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ABSTRACT  
Peristaltic flow of a micropolar fluid in a channel with longwave length approximation is 
studied under long wavelength and low Reynolds number assumptions.   The velocity, the 
pressure rise over one cycle of the wave and frictional force are obtained.  It is observed that 

for a given flux  Q  , the pressure difference  p∆   increases with increasing   parameterη . 
 
Keywords: Peristaltic transport; micropolar fluid; volume flow rate; pressure rise; pumping 
characteristics. 
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INTRODUCTION 

 
Peristalsis is the mechanism by which fluid is transported through a distensible tube when 
contraction or expansion waves propagate along its length. Peristalsis appears to be the 
mechanism for fluid transport in many physiological situations such as transport of urine 
through ureter, food mixing and chyme movement in intestines, transport in bile duct, etc. 
The study of peristaltic transport of fluid is based on the principles of fluid mechanics 
involving interaction of fluid motion in tubes with flexible boundaries. In such investigations 
an appropriate mathematical model of the physiological system is made by keeping in view 
the nature of the physiological fluid (i.e. its Newtonian or non-Newtonian character, its 
behavior as a two phase mixture, its viscosity), the nature of the tube and other processes 
involved. Pioneering work in this area has been done by Jaffrin and Shapiro [7, 8], Brasseur 
et al. [3], Usha and Ramachandra Rao [9, 10, 16 & 17], Shukla et al [11, 12], Vajravelu et al. 
[18-21] and many others [13-15].  
 
In classical continuum theory a body is assumed to be a dense collection of point masses in 
which there is no internal structure.  In the motion of a volume element v∆   it is assumed 
that the individual motions of material points coincide with the motion of centre of mass of 
the volume elementv∆ .  In this case the density ρ  of the volume element v∆    is 

independent of the size of v∆  and independent on it’s location in space and the time t.  
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Eringen [4] reported that this is not true asv 0∆ → .   The density ρ  shows an increasing 

dependence on the size of thev∆ , when  v∆  is less than a critical valuev*∆ .   Classical 
continuum theory cannot explain the mechanical behavior of rheologically complex fluids, 
such as liquid crystals, colloidal fluids and blood. Due to this fact a new approach was 
necessitated. There are several approaches to the formulation of microcontinuum theories of 
fluids such as simple deformable directed fluids, dipolar fluids, polar fluids, simple micro-
fluids, micropolar fluids, etc.  All these consider the existence of couple stresses and body 
couples.  
 
Eringen [5, 6] reported the theory of micropolar fluids in which the fluid micro elements 
undergo rotations without stretching.  Micropolar fluids are superior to the Navier-Stokes 
fluids and they can sustain stresses and body couples.  Here  the micro particles in the volume  

v∆   rotate with an angular velocity about the centre  of  gravity  of the volume  in an  

average  sense and is  described  by the micro rotation vector .Ω    The micropolar fluids  can 

support  stress  and body  couples  and  find their applications in a special case of fluid  in 
which micro rotational motions are important.   Ariman and Cakmak [1, 2] discussed three 
basic viscous flows of micropolar fluids.  They are Couette and Poiseuille flows between two 
parallel plates and the problem of a rotating fluid with a free surface.  The results obtained are 
compared with the results of the classical fluid mechanics.  Srinivasacharya et al. [13] made a 
study on the peristaltic pumping of a micropolar fluid in a tube.  The gravitational effects are 
also important in peristaltic pumping.  In view of this, we have considered the peristaltic 
pumping of a micropolar fluid in an inclined channel.  This mathematical model may be 
useful to have a better understanding of the physiological systems such as blood vessels.  The 
velocity field, the stream function, the volume flow rate and the pressure rise are obtained 
and results are discussed through graphs.          
    
Mathematical formulation and solution 
Consider  the peristaltic  pumping  of a micropolar fluid  in a vertical channel of half-width  
‘a’.   A longitudinal train of progressive sinusoidal waves takes place on the upper and lower 
walls of the channel.  For simplicity we restrict   our discussion to the half-width  of the 
channel as shown  in  figure. (1)  
 
The wall deformation is given by  

 ( ) ( )2
H X, t a bsin X ct

π= + −
λ

                (1) 

Where b is the amplitude, λ  is the wavelength and  c is the wave speed. 
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.  
Figure 1 Physical Model 

 
2.1. Equations of motion  
Under the assumption that the channel length is an  integral multiple  of the wavelength λ  

and the  pressure  difference across the ends of the channel is  a constant, the flow becomes  
steady  in the wave  frame  ( )x, y   moving  with velocity c away  from  the fixed 

(laboratory) frame ( )X, Y .  The transformation between these two frames is given by  

 ( ) ( ) ( ) ( )x X ct; y Y; u x, y U X ct, Y c; v x, y V X ct, Y= − = = − − = −       (2) 

 
Where U and V are velocity components in the laboratory frame and u, v  are velocity  
components in the wave frame.  In many physiological situations it is proved experimentally 
that the Reynolds number of the flow is very small.  So, we assume that the flow is inertia-
free.   Further, we assume that the wavelength is infinite.  
 
 Using the non- dimensional quantities.  

2u x y pa a H
u ; x ; y ; p ; ; h

c a c c a

Ω= = = = Ω= =
λ λ µ

    

The non-dimensional form  of  equations  governing  the motion (dropping  the bars) is  



A.Kavitha et al                                                         Adv. Appl. Sci. Res., 2011, 2 (1):269-279 
___________________________________________________________________________ 

272 
Pelagia Research Library 

 ( )
2

2

u p
N 1 N 0

y y x

∂ ∂Ω ∂+ − − + η =
∂ ∂ ∂

                 (3) 

 
2

2 2

2 N u
2 0

m y y

− ∂ Ω ∂− − Ω =
∂ ∂

                (4) 

where   
k

N
k

=
µ +

 is coupling  number   

 Ω  is  the microrotation  velocity   

 u   is the velocity  

 µ   is the  viscosity of the fluid  

 k  is  the micropolar viscosity  

 m  is  the micropolar parameter  
 p  is the fluid pressure  

η  is the gravity parameter, 
2a g

cγ
 

 
The non-dimensional boundary conditions are  

 
u

0
y

∂ =
∂

   at y  = 0         (5)  

 0
y

∂Ω =
∂

  at  y = 0         (6) 

 u 1= −  at  ( )y h x=         (7) 

 0Ω =   at  ( )y h x=         (8) 

2.2. Solution  
The   general solution of (3) and (4) is given by  

N
u

m

−= ( ) ( )
( )

1

2 3 42

21 N P 2C
C sin hmy C cosh my y C

2 N m
y

− − η
+ + + +

−

 
 
 

  (9) 

 where 
p

P
x

∂=
∂

 

 
( )

( )
1

2 3 2

1 N p C
C coshmy C sinh my y

2 N m

 − − η
Ω = + − −  − 

     (10) 

 
using the boundary conditions  (5) to   (8)  in (9) and (10),  we obtain the velocity of the fluid  
and  microrotation velocity  as  

( )
( )

2
4 5 6

1 N p
u D (sinh my my) D cosh my y D 1

2 N

− − η
 = − − + + − −

  (11) 

              where      1

(mh sinh mh)
D

(2cosh mh N)

−=
−
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2

2 2

3

1
4 2

5 2

6 5 3 4 2

D [sin h mh mh]

m h
D [cosh mh ]

N
2ND

D
m

N
D

m
D D D D D

= −

= −

−=

=

= −

 

( )
( )

1
2 3 2

1 N P C
C cosh my C sinh my y

2 N m

− − η
Ω = + − −

−
                (12) 

           where   
( ) [ ]
( )( )1

mN 1 N P mh sinh mh
C

2 N 2cosh mh N

 − − η − =
− −

 

   
( ) [ ]

( )( )2

2 1 N P mh sinh mh
C

m 2 N 2cosh mh N

 − − η − =
− −

  

 

( )
( )
( )

3

4 2

2
2

1 N P
C

2 N m

2N (1 N)P ) (mh sin h mh)sin h mh h
C

(2 N) (2cosh mh N) m m

(1 N)P Ncosh mh
h 1

(2 N) m

− − η
=

−

− − η −  = − − −  

− − η  + − − −  

 

 
Integrating the equation (11) and using the condition 0ψ =  at y 0= , we get the stream 

function as  

( )
( )

2 3

4 5 6

1 N p cosh my my sin h my y
D D D y y

2 N m 2 m 3

 − − η  
ψ = − − + + −  −   

          (13) 

 
The volume flux q through each cross-section in the wave frame is given by  

        
h

0

q u dy= ∫  

( )
( )

2 3

4 5 6

1 N p cosh mh mh sin h mh h
q D D D h h

2 N m 2 m 3

 − − η  
= − − + + −  −   

           (14) 

where   1

(mh sinh mh)
D

(2cosh mh N)

−=
−
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2

2 2

3

1
4 2

5 2

6 5 3 4 2

D [sin h mh mh]

m h
D [cosh mh ]

N
2ND

D
m

N
D

m
D D D D D

= −

= −

−=

=

= −

 

 
The pressure gradient is obtained from equation (14)       

( )( )
( ) 2 3

4 5 6

q h 2 Ndp 1

dx 1 N coshmh mh sinhmh h
D D D h

m 2 m 3

 
 + −  = +η
 −  

− − + +  
   

             (15) 

 
The time averaged flow rate is  

Q q 1= +                               (16) 
 
2.3. The pumping characteristics   
Integrating the equation (15) with respect to x over one wavelength, we get the pressure rise 
(drop) over one cycle of the wave as  

( )( )
( )

1

0
2 3

4 5 6

Q 1 h 2 N
p dx

1 N

1

coshmh mh sinhmh h
D D D h

m 2 m 3

− + −
∆ = +η

−

  
  
  
   

− − + +        

∫          (17) 

The pressure rise required to produce zero average flow rate is denoted by 0P∆ .   Hence 

0P∆  is given by    

( )( )
( )

1

0

0 2 3

4 5 6

h 1 2 N
p dx

1 N

1

coshmh mh sinhmh h
D D D h

m 2 m 3

− −
∆ = + η

−

  
  
  
   

− − + +        

∫          (18) 

 
The dimensionless frictional force F at the wall across one wavelength in the inclined channel 
is given by  

1

0

dp
F h dx

dx
 = − 
 

∫  

     ( )( )
( )

1

0
2 3

4 5 6

Q 1 h 2 N
h dx

1 N

1

coshmh mh sinhmh h
D D D h

m 2 m 3

− + −
= − + η

−

  
  
  
   

− − + +        

∫        (19) 
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RESULT AND DISCUSSION 
 

From equation (17), we have calculated the pressure difference as a function of  Q   for 

different values of coupling number N with a 1,=   m 4,b 0.6= =  and 2η =  and is shown 

in Figure (2).   It is observed that for chosen parameters   the  pumping curves intersect at a  

point  in  the  first  quadrant  closure  to Q 0.5≈ . For Q 0.5<  we observed that the pressure  

rise increases  with the  coupling  number  N.  The behavior is otherwise when Q   > 0.5.  For 

free pumping  the  Q    decreases with the increasing N.    
 
The   variation of  pressure  rise  with time  averaged flow rate  is calculated  from equation 
(17)  for different  values  of  micropolar  parameter ‘m’, and is shown  in Figures  (3)  for 
fixed  a 1,b 0.6= =   n 0.8,= 2η = .    It is  observed  that  the pumping curves that  the 

pumping curves meet  at a point between Q 0.4=   and  Q 0.6= . This value is  estimated as 

Q 0.44= . When Q 0.44<   the  pressure rise decreases with increasing  m.  The opposite 

behavior is  noticed  for  Q 0.44> .    
 

From equation (17), we have calculated pressure rise as a function of Q  for different values 

of η  and is shown in  Figure (4) for fixed n 0.2,=  m 2=  and   a 1,b 0.6= = . We 

observed that with a given Q , the value p∆  is increases with an increasing in the parameter 
η .   
The variation of frictional force with time averaged flow rate is calculated from equation (19) 
for different values of N, m,  η  for a fixed a = 0.1, b = 0.6 and is shown in Figures (5) to (7). 
It is observed that the frictional force F has the opposite behavior compared to pressure rise.   
 

 
Q  

Figure 2: The variation of P∆  with Q  for different values of N with  a=1, b=0.6, m=4 and  ηηηη=2 
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Q  

Figure 3: The variation of P∆  with Q  for different values of m with  a=1, b=0.6, n=0.8 and  ηηηη=2 

 
Q 

Figure 4: The variation of P∆  with Q  for different values of ηηηη with  a=1, b=0.6, n=0.2 and  m=2 
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Q 

Figure 5: The variation of F with Q  for different values of N with  a=1, b=0.6, m=4 and  ηηηη=2 

 
Q 

Figure 6: The variation of F with Q  for different values of m with  a=1, b=0.6, N=0.8 and  ηηηη=2 
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Q 

Figure 7: The variation of F with Q  for different values of ηηηηwith a=1, b=0.6, m=2 and  N=0.2 
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