of the porous region in the peripheral layer ( )1H y H≤ ≤  are the Brinkman extended Darcy 

equations given by (Alazmi and Vafai, 2001) 
2 2

22 2 2 2 2 2 2
2 2 2 2 2 0 22 2

u u p u u
u v u B u

x y x ky x

µ µρ σ
ε
 ∂ ∂ ∂ ∂ ∂ 

+ = − + + − −  ∂ ∂ ∂ ∂ ∂   
                                                   (5) 

2 2
2 2 2 2 2 2 2

2 2 2 22 2

v v p v v
u v v

x y y ky x

µ µρ
ε
 ∂ ∂ ∂ ∂ ∂ 

+ = − + + −  ∂ ∂ ∂ ∂ ∂   
                                                                         (6) 

2 2 0
u v

x y

∂ ∂
+ =

∂ ∂
                                                                                                                                                          (7) 

 

where 2ρ , 2σ , 2µ ,ε  and k are the density, electrical conductivity, viscosity, porosity and  permeability in the 

porous region. 
 
Following the experimental investigation of Gilver and Altobelli [6] the effective viscosity in the Brinkman model is 

taken as 2µ
ε

. 

The following non-dimensional quantities are used 
2

1 1 1 1 1 1

1 1

1 2 2
1

1 1

2 2
1 2 0

1 2
1 1

, , , , ,

, , , , ,

, , Re ,

i i i
i i i

i i
i i

a p u vx y ct
x y t p u v

a c c c

Ha H b
h h

a a a

B a ca k
M Da

ac a

λ λ µ λ δ
µ ρδ φ µ ρ

λ µ ρ
ψ σψ ρ

µ µ

= = = = = =

= = = = = =

= = = =

                                                                    (8) 

The governing equations of motion  (2) - (7) in terms of stream functions iψ  (where ,i i
i iu v

y x

ψ ψ∂ ∂
= = −

∂ ∂
) 

after nondimensionalyzation become 
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( )
( ) ( )

2 2
1 1 1 1 1 1 1 1 1

3 2 2
1 1 1 1 1 1 1

Re ,

Re , 0

y yx x yy x yyy yxx y

y xx x yx y xyy xxx

p M

p y h

δ ψ ψ ψ ψ ψ δ ψ ψ

δ ψ ψ ψ ψ δ ψ δ ψ

− = − + + −

− = + + ≤ ≤
                                              (9) 

( ) ( )

( ) ( )

2 2
2 2 2 2 2 2 2 2 2 2

3 2 2 2
2 2 2 2 2 2 2 2 1

Re ,

Re ,

y yx x yy x yyy yxx y y

y xx x xy y xyy xxx x

p M
Da

p h y h
Da

µ µδρ ψ ψ ψ ψ ψ δ ψ ψ ψ
ε
µ µδ ρ ψ ψ ψ ψ δ ψ δ ψ δ ψ
ε

− = − + + − −

− = + + − ≤ ≤
                   (10) 

 
where Re is the Reynolds number, Da is the Darcy number and M is the magnetic parameter. The subscripts x and y 
denote the partial differentiation with respect to that variable. 
 
Under the assumptions of negligible inertia (Re o→ ) and long wavelength ( 1δ << ) and eliminating pressures 

1 2p and p  from the equations (9) and (10) by cross differentiations, the equations governing the motion are  
2

1 1 1 0yyyy yyMψ ψ− = in 10 y h≤ ≤                                                                                                                      (11) 

2
2 2 0yyyy yyψ β ψ− =  in  1h y h≤ ≤                                                                                                                     (12) 

Where 2 2 2
2M

εβ α
µ

= +    and    2

Da

εα =  

 The corresponding dimensionless boundary conditions are  

2 21,y qψ ψ= − =          at ( )y h x=                                                                                                                    (13) 

1 10, 0yyψ ψ= =           at 0y =                                                                                                                            (14) 

At the interface ( )1y h x= : 

1 2 1qψ ψ= =                                                                                                                                                            (15) 

1 2y yψ ψ=                                                                                                                                                                 (16) 

( )1 2 1 2yy yy yεψ µ ψ β ψ= −                                                                                                                                     (17) 

( )2
1 2 2yyy yyy yεψ µ ψ α ψ= −                                                                                                                                  (18) 

 

where q and 1q in (13) and (15)  are the total and core fluxes respectively, 

ε
µµ
ε

=  and 1
Da

βεβ =  

In (13) the first condition at y=h(x) is the no-slip condition. The second at ( )y h x= in (13) and the conditions at 

( )1y h x= in (15) are the requirement of conservations of mass in core as well as in the peripheral layer 

independently across any cross section in the wave frame. The conditions in (14) imply that the velocity attains a 
maximum on the streamline 0y = . The  continuity of velocity across interface is given by (16). The shear stress 

jump condition (17) is according to Ochoa-Tapia and Whitaker [14]. The continuity of normal stress implies 

1 2p p= , which means the continuity of the pressure gradient 1 2p p

x x

∂ ∂
=

∂ ∂
 at the interface and it reduces to (18). 

Hence the pressure remains constant across any cross section of the channel. We observe that the above governing 
equations and the corresponding boundary conditions reduce to those given by Brasseur et al. [3] in the limit 

Da → ∞  and 0iM → . 

 
SOLUTION OF THE PROBLEM 

              
 Solving equations (11) and (12) with the use of corresponding boundary conditions  (13)-(18), we obtain the stream 
functions in the core and peripheral layers as 
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1 2 1 1 12
1

1
sinh , 0 ,c M y c y y h

M
ψ = − ≤ ≤                                                                                               (19) 

( )2 3 4 1 2 12

1
cosh sinh , ,D y D y D y D h y hψ β β

β
= + − + ≤ ≤                                                      (20) 

Where 
 

( )1 2 2 1 3 3 5 4 4
1

1
c c L D L D L D L

L
= + − − , ( )2 1 20 2 21 3 22 4 23

19

1
c D L D L D L D L

L
= − − − −  

( )1 1 7 4 35 3 34
33

1
D qL L D L D L

L
= − − − , ( )2 1 29 3 30 4 31

32

1
D D L D L D L

L
= − + +  

( )3 1 7 24 4 37
36

1
D qL L L D L

L
= − , 

( )24 1 7 27 36
4

27 37 28 36

L qL L L L
D

L L L L

+
=

−
 

1 2 1 1 1 32 2
1

1 1
, cosh ,L L M M h L

M β
= = = , 4 1 5 1 6 3cosh , sinh ,L h L h L h Lβ β β β= = =  

2 1
7 1 1 1 8 2

sinh ,L M M h L ε
βµ
β

= = , ( )2
9 1 1 1sinh coshL h hεµ ββ β β β= −  

( )2
10 1 1 1sh sinhL co h hεµ ββ β β β= − , 11 12sinh , shL h L co hβ β β β= =  

2
3

13 1 1 14 2
sh ,L M co h L ε

αβ µ
β

= = , ( )2 2
15 1sinhL hεµ β β α β= −  

( )2 2
16 1shL co hεµ β β α β= − , 17 1 1L h L= ,    18 1 3L h L= , 19 1 1 1 2 17sinhL L M h L L= −  

 

20 1 18 3 17L L L L L= − ,   21 1 3L L L= , 22 5 17 1 1coshL L L L hβ= − , 23 4 17 1 1sinhL L L L hβ= −  

 

24 7 14 8 13L L L L L= − , 25 7 15 9 13L L L L L= + , 26 7 16 10 13L L L L L= + , 27 3 25 11 24L L L L L= +  

 

28 3 26 12 24L L L L L= + , 29 8 19 7 20L L L L L= + , 30 9 19 7 22L L L L L= − , 31 10 19 7 23L L L L L= −  

 

32 7 21 7 1 3L L L L L L= = , 33 1 7 6 29L L L L L= − , 34 30 1 7coshL L L L hβ= − , 

 

35 31 1 7sinhL L L L hβ= − , 36 25 33 24 34L L L L L= − , 37 26 33 24 35L L L L L= −  

 
Using the relations  (19) and (20) in the momentum equations (9) or (10) we obtain the pressure gradient as 
 

( )1 2 2 1 3 3 5 4 4
1

1dp
c c L D L D L D L

dx L
= = + − −                                                                                                    (21) 

 
At any axial station, the non-dimensional flux Q in the fixed frame is connected with the flux q in the wave frame by  
 

0

( 1)
h

Q u dy q h= + = +∫                                                                                                                                        (22) 
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The mean flow rate over one period (T
c

λ= ) of the peristaltic wave is given by 

0 0

1

0

1 1
( ( , ))

1

T T

Q Q dt q h x t dt
T T

q h dx q

= = +

= + = +

∫ ∫

∫

                                                                                                                    (23) 

The peristaltic wave propagating on the walls in fixed frame is govern by 
2

( , ) sin ( )H X t a b X ct
π
λ

= + − , and 

its non-dimensional form in wave frame is  ( ) 1 sin 2h x xφ π= + .  

 
The interface between the porous and fluid regions which is not known  ‘a priori’, and it  should be a streamline in 
order to satisfy the conservation of mass in both the regions. From the equations (15) and (20), we find an equation 

governing the interface 1( )h x  as 

( ) ( )1 1 3 1 4 1 1 1 22

1
cosh sinh 0f h q D h D h D h Dβ β

β
= − − + + =                                                               (24) 

The constants q  and 1q  are independent of x . By prescribing 1h γ=  at 0x =  in (24), we get 

( )1 3 4 1 22

1
cosh sinhq E E E Eβγ βγ γ

β
= − + +  

Where 
 

( )( )1 1 7 4 35 3 34
33

1
1E Q S S E S E S

S
= − − − −  

( )2 1 29 3 30 4 31
32

1
E E S E S E S

S
= − + +  

( )( )3 1 7 24 4 37
36

1
1E Q S S S E S

S
= − −  

( )( )24 1 7 27 36

4
27 37 28 36

1S Q S S S S
E

S S S S

− +
=

−
 

1 1 2 1 1 3 3, cosh ,S L S M M S Lγ= = =  

4 5 6 3cosh , sinh ,S S S Sβ βγ β βγ= = =  
2

7 1 1 8 8sinh ,S M M S Lγ= =  

( )2
9 1 sinh coshS εµ ββ βγ β βγ= −  

( )2
10 1 sh sinhS coεµ ββ βγ β βγ= −  

11 12sinh , shS S coβ β β β= =  

2
3

13 1 14 142
sh ,S M co S Lε

αβγ µ
β

= = =  

( )2 2
15 sinhS εµ β β α βγ= −  

( )2 2
16 shS coεµ β β α βγ= −  

17 1S Sγ= ,    18 3S Sγ=  

 

19 1 1 2 17sinhS S M S Sγ= −  

20 1 18 3 17S S S S S= − ,   21 1 3S S S=  

22 5 17 1coshS S S S βγ= −  

23 4 17 1sinhS S S S βγ= −  

24 7 14 8 13S S S S S= −    

25 7 15 9 13S S S S S= +  

26 7 16 10 13S S S S S= +     

27 3 25 11 24S S S S S= +  

28 3 26 12 24S S S S S= +    

29 8 19 7 20S S S S S= +  

30 9 19 7 22S S S S S= −     

31 10 19 7 23S S S S S= −  

32 7 21 7 1 3S S S S S S= =    

33 1 7 6 29S S S S S= −  

34 30 1 7coshS S S S β= −  

35 31 1 7sinhS S S S β= −  

36 25 33 24 34S S S S S= −  

37 26 33 24 35S S S S S= −  
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We assume that γ φ>  to avoid the intersection of the interface with x-axis (Mishra and Ramachandra Rao, [12]). 

Since the equation (24) is a transcendental equation and it may have many positive real roots. But the interface is 

well defined only when there exists a single root 1h  of ( )1 0f h =  in the interval 10 h h≤ ≤ . In this way for a 

given x, 1h (x) is computed. Integrating equation (21) over one  wave length, we get the pressure rise as 

 

( )

1 2

1

2 2 1 3 3 5 4 4
10

1

P p p

c L D L D L D L dx
L

∆ = −

= + − −∫
                                                                                                  (25) 

 

 
Fig.2: The Shape of the interface for different µ with fixed 

1 0.5,M =  2 1,M = 0.6,γ = 0.4φ = , 0.5ε = ,Da=0.5, 0.5.Q=  

Fig.3: The Shape of the interface for different µ with fixed 
1 1.5,M =  2 1,M = 0.6,γ = 0.4φ = , 0.5ε = ,Da=0.5, 0.5.Q=  

 

 
Fig.4: The Shape of the interface for different 

1M  with fixed 
2 1,M = 0.6,γ = 0.4φ = , 0.5ε = , Da=0.5, 2,µ =  0.5.Q=  

Fig.5: The Shape of the interface for different
2M  with fixed 

1 1,M = 0.6,γ = 0.4φ = , 0.5ε = , Da=0.5, 2,µ =  0.5.Q=  
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Fig.6: The Shape of the interface for different φ with fixed

 1 0.5,M = 2 1,M = 0.6γ = , 2,µ = 0.5ε = ,Da=0.5, 0.5.Q=  

Fig.7: The Shape of the interface for different φ with fixed
 1 1.5,M = 2 1,M = 0.6γ = , 2,µ = 0.5ε = ,Da=0.5, 0.5.Q=  

 

 
Fig.8: Variation of  pressure rise versus mean  Flow rate for different µ  (

1 0.5M = ,
2 1M =  ). 

Fig.9: Variation of  pressure rise versus mean flow rate for different µ  (
1 1.5M = ,

2 1M =  ) with fixed 0.4γ = , 0.6φ = , 

0.4ε = , 0.6.Da=  

 
RESULTS AND DISCUSSION 

              
The interface which is a stream line in the wave frame is obtained from (24) and plotted in figures (2) - (7) to study 
the effects of different parameters on the shape of interface. From figures (2) and (3) we observe that the thickness 
of the peripheral layer decreases slightly in the dilated region with the increase in viscosity ratio. From figures (4) 
and (5) it is noticed that lower magnetic field gives rise to a thin peripheral layer in the dilated region. The uniform 
shape is never obtained. From (6) and (7) we observe that the thickness of the peripheral layer decreases  in the 
dilated region with the increase inφ . 

                            

The equation (25) gives the expression for the pressure rise P∆ in terms of  the mean flow Q . Figures (8) and (9) 

shows that the pressure rise decreases with the increase in Q . We find that for fixed Q  pressure rise increases 

with increasing µ . We also notice that for a given P∆  mean flow rate increases with the increase in µ . 
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Fig.10: Variation of  pressure rise versus mean flow rate for different 

1M  (
2 1M = ).

 
Fig.11: Variation of  pressure rise versus mean flow rate for different 

2M  (
1 1M = ) with fixed 0.4,γ = 0.6φ = , 0.4ε = , 

Da=0.6, 0.6.µ =  
 

 

 
Fig.12: Variation of  pressure rise versus mean flow rate for different φ  

Fig.13: Variation of  pressure rise versus mean flow rate for different φ  with fixed
 1 1.5,M = 2 1,M = 0.4γ = , 0.6,µ = 0.4ε = , 

Da=0.6.
  

The variation of  pressure rise with the mean flow for different values of 1M  is shown in figure (10). We observe 

that for fixed Q  pressure rise increases with the increase in 1M . It is noticed that for a given P∆  mean flow rate 

increases with increasing 1M . 

 

The variation of  pressure rise with the mean flow for different values of 2M  is shown in figure (11). We observe 

that the pumping curves are intersect at appoint between 0.05 and 0.1, above this point for fixed Q  pressure rise 

increases with the increase in 2M  and below the intersecting point opposite behavior can be observed.  

               
The variation of  pressure rise with the mean flow for different values of φ  is shown in figures (12) and (13). We 

notice that for fixed Q pressure rise increases with increasing φ . It is observed that for a given P∆  mean flow 

rate increases with increasing φ . 
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