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ABSTRACT 
 
In this paper, the MHD peristaltic flow of a Williamson fluid in a planar channel, under the assumptions of long 
wavelength is investigated. The flow is investigated in a wave frame of reference moving with velocity of the wave. 
The perturbation series in the Weissenberg number was used to obtain explicit forms for velocity field and pressure 
gradient. The effects of Weissenberg number and Hartmann number on the pumping characteristics are discussed 
through graphs in detail.  
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INTRODUCTION 
 
Peristalsis is an important mechanism generated by the propagation of waves along the walls of a channel or tube. It 
occurs in the gastrointestinal, urinary, reproductive tracts and many other glandular ducts in a living body. 
  
Most of the studies on the topic have been carried out for the Newtonian fluid for physiological peristalsis including 
the flow of blood in arterioles. But such a model cannot be suitable for blood flow unless the non-Newtonian nature 
of the fluid is included in it. The non-Newtonian peristaltic flow using a constitutive equation for a second order 
fluid has been investigated by Siddiqui et al. [7] for a planar channel and by Siddiqui and Schwarz [9] for an 
axisymmetric tube. They have performed a perturbation analysis with a wave number, including curvature and 
inertia effects and have determined range of validity of their perturbation solutions. The effects of third order fluid 
on peristaltic transport in a planar channel were studied by Siddiqui et al. [8] and the corresponding axisymmetric 
tube results were obtained by Hayat et al. [2]. Haroun [1] studied peristaltic transport of third order fluid in an 
asymmetric channel. Subba Reddy et al. [11] have studied the peristaltic flow of a power-law fluid in an asymmetric 
channel. Peristaltic motion of a Williamson fluid in an asymmetric channel was studied by Nadeem and Akram [6].   
 
It is now well known that blood behaves like a magnetohydrodynamic (MHD) fluid (Stud et al. [10]). Blood is a 
suspension of cells in plasma. It is a biomagnetic fluid, due to the complex integration of the intercellular protein, 
cell membrane and the hemoglobin, a form of iron oxide, which is present at a uniquely high concentration in the 
mature red cells, while its magnetic property is influenced by factors such as the state of oxygenation. The 
consideration of blood as a MHD fluid helps in controlling blood pressure and has potential for therapeutic use in 
the diseases of heart and blood vessels (Mekheimer [5]). Peristaltic transport to a MHD third order fluid in a circular 
cylindrical tube was investigated by Hayat and Ali [3]. Hayat et al. [4] have investigated peristaltic transport of a 
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third order fluid under the effect of a magnetic field.  Recently, Subba Reddy et al. [12] have studied the peristaltic 
transport of Williamson fluid in a channel under the effect of a magnetic field.  
 
In view of these, we modeled the MHD peristaltic flow of a Williamson fluid in an inclined planar channel, under 
the assumptions of long wavelength. The flow is investigated in a wave frame of reference moving with velocity of 
the wave. The perturbation series in the Weissenberg number was used to obtain explicit forms for velocity field and 
pressure gradient. The effects of various emerging parameters on the pumping characteristics are studied in detail 
with the help of graphs. 
 
2. Mathematical Formulation 
We consider the peristaltic flow of a Williamson fluid in a two-dimensional symmetric channel of width2a . The 

channel walls are inclined at an angle θ  to the horizontal. The fluid is conducting while the channel 
walls are non-conducting. The flow is generated by sinusoidal wave trains propagating with constant speed ‘c’ 
along the channel walls. Fig. 1 shows the schematic diagram of the channel. 
 
 The wall deformation is given by  

 
2

( , ) cos ( )Y H X t a b X ct
π
λ

= ± = ± ± − ,    (2.1) 

where b is the amplitude of the wave, λ  - the wave length and X and Y - the rectangular co-ordinates with 

X measured along the axis of the channel and Y perpendicular to X . Let ( , )U V  be the velocity components in 

fixed frame of reference( , )X Y . 

 
The flow is unsteady in the laboratory frame( , )X Y . However, in a co-ordinate system moving with the 

propagation velocity c (wave frame (x, y)), the boundary shape is stationary. The transformation from fixed frame to 
wave frame is given by 
 
 , , ,x X ct y Y u U c v V= − = = − =       (2.2) 

 
where ( , )u v  and ( , )U V  are velocity components in the wave and laboratory frames respectively. 

 
Fig.1 The physical model 

 
The constitutive equation for a Williamson fluid (given in Bird et al. 1977) is  
 

 ( )( ) 1

0 1τ η η η γ γ−
∞ ∞

 = − + + − Γ
 

& &       (2.3) 

 

Where τ  is the extra stress tensor, η∞  is the infinite shear rate, viscosity oη  is the zero shear rate viscosity, Γ  is 

the time constant and γ&  is defined as   
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1 1

2 2ij ji
i j

γ γ γ π= =∑∑& & &        (2.4) 

 
where π  is the second invariant stress tensor. We consider in the constitutive equation (2.3) the case for which 

0η∞ =  and 1γΓ <&  so we can write. 

 

 ( )0 1τ η γ γ= − + Γ & &         (2.5) 

 
The above model reduces to Newtonian for 0Γ =   
 
The equations governing the flow in the wave frame of reference are  
 

 0
u v

x y

∂ ∂+ =
∂ ∂

         (2.6) 

 

 ( )2
0 sinyxxxu u p

u v B u c g
x y x x y

ττρ σ ρ θ
∂  ∂∂ ∂ ∂+ = − − − − + + ∂ ∂ ∂ ∂ ∂ 

  (2.7) 

 

 cosxy yyv u p
u v g

x y y x y

τ τ
ρ ρ θ

∂ ∂ ∂ ∂ ∂+ = − − − − ∂ ∂ ∂ ∂ ∂ 
    (2.8) 

 

where ρ  is the density, 0B is the magnetic field strength, σ  is the electrical conductivity and k  is the 

permeability of the porous medium. 
 
The boundary conditions are  

u c= −  at 
2

cosy H a b x
π
λ

 = = +  
 

      (2.9)  

0
u

y

∂ =
∂

 at 0y =          (2.10) 

 
Introducing the non-dimensional variables defined by  
 

2

0

,  , ,  ,  ,  ,
x y u v a pa

x y u v p
a c c c

δ
λ δ λ η λ

= = = = = =  

0 0 0

,  ,  ,  ,  ,xx xx xy xy yy yy

H ct a
h t

a c c c

λ λτ τ τ τ τ τ
λ η η η

= = = = =  

0

R ,  ,  ,e

ac c a q
We q

a c ac

ρ γγ
η

Γ= = = =
&

&               (2.11) 

 
into the Equations (2.5) - (2.8), reduce to (after dropping the bars) 
 

0
u v

x y

∂ ∂+ =
∂ ∂

          (2.12) 
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( )2 2 Re
Re 1 sinxyxxu u p

u v M u
x y x x y Fr

ττδ δ θ
∂  ∂∂ ∂ ∂+ = − − − − + + ∂ ∂ ∂ ∂ ∂ 

  (2.13) 

3 2Re cosxy yyv v p Re
u v

x y y y y Fr

τ τ
δ δ δ δ θ

∂ ∂ ∂ ∂ ∂+ = − − − − ∂ ∂ ∂ ∂ ∂ 
  (2.14) 

where 

[ ]2 1xx

u
We

x
τ γ ∂= − +

∂
& , [ ] 21xy

u v
We

y x
τ γ δ ∂ ∂= − + + ∂ ∂ 

& , [ ]2 1yy

v
We

y
τ δ γ ∂= − +

∂
& , 

1
2 22 2

2 2 22 2
u u v v

x y x y
γ δ δ δ

    ∂ ∂ ∂ ∂ = + + +      ∂ ∂ ∂ ∂      

&  , 
2

0
0

M aB
σ
η

=  is the Hartmann numberand 

2c
Fr

ag
=  is the Froude number. 

Under the assumption of long wavelength approximation ( 1δ   ), the Eqs. (2.13) and (2.14) become 
 

 ( )2 Re
1 1 sin

p u u
We M u

x y y y Fr
θ

  ∂ ∂ ∂ ∂= + − + +  ∂ ∂ ∂ ∂  
   (2.15)  

 0
p

y

∂ =
∂

         (2.16) 

 
From Eq. (2.13) and (2.14), we get  
 

 ( )
22

2
2

Re
1 sin

dp u u
We M u

dx y y y Fr
θ

  ∂ ∂ ∂= + − + +  ∂ ∂ ∂   
        (2.17)  

 
The corresponding non-dimensional boundary conditions are 
 

 1u = −  at ( )1 cos 2y h xφ π= = +     (2.18)  

 

 0
u

y

∂ =
∂

 at 0y =        (2.19) 

 
The volume flow rate q  in a wave frame of reference is given by 

 

  

0

h

q udy= ∫ .        (2.20) 

The instantaneous flow Q( , )X t  in the laboratory frame is 

                

0 0

( , ) ( 1)
h h

Q X t UdY u dy q h= = + = +∫ ∫     (2.21) 

The time averaged volume flow rate Q  over one period T
c

λ = 
 

 of the peristaltic wave is given by 
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0

1
1

T

Q Qdt q
T

= = +∫         (2.22) 

3. Solution 
Since Eq. (2.17) is a non-liner differential equation, it is not possible to obtain closed form solution. Therefore we 
employ regular perturbation to find the solution. 
 
For perturbation solution, we expend ,u p  and q as follows  

 ( )2
0 1u u Weu O We= + +        (3.1) 

 ( )20 1dpdp dp
We O We

dx dx dx
= + +       (3.2) 

 ( )2
0 1q q We q O We= + +        (3.3) 

 
Substituting these equations in the Eqs. (2.15) - (2.17), we obtain 
 

3.1. System of order 
0We  

 ( )
2

20 0
02

1
dp u

M u
dx y

∂= − +
∂

       (3.4)  

 
and the respective boundary conditions are 
 

 1ou = −  at  y h=              (3.5) 

 0 0
u

y

∂ =
∂

 at 0y =        (3.6) 

3.2. System of order 1We  

  

22
21 1

12
oudp u

M u
dx y y y

  ∂∂ ∂= + −  ∂ ∂ ∂   
      (3.7) 

 
and the respective boundary conditions are 
 

 1 0u =   at y h=        (3.8)  

 1 0
u

y

∂ =
∂

 at 0y =        (3.9) 

 

3.3 Solution for system of order 
0We  

Solving Eq. (3.4) using the boundary conditions (3.5) and (3.6), we obtain  
 

0
0 2

1 Re cosh
sin 1 1

cosh

dp My
u

M dx Fr Mh
θ   = − − −     

    (3.10)  

 

The volume flow rate 0q  is given by 

 

 0
0 2

1 Re sinh cosh
sin

cosh

dp Mh Mh Mh
q h

M dx Fr M Mh
θ  −   = − −    

    
  (3.11) 

 
From Eq. (3.11), we have 
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( ) 3

00
cosh Re

sin
sinh cosh

q h M Mhdp

dx Mh Mh Mh Fr
θ

+
= +

−
     (3.12)  

 

3.4 Solution for system of order 
1We  

Substituting Equation (3.10) in the Eq. (3.7) and solving the Eq. (3.7), using the boundary conditions (3.8) and (3.9), 
we obtain 

2

0

1
1 2 3 2

Re
sin

2sinh - sinh 21 cosh 2
1

2(sinh - tanh )coshcosh 3 cosh

dp
My Mydp My dx Fr

u
Mh Mh MyM dx Mh M Mh

θ −  +    = − +      
  (3.13) 

 

The volume flow rate 1q  is given by 

 

1
1 3

1 sinh cosh

cosh

dp Mh hM Mh
q

M dx Mh

− =   
  

    

( ) [ ]2

0

3 2

Re cosh 2 12sin cosh 1
2 2
3 cosh 2

(sinh  - tanh )sinh  

dp Mh
Mh

dx Fr M M
M Mh

Mh Mh Mh
M

θ  − − − − +     +  
 
  

 (3.14) 

 
From Eq. (3.14) and (3.12), we have       

 
( )

[ ]

2 63
1 1

3

coshcosh 2

sinh cosh 3 sinh cosh
oq h M Mhdp q M Mh

dx Mh Mh Mh Mh Mh Mh

Ψ +
= −

− −
   (3.15) 

 

where ( )2 2 1
cosh 1 (sinh - tanh )sinh - (cosh 2 -1)

2
Mh Mh Mh Mh Mh

M M M
Ψ = − +   

 
Substituting Equations (3.12) and (3.15) into the Equation  (3.2), we get 
 

( ) ( )
[ ]

23 6

3

cosh 2 cosh Re
sin

sinh cosh 3 sinh cosh

q h M Mh q h M Mhdp
We

dx Mh Mh Mh FrMh Mh Mh
θ

+ Ψ +
= − +

− −
 (3.16)  

 
The dimensionless pressure rise per one wavelength in the wave frame are defined, respectively as 
 

 
1

0

dp
p dx

dx
∆ = ∫          (3.17) 

 
RESULTS AND DISCUSSION 

 

Fig. 2  shows the variation of pressure risep∆  with Q  for different values of Weissenberg number We  with 

0.5,
4

πφ θ= = , 2,Re 10Fr = = and 1M = . It is observed that,  Q  increases with an increase in We  in all 

the three regions; pumping region( )0p∆ > , free-pumping region( )0p∆ =  and co-pumping region ( )0p∆ = .   
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The variation of pressure risep∆  with Q  for different values of Hartmann number 

M with 0.5,Re 10,φ = = , 2
4

Fr
πθ = = and 0.01We =  is shown in Fig. 3. It is observed that, any two 

pumping curves intersect at a point in the first quadrant. To the left of this point Q   increases and to the right of this 

point the Q  on increasing M .  Fig. 4 illustrates the variation of pressure rise p∆  with Q  for different values of 

amplitude ratio φ with 1,Re 10,M = = , 2
4

Fr
πθ = = and 0.01We = . It is observed that, the Q  increases 

with increasing φ  in the pumping region. While it decreases with increasing φ  in both free-pumping and co-

pumping regions. 
 

The variation of pressure rise p∆  with Q  for different values of inclination 

angleθ with 1,Re 10,M = = 0.5, 2Frφ = = and 0.01We =  is shown in Fig. 5. It is observed that, the Q  

increases on increasing θ  in all the three regions. Fig. 6 depicts the variation of pressure risep∆  with Q  for 

different values of Froude numberFr with 1,Re 10,M = = 0.5,
4

πφ θ= = and 0.01We = . It is found that, 

the Q  decreases with increasing Fr  in all the three regions. 

 

The variation of pressure risep∆  with Q  for different values of Reynolds numberθ  

with 1, ,
4

M
πθ= = 0.5, 2Frφ = = and 0.01We =  is shown in Fig. 7. It is found that, the Q  increases 

with increasing Re in all the three regions.  
 
 

 

Fig. 2.  The variation of pressure rise p∆  with Q  for different values of Weissenberg number 

We with 0.7,
4

πφ θ= = , 2,Re 10Fr = = and 1M = . 
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Fig. 3.  The variation of pressure rise p∆  with Q  for different values of Hartmann number 

M with 0.5,Re 10,φ = = , 2
4

Fr
πθ = = and 0.01We = . 

 

Fig. 4.  The variation of pressure rise p∆  with Q  for different values of amplitude ratio 

φ with 1,Re 10,M = = , 2
4

Fr
πθ = = and 0.01We = . 
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Fig. 5.  The variation of pressure rise p∆  with Q  for different values of inclination 

angleθ with 1,Re 10,M = =  0.5, 2Frφ = = and 0.01We = . 

 

 

Fig. 6.  The variation of pressure rise p∆  with Q  for different values of Froude 

number Fr with 1,Re 10,M = = 0.5,
4

πφ θ= = and 0.01We = . 
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Fig. 7.  The variation of pressure rise p∆  with Q  for different values of Reynolds numberθ  

with 1, ,
4

M
πθ= = 0.5, 2Frφ = = and 0.01We = . 

 
CONCLUSION 

 
In this paper, we investigated the MHD peristaltic flow of a Williamson fluid in a planar channel under the 
assumptions of long wavelength. The flow is investigated in a wave frame of reference moving with velocity of the 
wave. The perturbation series in the Weissenberg number was used to obtain explicit forms for velocity field and 

pressure gradient. It is observed that, in the pumping region, the time-averaged volume flow rate Q  increases with 

increasing Weissenberg numberWe , Hartmann number M , amplitude ratio φ , inclination angle θ   or Reynolds 

number Re, while it decreases with increasing Froude number Fr .  
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