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ABSTRACT

In this paper, we studied the MHD peristaltic flow of a Prandtl fluid in a uniform channel under the assumptions of
long wavelength and low Reynolds number. Series solutions of axial velocity and pressure gradient are given by
using regular perturbation technique when Prandtl number is small. The effects various emerging
parameters on the pressure gradient and pumping characteristics are studied in detail through graphs.
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INTRODUCTION

Past five decades considerable attention has bemrsdd on the peristaltic transport of Newtoniad aon-

Newtonian fluids through tubes/channels. Such flanes significant in both theoretical and industpetspectives.
Peristaltic transport widely occurs in many biokagisystems for example, food swallowing throughesophagus,
intra-urine fluid motion, circulation of blood im&ll blood vessels and the flows of many other dldar ducts.
Several theoretical and experimental studies haes lundertaken to understand peristalsis througkpabhanges
in geometry and realistic assumptions. A reviewnaich of the early literature is presented in aiclarby Jaffrin

and Shapiro [4]. All the important literature upl®78 on peristaltic transport has been documemntdgiath [11].

Even though the consideration of Newtonian fluid aasepresentative of blood and other physiologftztis
provides a satisfactory understanding of the patist mechanism in the ureter, but it fails to ifysta better
understanding when peristaltic motion is involvaedsimall blood vessels, intestines and ductus effeseof the
male reproductive organs and in transport of spermea in the cervical canal. Ramachandra Rao arsthrisli[10]
have studied the peristaltic flow of a power-lawidl in a porous tube. The peristaltic flow of a govaw fluid in
an asymmetric channel was investigated by SubbayRetal. [14]. Nagendra et al. [7] have studiegl pleristaltic

flow of a Jeffrey fluid in a tube. Recently, Akbairal. [1] have discussed the peristaltic flow ¢frandtl fluid in an
asymmetric channel.

The study of peristaltic flow of a fluid in the gpence of magnetic field is of enormous importandé vegard to
certain problems involving the movement of condrephysiological fluids, e.g., blood and salinesvaStud et al.
[13] have first investigated the effect of movinggnetic field on the blood flow. They found thatuitable moving
magnetic field accelerates the speed of blood. Mishkér [6] have studied the peristaltic flow of adud in a non-
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uniform channel under the effect of a magneticfi@eristaltic transport of a Johnson-Segalmaul fluia channel
under the effect of a magnetic field was studiecElghahed and Haroun [2]. Hayat and Ali [3] haliscussed the
effect of magnetic field on peristaltic transpoftaoJeffrey fluid through a tube. Sudhakar Reddgle{15] have

analyzed the peristaltic motion of a carreau flthdough a porous medium in a channel under thectefié a

magnetic field. Pandey and Chaube [8] havwestigated the effect of magnetic field on theigtaltic flow of a

micropolar fluid through a porous medium in a chelnPeristaltic flow of a Williamson fluid in andfined planar
channel under the effect of a magnetic field wadistl by Jayarami Reddy et al. [5].

In view of these, we studied the MHD peristaltiartsport of a Prandtl fluid in a uniform channel endhe
assumptions of long wavelength and low Reynolds bemn Series solutions aixial velocity and pressure
gradient are given by using regular perturbatiochbégque when Prandtl number is small. The effects
various emerging parameters on the pressure gradigh pumping characteristics are studied in detail
through graphs.

2. Mathematical for mulation

We consider the peristaltic flow of a conductinguital fluid in a two dimensional channel of wid@ . The walls
of the channel are flexible. A uniform magnetiddi8, is applied in the transverse direction to the flae fluid is
taken to be of small electrical conductivity, sattthe magnetic Reynolds number is small and ttieded magnetic
field is neglected in comparison with the appliedgmetic field. The flow is induced by periodic [staitic wave of

length A and amplitudeb with constant spee€ along the channel walls. The physical model ofsyimmetric
channel is shown in Fig. 1.

The equation of the wall is given by

. 2T
Y=iH(X,t):iaibSIn7 (X —ct) (2.1)
wheret is the time is the wavelength ani,Y) are the Cartesian co-ordinates in laboratory frafmeference.

4 H(X.1)

o]

Trrrrrrnrrad

Fig. 1. The physical model

We introduce a wave frame of referent(e(, y) moving with velocity C in which the motion becomes

independent of time when the channel length isntegiral multiple of the wavelength and the presslifference at
the ends of the channel is a constant (Shapird.,e1369). The transformation from the fixed frawfereference

(X, Y) to the wave frame of referent(é(, y) is given by
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x=X-ct,y=Y,u=U -c,v=V and p(x) = P(X, 1), (2.2)

Where(u, V) and (U ) V) are the velocity componentsp and P are pressures in the wave and fixed frames
of reference, respectively.

The Constitute equations for Prandtal fluid is gilsy (Patel and Timaol [9])

o (2] (2]

rT= ou (2.3)
= 1 - i
0
o R
ay 0x
in which A andC are material constants of Prandtl fluid model.
The equations governing the flow in wave frameedérence are given by
ou  ov
—+—=0 (2.4)
ox oy
or
P T :—@+ﬂ+—W—JB§(u+1) (2.5)
ox oy ox o0x oy
0 0
0 g9V OV - _0p 00 0Ty (2.6)
ox oy dy oOx oy
where A
Introducing the following non-dimensional variables
f— f— f— f— _— 2 -
x:i, y:l’ u:E, V:l, p= pa , t:c_t’h:ﬂ,
A a c C UcA A a
; = _T ¢: E = E
uc’ a’ A
where L/ is the constant viscosity, in the Egs. (2.4) —)2: get
M,V g 2.7)
X oy
ar,,
Red| u ou +V oul__9p, 56 -M?(u+1) (2.8)
ox oy ax ay 0x
or or
Red® u@+ Ll —@+52—Xy+5—yy (2.9)
ox oy oy 0X oy
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g
where M = aB,, [— is the Hartmann number.
\

Under the assumptions of long wave Ien6d1< < 1)and low Reynolds numbeRe® 0), the Equations (2.8)
and (2.9) become

d
@=&—M2(u+1) (2.10)
ox oy
@ =0 (2.11)
oy
here7,, = a@+é @
dy 6\0y
The corresponding boundary conditions in wave frafreference are given by
u=-1 at y =h=1+¢@cos 27x, (2.12)
a—u=0 at y=0. (2.13)
oy
Equations (2.10), (2.11) indicate thais independent df . Therefore Eq. (2.10) can be rewritten as
2 3
%=aa—g+£i ou -M?(u+1) (2.14)
dx oy~ 609y||ady

The volume flow rateqin a wave frame of reference is given by

h
q=udy. (2.15)
0
The instantaneous fluQ(X,t) in the laboratory frame is

h h
Q(x,t):judy:j(u+1)dy:q+h. (2.16)
0 0

A
The time average flux over one periiﬁ{= — | of the peristaltic wave is
c

]
6:?1.[th: (q+h)dx=q+1. 2.17)
0

ot

3. Solution
The Equation (2.14) is non-linear and its closeunfgolution is not possible. Hence, we linearizs gguation in

terms 0f,8(<< 1). So we expandl, pand ( as

u=u, + Bu, +O(B?%)
p=p,+Bp, +0(5%)
q=0, + Ba, +O(5%) (3.2)
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Substituting (3.1) in the Equation (2.14) and ire thoundary conditions (2.12) and (2.13) and eqgatire

coefficients of like powers 0;8 to zero and neglecting the terms ,&2 and higher order, we get the following
equations:

3.1 System of order zero(,BO)

2
cra—u;—MzuO:%+M2 (3.2)
oy dx
with the corresponding boundary conditions are
Uy =— at y=h=1+g@cos 21x, (3.3)
% = at y=0. (3.4)
ay
3.2 System of order one ()
2 3
aa—uzl—M2 uw =g 100y, (3.5)
oy dx 60dy\ dy

with the corresponding boundary conditions are

u =0 at y=h=1+@cos 27X, (3.6)
% =0 at y=0. (3.7
oy

3.3 Solution of order zero(,BO)
Solving Eq. (3.2) together with the boundary coindi (3.3) and (3.4), we obtain

u, = I [COShNy—l}—l (3.8)
M < dx | coshNh

The volume flow rateg], in the moving coordinate system is given by

h 1 dp,| sinhNh
= dy = 0 -h|-h 3.9
% JO Y= M7 X [N coshNh } 59
From Eg. (3.9), we have
dp, _ M?*(q, +h) N coshNh 310

dx (sinhNh-Nh costh)

3.4 Solution of order one ([3)
Solving the Equation (3.5) by using the Equatio8)&nd the boundary conditions (1.6) and (1.7)pt&in

-B coshNy} (3.11)

y=t %[coshNy_l}+ NA® (dp, 3[y siniNy _ coshidy
' 'M? dx | coshNh avi®\ dx 2N 817
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_ N _(hsinhNh cosh Blh) 1
where A= , = -
coshNh 2aN 8M? ) coshNh
and the volume flow rat€}, is given by
1 dp
= sinhNh - Nh coshNh|+C o 3.12
%= Oly MNcoshthx[ ] (dxj (3.12)

_ NA’[ hcoshNh _ sinfNh _ sinhBh B sinNh
WhereC—8|v|6 -

20N*? 20N°  2ANM ? N
From Eg. (3.12), we have

3
M?N coshNh| g, —C(dp"j
dp, _ dx
dx sinhNh—hN cosNh

(3.13)

Substituting Equations (3.10) and (3.13) into thecamd Equation of (3.1) and using the relation

dp, = dp ,8— and neglecting terms greater tl@éﬂ) we get
dx dx dx
2 M2(q, +h) N coshNh)’
dp _ | NM “ coshNh +h-jC _(qo +h) N cos (3.14)
dx  [sinhNh—-Nh costNh] sinftNh— Nh cosRh

The dimensionless pressure rise per one wavelémgjie wave frame is defined as
1d
Ap = f 9P 4 (3.15)
0 dx
RESULTSAND DISCUSSION

d
Fig. 2 illustrates the variation of axial pressx‘:;nadientd—p with S8 for =0.6, a =1.5and M =1. Itis
X

d
observed that, the axial pressure grad&ggiincreases with increasing .
X

d
The variation of axial pressure gradiegg2 with M for =0.6, @ =1.5and £ =0.1is shown in Fig. 3. It is
X

d
noted that, the axial pressure gradieaig increases with an increasehh .
X

d
Fig. 4 depicts the variation of axial pressure gm‘dd—p with a for =0.6, f=0.1andM =1. Itis found
X

d
that, the axial pressure gradie31E increases on increasigg.
X
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d
The variation of axial pressure gradieg\EZ with @ for £=0.1, a =1.5and M =1 is depicted in Fig. 5. Itis
X

d
observed that, the axial pressure grad&ggiincreases with increasing.
X
Fig. 6 shows the variation of pressure ri8p with time averaged qu>6 for different values of with ¢=0.6,
a=15and M =1. It is observed that, the time averaged f@(increases with increasing in the pumping
region(Ap >O), while it decreases with increasing in both the free-pumping(Ap =O) and co-pumping
(Ap < O) regions. Further, it is observed that, the pumpsnmore for Prandtl fluid than that of Newtonianid

(a=1,8=0).

The variation of pressure risBp with time averaged qu>(_) for different values oM with ¢=0.6, a =1.5
and £ = 0.1 s depicted in Fig. 7. It is found that, any twengping curves intersect in a first quadrant, toléfieof

this point of intersection the time averaged f@( increases with increasinlyl and to the right of this point of

intersectionQ decreases with increasirg .

Fig. 8 illustrates the variation of pressure ri&@ with time averaged qu>(_) for different values ofd with

@=0.6, f=0.1andM =1. Itis noted that, the time averaged f@( increases with increasing in both the
pumping and free-pumping regions, while it decreasith increasing in the co-pumping region.

The variation of pressure risAp with time averaged fluxQ for different values ofp with £=0.1, a=1.5

and M =1 is shown in Fig. 9. It is noted that, the time raged fluxé increases with increasing in both the
pumping and free-pumping regions, while it decrsasigh increasingp in the co-pumping region.

CONCLUSION

In this chapter, we studied the MHD peristalticnsport of a Prandtl fluid in a uniform channel undee
assumptions of long wavelength and low Reynolds bbemn Series solutions @xial velocity and pressure
gradient are given by using regular perturbatiochteque when Prandtl number is small. It is obsérve

that, the axial pressure gradient increases witheising 8,M ,a and @. In the pumping regiorntjme

averaged fluxa increases with increasing, M ,a and @. Also, it is observed that, the pumping is more for
Prandtl fluid than that of Newtonian fluid.
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Fig. 3 Thevariation of axial pressure gradient d_p with M for =0.6, a=1.5and £=0.1
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Fig. 4 Thevariation of axial pressuregradient — with a for =0.6, f=0.1and M =1.
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Fig. 5 Thevariation of axial pressure gradient 9 with g for £=0.1, a=1.5and M =1.
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Fig. 6 Thevariation of pressurerise Ap with time averaged flux 6 for different valuesof £ with ¢=0.6,
a=15and M =1.
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Fig. 7 Thevariation of pressurerise Ap with time averaged flux 6 for different valuesof M with ¢=0.6,
a=15and £=0.1.
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Fig. 8 Thevariation of pressurerise Ap with time averaged flux 6 for different valuesof @ with ¢=0.6,
B=0.1land M =1.
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Fig. 9 Thevariation of pressurerise Ap with time averaged flux 6 for different valuesof @ with 8 =0.1,
a=15and M =1.
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