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ABSTRACT

Peristaltic transport of a conducting fluid in a composite region between two flexible walls is investigated under the
assumptions of long wavelength and low Reynolds number. The composite region consists of core and peripheral
layers. The core layer is a free flow region consisting of a conducting Newtonian fluid and the peripheral layer isa
porous region filled with conducting fluid. An infinite train of peristaltic waves is moving on the walls of the
channel. The fluid flow is investigated in the wave frame of reference moving with the velocity of the peristaltic
wave. Brinkman extended Darcy equation is used to model the flow in the porous layer. A shear-stress jump
boundary condition is used at the interface. The physical quantities of importance in peristaltic transport like
pressurerise etc. are discussed for various parameters of interest governing the flow like viscosity ratio, magnetic
parameter and amplitude ratio. The results found will have applications for understanding the physiological flows
in small blood vessels which can modeled as channels bounded by finite permeable layers (Fung and Tang, [5]).
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INTRODUCTION

Peristaltic transport of a biofluid through a chanwith permeable walls is of considerable impottain biology

and medicine. Peristalsis is an inherent propefrtsnany of the smooth muscle tubes such as theajatsstinal

tract, bile duct, ureter and other glandular dutte fluids present in the ducts of a living bodg ealled biofluids.

The biofluid has to be treated as Newtonian or Nem#tonian depending on the physiological situati®eristaltic

pumping through a tube and a channel under themgins of low Reynolds number and long wavelerigth
discussed by Shapiro [18]. Lu [10] studied theuefice of two Newtonian fluids with different visdtes on

peristaltic pumping. Kavitha et al. investigatee Beristaltic flow of a micropolar fluid in a verticehannel with

longwave length approximation. Brasseur et aldj8tussed the influence of a peripheral layer fiédint viscosity

on peristaltic pumping with Newtonian fluids.

The boundary conditions to be satisfied at therfate of a two fluid system are the matching ofyemtial velocity,
normal velocity, shear stress and normal stresav@s and Joseph [2] have studied the fluid flowhatinterface
between a porous medium and fluid layer experiniigrngad proposed a slip condition in velocity a¢ timterface.
There exist numerous subsequent studies in thetlite which suggest different boundary conditi@tsthe
interface between porous and fluid layers (Cheh@hnen [4], Neale and Nader [11], Poulikakos andriiarczak
[15], Saffman [17], Vafai and Kim [20]. Ochoa-Tapsd Whitaker [14] introduced a new boundary caodit
which accounts for the jump in the shear stressthatinterface between porous and fluid layer bplypg a
sophisticated averaging volume technique. Kuznef8¢®] discussed the significance of the shearsstijemp
condition at the interface and applied this conditio investigated the fluid flow in a channel gy filled with a
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porous medium. Alazmi and Vfai [1] investigated thad flow and heat transfer between porous medamd a
fluid layer by considering various types of int@itd matching of shear stress conditions repometie literature.

The mathematical modeling of the two fluid systewoives the determination of the interface betwidsencore and
peripheral layers. Ramachandra Rao and Usha [Hyzed the peristaltic transport of two immisciblewtonian
fluids in a circular tube. Mishra and Ramachandee RL3] studied the peristaltic transport in arotel with a
porous peripheral layer. Most of the physiologittaids (for eg : blood) are observed to be eleatljcconducting.
Further the behavior of such fluids under a magnigid in various organs of a human/animal bodsg o be
analyzed due to its applications in medical diagnos

Motivated by these facts, the peristaltic transpdra conducting fluid in a two-layered system wétlporous and
core layers is investigated. The fluid flow is saelin the wave frame of reference moving with teécity of the
peristaltic wave. Brinkman extended Darcy equatsoumsed to describe the flow in the porous layée hterface is
obtained as a part of the solution using the caagi®n of mass in both the porous and fluid regioependently.
Ochoa-Tapia and Whitaker [14] shear-stress jumpnbary condition is used at the interface. The malsi
guantities of importance in peristaltic transpdke Ipressure rise etc. are discussed for variotenpeters of interest
governing the flow like viscosity ratio, amplitudatio and magnetic parameter.

2. Mathematical formulation

Consider the peristaltic transport in a two digienal channel, with a porous peripheral layerstsiing of a
conducting Newtonian fluid of viscosity/ and an incompressible conducting Newtonian fligiscosity L/, in
the core region. A uniform transverse magnetiaified strengthB, is applied perpendicular to the channel walls.

We assume that the porous medium is isotropic @mdolyeneous. The channel wall is flexible and itdinvave
train is moving on the walls of amplitude b withweaength A in the axial direction with a constant spe@dThe

walls are taken byy = +H (X - Ct) in Cartesian coordinate syste(n)( ,Y) with t as the time. The mean width
of the channel is 2a and the deformed interfacers¢ipg the core and the peripheral regions is @ehby
y= Hl(X - Ct) . Under the assumptions that the tube length imegral multiple of the wavelength and the

pressure difference across the ends of the chammeinstant (Shapiro et al. [18]) and an additiac@idition of
periodicity of the interface with the same periadiae peristaltic wave (Brasseur et al. [3]), tb&fbecomes steady
ina wave frame of reference (x, y) moving vétfeed c in the direction of the wave propagation.

Fluid layer

L X

T

Fig.1: Physical Model
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The wave frame is connected to the fixed framehlyfbllowing equations:
x=X-ct,y=Y,u =U, —c,

Vi :\/i’ pi(x): R(Xit)

Here (ui ,Vi) and (Ui ,V,) are the velocity components in axial and transvefisections p and P are the

pressures in wave and fixed frame of references iedsubscripts i takes the value 1 for the ¢ayer and 2 for
the peripheral layer .

1)

The governing equations of motion in the fluid magin the core layer

(OS y< Hl) are

ou ou 0 d°u, 0°u
Py (Ula_xl + Vla_ylj = _% + ,ul( ayzl + alej - JlBoqu @)
2 2
P u1%+\/1% :—%+ﬂl a\;l+a\£l )
! ox oy oy ay- Ox
o v _ g (4)
ox oy

where 14, ,0,, B, and p, are viscosity , electrical conductivity, magndtiex and density in the fluid region. The

governing equations of the porous region in thépperal Iayer( H,<y< H) are the Brinkman extended Darcy
equations given by (Alazmi and Vafai, 2001)

0u, 0U,|_ _0p,  Hy[ 0%, 0°U,)| K, 2
u—=+v,—= |=——=+-—= + -—u, -o,B u 5
pz(zax 2ayj ox el oy ox kK 2 20 ©)
2 2,

P u2%+V2% :_%"'& 6V2+6V2 _izvz (6)

ox oy dy &£\ oay> ox K
%+%:O (7)
ox oy

where p,,0,, 4, £ and k are the density, electrical conductivityscaisity, porosity and permeability in the
porous region.

Following the experimental investigation of Giland Altobelli [6] the effective viscosity in the iBkman model is

The following non-dimensional quantities are used

xlzi 1:X tlzc_t 1_:_a2p' ul_:i V?:i
A ’ Y 71> B A o)
H
5=2 n=t n=lh bt o (8)
A a a'" a't " p
] - B 2,2
== M7= ke , Re:plE ’ Dazkz
ac H Hy a
- - - - . 0w, _ o
The governing equations of motion (2) - (7) innterof stream functiong/, (where U, = a—,\/i = _6_)
X
after nondimensionalyzation become
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Rea(wlywlyx _wlxwlyy) =~ Px +w]yyy +52¢/yxx -M 12¢/¥’
ReS (s ~ Wil ) = Doy + O (U 1y ¥OW ), O<ys<h

R (Yo Wy ~Wolly) = Pt o Wy + W ) =L, M f,

(9)

(10)
RS DYl ~Wollay) = Py + 28 (2 + 8 ) - L0 5, NS ysh

where Re is the Reynolds number, Da is the Dareglran and M is the magnetic parameter. The subscriphd y
denote the partial differentiation with respecthat variable.

Under the assumptions of negligible inerti®€ — 0) and long wavelengthd <<1) and eliminating pressures
o} and p, from the equations (9) and (10) by cross diffdegiuins, the equations governing the motion are

Wiy ~ MW, =0in 0sysh (11)
Wopy ~BWo, =0in h<y<h (12)
Where,82:a'2+£M22 and a? =2

7] Da
The corresponding dimensionless boundary conditiye
W,y =-Lw,=q  ay=h(x) (13)
¢, =0,4,=0 aty =0 (14)
At the interfacey = h (X):
wl = wz = q]_ (15)
wly = l/l2y (16)
l/flyy = H; (wzyy - lglwzy) a7)
l/llyyy = /'12 (wayy - azl/’zy) (18)

where g andg, in (13) and (15) are the total and core fluxepeestively,

In (13) the first condition at y=h(x) is the nogsltondition. The second &t = h(X) in (13) and the conditions at

y= hl(X) in (15) are the requirement of conservations of anis core as well as in the peripheral layer
independently across any cross section in the ramee. The conditions in (14) imply that the vetgcattains a
maximum on the streamling = 0. The continuity of velocity across interface ise by (16). The shear stress
jump condition (17) is according to Ochoa-Tapia aftlitaker [14]. The continuity of normal stress irep

d 0
P, = P,, which means the continuity of the pressure gnatngp—1 = % at the interface and it reduces to (18).
X X

Hence the pressure remains constant across arg/ ®oson of the channel. We observe that the abgoverning
equations and the corresponding boundary conditiedsice to those given by Brasseur et al. [3] & limit

Da - OOandMi —>O

SOLUTION OF THE PROBLEM

Solving equations (11) and (12) with the use agfegponding boundary conditions (13)-(18), we obthe stream
functions in the core and peripheral layers as
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Y, = czsinhMly—%cly, O<y<h,, (19)
1
@, =D,coshBy+D, sinrﬁy—%(Dly+ D,) . h,<y<h (20)
Where
1 1
G _E(Czl—z +DL;—Dyl - D4L4) » G _:(_DlLZO -D,L,-D{,,-DL 2;
9
1 1
D, = _(_qL1L7 —D,Lg- D3L34) . D, = _(_D1L29 +DgL,+DL 3J)
Las Ls,
L, (qL,L,L,,+L
D, :i( L1L7|-24_D4L37)- D, = 24(q - 7_ =z 36)
L36 L27 L37 L 28L 36
L = Mlz L, =M,coshM h, , L3=ﬂ—12, L, = Bcoshph, , L, = B sintph, L, =hL,
1
L, =M2sinhM.h, L, = ﬂg%,Lg = 11, (B, sinhph, - B coshph,)

L = 4 (3B,coshpBh, - 7 sinhBh,) L, = Bsinhph , L, = Bco shsh

L,=M72coshph,, L, = ﬂf,cfj’_z L = . B(B* —a?)sinhgh,

L = 1.8(8* —a?)coshph L, =hL,, Lg=hL,L,=LsinhMh,-LL,,

L,=LL,-LLl, L,=LL,L,=LL,,-L,coshgh,L,=L,L,,-L,sinhgh,

L,=LL,- Ll Le=LL +Ll Lo=LL +L L, =Ll +L[L,

Le = Lol + Lyl 5Ly = Ll + Ll oo Ly = Loy — L L Ly, =L Lo—LL,

L,=LL,=LLLl, L,=LLL,—L,L,=L,-LL,coshsh,

L, =L, —-LL.sinhgh, Ly=L,l—L,L, L, =Ll,—L,L.

Using the relations (19) and (20) in the momenaguations (9) or (10) we obtain the pressure gnadie
1

—= —E(CZL2+D1L3—D3L5—DJ_4) 121

At any axial station, the non-dimensional flux Qe fixed frame is connected with the flux g ie thave frame by

h
Q=[(u+hdy=q+h (22)
0
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A
The mean flow rate over one perioll € —) of the peristaltic wave is given by
c

—|||—\
O'—.—|
—| =

.
_j q+h(x,t))dt
° (23)
= q+jhdx: g+1
0

.21
The peristaltic wave propagating on the walls kedi frame is govern byd (X,t) =a+ bsm7 (X =ct), and

its non-dimensional form in wave frame 8(X) =1+ @sin 277x.
The interface between the porous and fluid regighieh is not known ‘a priori’, and it should bestieamline in

order to satisfy the conservation of mass in bbéregions. From the equations (15) and (20), ne din equation
governing the interfac#, (X) as

f (h)=gq, - D,coshBh,-D, sinhBh, +,3 ~(Dh,+D )= ( (24)
The constantg] and g, are independent oX. By prescribingh =y at X =0 in (24), we get

. 1
= E;coshBy E, sinhfy+—(Ey +E,)

Where
1 .
E = g( (Q 1) SS;, —ES;- E§34) S, =S;sinhM y-S.S,,
1 S0 =58,~SSim S, =SS,
E, = §( ES,+ESy+ESy) S, =S.S,, - S,coshBy
1 S, =S,S,,- S,sinhBy
E3 g((Q 1) S187824 E4837) 524 = 57814 - SSS13
_ Sis =SS5+ Sd i
4 1 S7827 S36
E4 = SZ ((Q )Sl ’ ) SZG :S7816+SlOSlE
S S S, =55,+S.8,,

S=L,S,=M,coshM y,S,=L,
S, = Bcoshpy , S, =B sintBy ,S; =S,
S, =M/sinhM,y,S, =L,

st = SSSZG + SlZS 2
Sy =SSt SSy
%o = S9819 - S7822

SyZA ('8'818inh'8y_'82 COSI’ﬁy) S, =SS,,-SS,
S, = 4, (BB, coshBy - B sinhpy) S, =55,=588S:
S, =pBsinhgB, S, = Bcosh3 Si3 =55,5:~ Sy

. a? S,, = S;,— S;S,coshg
S, =M coshfy, S, = ,Us ViZ =Ly S, =S, -SS,sinhg
S5 = ,ufﬁ(ﬂz —az)sinhﬂy Sis = S55533~ S
S = /'1513(:32 —O'Z)COShﬂy Sy = 5695~ S
S =VS S =
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We assume thay > @ to avoid the intersection of the interface witlaxis (Mishra and Ramachandra Rao, [12]).
Since the equation (24) is a transcendental equatidl it may have many positive real roots. Butititerface is

well defined only when there exists a single réptof f (h) =0 in the intervaD < h < h. In this way for a

given x, hl (x) is computed. Integrating equation (21) over amave length, we get the pressure rise as

AP = P~ P,
1
:ji(c2L2+DlL3—D3|_5—D4|_4) dx (29)
oL
1.2 T T T T T T T T T 1.2 T T T T T T T T
1.1 1.1
1 1
0.8 .8
Bix 07 Bix o7
0.5 0.5
0.4 0.4
03 03
02 0.2
X X
Fig.2: The Shape of the interface for different p th fixed M, =05 M, =1, y=0.6,¢= 0.4,£=0.,Da=0.5,0=05
Fig.3: The Shape of the interface for different p \ith fixed M, =15 M, =1, y=0.6,p= 0.4.£=0.£,Da=0.5,0=05,
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o 0 CI1 CIZ CIE CI4 C:.E CIE CIT CIS CI€~ 0.2 0 UI.1 IIII.Z UI.3 IIII.4 IJI.E IIII.E EII.T IIII.E UI.EI- 1
X X

Fig.4: The Shape of the interface for differentM,

with fixed M, =1 y=0.6,¢= 0.4,6=0.E, Da=0-5v,u=2, Q=05

Fig.5: The Shape of the interface for differenM,, with fixed m =1, )y =0.6,p=0.4,£6=0E, Da=05,,=2 Q=05
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X X
Fig.6: The Shape of the interface for different(p with fixed M, =05M, =1, y=0.6: u=2, £=0£EDa=0.5,Q=05
Fig.7: The Shape of the interface for differenty with fixed M =15M, =1, y=0.6: u=2, £=0.£Da=0.5,Q=05,
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Fig.8: Variation of pressure rise versus mean Fie rate for different (Ml:O.E, M, =1 )
Fig.9: Variation of pressure rise versus mean flowate for different (M1 =15M,=1 ) with fixed |,=0.4, ¢=0.6

£=04, Da=06
RESULTS AND DISCUSSION

The interface which is a stream line in the wawerfe is obtained from (24) and plotted in figures-(&7) to study
the effects of different parameters on the shapatefface. From figures (2) and (3) we observe tha thickness
of the peripheral layer decreases slightly in theted region with the increase in viscosity ratwom figures (4)
and (5) it is noticed that lower magnetic field ggwise to a thin peripheral layer in the dilategion. The uniform
shape is never obtained. From (6) and (7) we obstrat the thickness of the peripheral layer deg®ain the

dilated region with the increase¢hn

The equation (25) gives the expression for thegumesrise/AP in terms of the mean flow_). Figures (8) and (9)

shows that the pressure rise decreases with theaise inQ . We find that for fixedQ_ pressure rise increases
with increasing/ . We also notice that for a givelP mean flow rate increases with the increasg/in
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Fig.10: Variation of pressure rise versus mean flo rate for different M1 (|\/|2 =1).

g

Fig.11: Variation of pressure rise versus mean flo rate for different M2 (M:1) with fixed y=0.4,p= 0.6.£=04,
Da=0.6, U= 0.6.

AP MF
0.3

.6

4

i L L i i i L '

i L L i i i i

L . 1.“ L .
0 0.05 01 015 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 01 045 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2 e

Fig.12: Variation of pressure rise versus mean flo rate for different ¢
Fig.13: Variation of pressure rise versus mean flo rate for different o with fixed M, =15M,=1 y= 0.4 u=0.6,£=04,
Da=0.6.

The variation of pressure rise with the mean ffowdifferent values ofM, is shown in figure (10). We observe

that for fixed 6 pressure rise increases with the increasMin. It is noticed that for a giveAP mean flow rate

increases with increasiniyl, .

The variation of pressure rise with the mean ffowdifferent values ofM, is shown in figure (11). We observe

that the pumping curves are intersect at appoitwdsn 0.05 and 0.1, above this point for fixéj pressure rise

increases with the increase M, and below the intersecting point opposite behaséor be observed.

The variation of pressure rise with the mean ffowdifferent values of@ is shown in figures (12) and (13). We

notice that for fixeda pressure rise increases with increasiglt is observed that for a giveAP mean flow
rate increases with increasigg.
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