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ABSTRACT

In this paper, the MHD peristaltic flow of a Williamson fluid in a planar channel, under the assumptions of long
wavelength is investigated. The flow is investigated in a wave frame of reference moving with velocity of the wave.
The perturbation series in the Weissenberg number was used to obtain explicit forms for velocity field and pressure
gradient. The effects of Weissenberg number and Hartmann number on the pumping characteristics are discussed
through graphsin detail.
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INTRODUCTION

Peristalsis is an important mechanism generatétidopropagation of waves along the walls of a ckhantube. It
occurs in the gastrointestinal, urinary, reprodigctracts and many other glandular ducts in adiyindy.

Most of the studies on the topic have been cawigdor the Newtonian fluid for physiological peddtsis including
the flow of blood in arterioles. But such a modahoot be suitable for blood flow unless the non-Menvan nature
of the fluid is included in it. The non-Newtoniaergstaltic flow using a constitutive equation fosecond order
fluid has been investigated by Siddiqui et al. {@] a planar channel and by Siddiqui and Schwaizfd® an
axisymmetric tube. They have performed a pertuobatinalysis with a wave number, including curvatans
inertia effects and have determined range of vgliof their perturbation solutions. The effectstloifd order fluid
on peristaltic transport in a planar channel wevelied by Siddiqui et al. [8] and the correspondixisymmetric
tube results were obtained by Hayat et al. [2].ddar[1] studied peristaltic transport of third ardkid in an
asymmetric channel. Subba Reddy et al. [11] hawdieddl the peristaltic flow of a power-law fluid &m asymmetric
channel. Peristaltic motion of a Williamson fluidan asymmetric channel was studied by Nadeem &rahA[6].

It is now well known that blood behaves like a metghydrodynamic (MHD) fluid (Stud et al. [10]). Rid is a
suspension of cells in plasma. It is a biomagniétid, due to the complex integration of the in&dhalar protein,
cell membrane and the hemoglobin, a form of iroildexwhich is present at a uniquely high conceiarain the
mature red cells, while its magnetic property ifluenced by factors such as the state of oxygemafidhe
consideration of blood as a MHD fluid helps in goiiing blood pressure and has potential for theuie use in
the diseases of heart and blood vessels (Mekhg&})ePeristaltic transport to a MHD third ordeuifi in a circular
cylindrical tube was investigated by Hayat and [8li. Hayat et al. [4] have investigated peristattiansport of a
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third order fluid under the effect of a magnetieldi. Recently, Subba Reddy et al. [12] have stiithe peristaltic
transport of Williamson fluid in a channel undee #ffect of a magnetic field.

In view of these, we modeled the MHD peristaltiovil of a Williamson fluid in an inclined planar cheel, under
the assumptions of long wavelength. The flow i®stigated in a wave frame of reference moving wélocity of
the wave. The perturbation series in the Weissgnbember was used to obtain explicit forms for e#jofield and
pressure gradient. The effects of various emergergmeters on the pumping characteristics areestudi detail
with the help of graphs.

2. Mathematical Formulation
We consider the peristaltic flow of a Williamsomil in a two-dimensional symmetric channel of widé. The

channel walls are inclined at an angf to the horizontal.The fluid is conducting while thehannel
walls are norconducting.The flow is generated by sinusoidal wave traingppgating with constant speed ‘c’
along the channel walls. Fig. 1 shows the schendéigram of the channel.

The wall deformation is given by
Y:iH(X,t):iaibcos%”(X—ct ), (2.1)

whereb is the amplitude of the wave) - the wave length andX and Y - the rectangular co-ordinates with
X measured along the axis of the channel ¥ngerpendicular toX . Let (U,V) be the velocity components in

fixed frame of referenceX,Y).

The flow is unsteady in the laboratory fra(€,Y). However, in a co-ordinate system moving with the

propagation velocity ¢ (wave framg, §)), the boundary shape is stationary. The transdtion from fixed frame to
wave frame is given by

x=X-c,y=Y,u=U-c,v=V (2.2)

where (U,V) and (U,V) are velocity components in the wave and laborafiamyes respectively.

T
2

Ty

F'1y

Fig.1 The physical model

The constitutive equation for a Williamson fluid\gn in Bird et al. 1977) is
-1 .
r==n.+(m+n.)2-Ty)" |y @3

Where T is the extra stress tensd},, is the infinite shear rate, viscosity, is the zero shear rate viscosify, is

the time constant angt is defined as
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\ 1 - 1
V=\/§ZZ%jyji :\/5” 24
T

where 77 is the second invariant stress tensor. We considére constitutive equation (2.3) the case foicih
N7, =0 andl" yy <1 so we can write.

r=-1,(1+Ty)y (2.5)
The above model reduces to Newtonian ffor O

The equations governing the flow in the wave frasheeference are

ou ov
—+—=0 (2.6)
ox oy
du . du op ar, 07, ) .
U—+Vv— |=—-——>*-—"=-0Bj(u+c)+pgsind 2.7
plu— ayj o oy 5 (u+c)+pg (2.7)
or, Or
o) u@+v@ :—@——Xy——w—,ogcose (2.8)
ox oy dy ox oy

where O is the density, B0 is the magnetic field strengthg is the electrical conductivity and is the
permeability of the porous medium.

The boundary conditions are

u=-c at y=H=a+ bco{%xj (2.9)
ou =0 at y=0 (2.10)
oy

Introducing the non-dimensional variables defingd b

X:i, V:X,U:_’V:i’dzg’p: pa
A a co A 1,CA
h—i t_—E T —i T —ir T —LT
a ) A 1 XX ,700 XX ! Xy ,700 Xy! yy I700 yy )
R‘B:@,Wezﬁ,f/:y—a,q:i (2.11)
7 a Cc ac
into the Equations (2.5) - (2.8), reduce to (afbepping the bars)
Ju ov
—+—=0 (2.12)
ox oy
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0
Rea[ u 4y | = 9P _ 5200 0Ty o
ox oy ()4 ox oy
or or
Red® u@ﬂ/@ :_@_52_&/_5 W—ieé'cos@
ox oy) oy oy ady Fr
where
ou ou _,0v
r, =2[1+Wey|—, T =—[1+We v _+52_,
S vl yl[éy axj

1

(u+1) +2Csing
Fr

(2.13)

(2.14)

7, =—20[1+We y]g—;,

. 26u2 ou 26v2 26v25 ) o
y=120°"| — | +| —+0°"— | +20°| — , M“=aB, |— is the Hartmann numberand
0X oy 0X oy o

Fr = — is the Froude number.

ag

Under the assumption of long wavelength approxioma¢ [| 1), the Eqgs. (2.13) and (2.14) become

9P -9 et | —Mz(u+1)+&asin9
ox oy ay | oy Fr

From Eq. (2.13) and (2.14), we get

2 2
@:6—2+Wei ou —Mz(u+1)+&esin9
dx oy oay|\ oy Fr

The corresponding non-dimensional boundary contlitere

u=-1 at  y=h=1+gcoq 2x)
3—;:0 at y=0

The volume flow ratef] in a wave frame of reference is given by

h
q= judy.
0
The instantaneous flow (X ,t) in the laboratory frame is

Q(X,1) :jUdY :j(u +1)dy =q+h

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

= A
The time averaged volume flow ra€@ over one periodl (: — | of the peristaltic wave is given by
Cc
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1T

—j Qdt =q+1 (2.22)

T 0

3. Solution

Since Eqg. (2.17) is a non-liner differential eqoatiit is not possible to obtain closed form salnti Therefore we
employ regular perturbation to find the solution.

For perturbation solution, we expett] P and ( as follows

U = u, +Weu, + O(We’) (3.1)
dp :%+We%+O(We2) 3.2)
dx dx dx

q=g, +Weq, +O(We?) (3.9

Substituting these equations in the Eqgs. (2.18)17), we obtain

3.1. System of order We°
2
dp, _0°u,

x oy MY .

and the respective boundary conditions are

u =-1 at y=h (3.5)
% =0 at y=0 (3.6)
ay
3.2. System of order We'
2 2
dp, _0 “21 +90[% ) |_m 2, 3.7)
dx ody° oy|\ oy

and the respective boundary conditions are

u =0 at y=h (3.8)
o _ =0 at y=0 (3.9)
oy

3.3 Solution for system of order We°
Solving Eq. (3.4) using the boundary condition&)&nd (3.6), we obtain

Uy = — (dp" Res nej{m - 1} -1 (3.10)
dx Fr coshMh

The volume flow rated}, is given by

_ (dp0 Re . ] (sinh\/lh—Mh cosMh]
Q = —sinéd -h (3.11)
dx Fr M coshMh

From Eq. (3.11), we have
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+h)M?3 hMh
an, (qo JM” cos +RCsing (3.12)
dx sinhMh—-Mh cosiMh Fr

3.4 Solution for system of order We'
Substituting Equation (3.10) in the Eq. (3.7) aalvisg the Eqg. (3.7), using the boundary conditi¢®@8) and (3.9),
we obtain

_1 %[cosmy_l}r

dp, ResinH
dx  Fr 2sinhMy -sinh My + (3.13)
7 M2 dx | coshMh |

'3 M3 coshMh | 2(sinhMh - taniMh )cosMy

The volume flow rated}; is given by

o= 1 d_p{sinth—hM cosHMh}

M2 dx coshMh
d Re cosh Mh -
(po smﬁj 2 — (coshMh - :)—[ b
2 dx  Fr M 2M (3.14)
M3 H Mh '
3 M7cos &(sinh Mh -tanhMh )sintMh
From Eq. (3.14) and (3.12), we have
dp, . gqM ‘coshvh 2 ¥ (g, + h)2 M ® coshMh 315

dx  sinhMh-Mh costMh  3[sinhMh - Mh costvh]’

where‘-l-’zi(COSth— ])+—2 (sintMh -tanMh )sinkh 1 (cosivih
M M 2M

Substituting Equations (3.12) and (3.15) into tiggi&ion (3.2), we get

+ 3 +h)>M®
dp _ _(q h) M coshMh Ve 2V (q+h)"M*® cosivih R—esmH 16
dx sinhMh-Mh coshvih 3[smth Mh coerh]

The dimensionless pressure rise per one wavelémgjie wave frame are defined, respectively as
1d
Ap = jo 9Py (3.17)

RESULTSAND DISCUSSION

Fig. 2 shows the variation of pressure m with 6 for different values of Weissenberg numBAfe with
77' —_
p=056= 2 Fr =2,Re= 1(andM =1. Itis observed thatQ increases with an increase\iNe in all

the three regions; pumping reg@ﬁp > O) , free-pumping regio(wAp = 0) and co-pumping regioéAp = O) .
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The variation of pressure ridp with Q for different values of Hartmann number

M withp=0.5Re= 108 :77:, Fr = 2and We = 0.01 is shown in Fig. 3. It is observed that, any two

pumping curves intersect at a point in the firsadpant. To the left of this poif® increases and to the right of this

point the Q on increasingM . Fig. 4 illustrates the variation of pressure ) with Q for different values of

7T J—
amplitude ratio@withM =1, Re= 108 = Z, Fr = 2andWe = 0.01. It is observed that, th€) increases

with increasing@ in the pumping region. While it decreases withréasing ¢ in both free-pumping and co-
pumping regions.

The variation of pressure rise Ap with Q for different values of inclination
angle@withM =1,Re= 10 @=0.5,Fr = 2andWe = 0.01 is shown in Fig. 5. It is observed that, t@_Qe

increases on increasing in all the three regions. Fig. 6 depicts the \aiaof pressure risBpP with Q for

different values of Froude number withM =1, Re= 109=0.5,0 = gandWe =0.01. it is found that,

the Q decreases with increasirfgr in all the three regions.

The variation of pressure rid)  with Q for different values of Reynolds numtf@r
ﬂ p—
withM =18 :Z , @=0.5,Fr = 2and We =0.01 is shown in Fig. 7. It is found that, tHg) increases

with increasingRe in all the three regions.

10

Me=0.02.00L0.00

Ap

0.5 1.5 2

ST

Fig. 2. Thevariation of prmreriseAp with 6 for different values of Weissenberg number

Wewith@=0.7,0 :’ZT, Fr =2,Re= 1(andM =1.
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Fig. 3. Thevariation of prmreriseAp with 6 for different values of Hartmann number
T
M withp=0.5,Re= 108 = R Fr = 2and We=0.01
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Fig. 4. Thevariation of prmreriseAp with 6 for different values of amplitude ratio

gwithM =1, Re= 108 :’ZT, Fr = 2and We=0.01
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Fig. 5. Thevariation of pressureriseAp with 6 for different values of inclination

angle@withM =1,Re= 10 ¢=0.5,Fr = 2and We=0.01.
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Fig. 6. Thevariation of pressureriseAp with 6 for different values of Froude

number Fr withM =1, Re= 109=0.5,0 = Z—Tand We=0.01.
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Fig. 7. Thevariation of pressurerise AP with 6 for different values of Reynolds number &

with M :1,9:727, @=0.5,Fr = 2and We = 0.01

CONCLUSION

In this paper, we investigated the MHD peristaftmw of a Williamson fluid in a planar channel umdge
assumptions of long wavelength. The flow is invgstiéd in a wave frame of reference moving with e&joof the
wave. The perturbation series in the Weissenbergbeu was used to obtain explicit forms for velodigld and

pressure gradient. It is observed that, in the pngiegion, the time-averaged volume flow r&g increases with
increasing Weissenberg numb¥e, Hartmann numbeM , amplitude ratiog, inclination angled or Reynolds
number Re, while it decreases with increasing Froude numibér.
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