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ABSTRACT

Peristaltic flow of a micropolar fluid in a channel with longwave length approximation is
studied under long wavelength and low Reynolds number assumptions. The velocity, the
pressure rise over one cycle of the wave and frictional force are obtained. It is observed that

for agiven flux Q , the pressure difference Ap increaseswith increasing parameter /7.
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INTRODUCTION

Peristalsis is the mechanism by which fluid is $f@orted through a distensible tube when
contraction or expansion waves propagate alondeitgth. Peristalsis appears to be the
mechanism for fluid transport in many physiologis#uations such as transport of urine
through ureter, food mixing and chyme movementniiestines, transport in bile duct, etc.
The study of peristaltic transport of fluid is bdsen the principles of fluid mechanics
involving interaction of fluid motion in tubes wiftexible boundaries. In such investigations
an appropriate mathematical model of the physicklgsystem is made by keeping in view
the nature of the physiological fluid (i.e. its Nlewian or non-Newtonian character, its
behavior as a two phase mixture, its viscosityg, miature of the tube and other processes
involved. Pioneering work in this area has beenedmy Jaffrin and Shapiro [7, 8], Brasseur
et al. [3], Usha and Ramachandra Rao [9, 10, 1§ 3hukla et al [11, 12], Vajravelu et al.
[18-21] and many others [13-15].

In classical continuum theory a body is assumeldet@ dense collection of point masses in
which there is no internal structure. In the motaf a volume elemenflv it is assumed
that the individual motions of material points code with the motion of centre of mass of
the volume elemedlv. In this case the densitp of the volume elemenfAv s

independent of the size div and independent on it's location in space andtitine t.
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Eringen [4] reported that this is not truefas— 0. The densityp shows an increasing

dependence on the size of the, when Av is less than a critical valdev*. Classical
continuum theory cannot explain the mechanical ehaf rheologically complex fluids,
such as liquid crystals, colloidal fluids and blodaue to this fact a new approach was
necessitated. There are several approaches torthelation of microcontinuum theories of
fluids such as simple deformable directed fluidpotar fluids, polar fluids, simple micro-
fluids, micropolar fluids, etc. All these considéie existence of couple stresses and body
couples.

Eringen [5, 6] reported the theory of micropolaridls in which the fluid micro elements
undergo rotations without stretching. Micropolarids are superior to the Navier-Stokes
fluids and they can sustain stresses and body esuplere the micro particles in the volume
Av rotate with an angular velocity about the centwé gravity of the volume in an

average sense and is described by the microamteectorQ . The micropolar fluids can

support stress and body couples and find tygdtications in a special case of fluid in
which micro rotational motions are important. rAan and Cakmak [1, 2] discussed three
basic viscous flows of micropolar fluids. They &euette and Poiseuille flows between two
parallel plates and the problem of a rotating flwith a free surface. The results obtained are
compared with the results of the classical fluicch@anics. Srinivasacharya et al. [13] made a
study on the peristaltic pumping of a micropolaidlin a tube. The gravitational effects are
also important in peristaltic pumping. In view this, we have considered the peristaltic
pumping of a micropolar fluid in an inclined chahneThis mathematical model may be
useful to have a better understanding of the plygical systems such as blood vessels. The
velocity field, the stream function, the volumewiloate and the pressure rise are obtained
and results are discussed through graphs.

Mathematical formulation and solution

Consider the peristaltic pumping of a micropdlaid in a vertical channel of half-width
‘a’. A longitudinal train of progressive sinusaldvaves takes place on the upper and lower
walls of the channel. For simplicity we restricour discussion to the half-width of the
channel as shown in figure. (1)

The wall deformation is given by
H(X, t)=a+ bsinz)\—n( X cf 1)

Where b is the amplitude\, is the wavelength and c is the wave speed.
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Figure 1 Physical M odel

2.1. Equations of motion
Under the assumption that the channel length israegral multiple of the wavelength

and the pressure difference across the endsdafhthnnel is a constant, the flow becomes
steady in the wave frame(x, y) moving with velocity ¢ away from the fixed

(laboratory) frame(X, Y). The transformation between these two frames/engoy
x=X-ct; y=Y; u(x,y)=U(X-ct, Y)-¢; v(x,y)=V(X-ct,Y) (2

Where U and V are velocity components in the latooyaframe and u, v are velocity

components in the wave frame. In many physioldgttaations it is proved experimentally

that the Reynolds number of the flow is very sm&l, we assume that the flow is inertia-
free. Further, we assume that the wavelengftifiisite.

Using the non- dimensional quantities.
U:E; 7(:5; V:X’ T):_pa2 : Q:Q_a, h:_H
C A a AU C a
The non-dimensional form of equations governthg motion (dropping the bars) is
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where N =

” Is coupling number

Q is the microrotation velocity
u is the velocity

M is the viscosity of the fluid

k is the micropolar viscosity

m is the micropolar parameter

p is the fluid pressure
2

n is the gravity parametef%—g
yc

The non-dimensional boundary conditions are

a_u =0 aty =0 (5)
oy
a_Q:O at y=0 (6)
oy
u=-1 at y=h(x) (7)
Q=0 aty=h(x) (8)
2.2. Solution
The general solution of (3) and (4) is given by
- _ (1-N)P-n) , 2C
u=— (C h h S 9
- (C, sinhmy+ G cos m)/+[ ) y? + — ¥ ¢ (9)
whereP:@
ox
: 1-N)p-n C
Q =C,coshm sinhm (— s 10

using the boundary conditions (5) to (8) in&8yd (10), we obtain the velocity of the fluid
and microrotation velocity as

(1-N)p-n

u :W[D4 (sinhmy- myy- Q coshmy 3+ B]- (11)
where D, = (mh-sinh mh)‘
(2coshmh- N
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D, = [sinhmh- mh]

22
D3=[coshmh—m h :
-2ND
D4: -~ 1
N
Dy =—
D6:D5D3_D4D2
| (1-N)P-n _C
. ! hmy =2 N T 12
C,coshmy+ G sinhmy (2—N) = 12
N[(1- N) P-n][ mh- sinh
where C, = m [( ) I‘]}[m sin m]1
(2-N)(2coshmh- N
C. = 2[(1_ N) P—r]][ mh- sinhmh
** m(2-N)(2coshmh N
Cszw
(2—N)m

_2N((@- N)P-n)) (mh- sinhmhfsinhmh__hr;l
" (2-N) (2coshmh N) M

La- N)P—r]{ Ncoshmh hz}—l
(2-N) ’

m

Integrating the equation (11) and using the coodith =0 at y =0, we get the stream
function as

_(1-N)p-n coshmy my| _ sinhmy ¥ _
VEeoN) DT m 2T m ey @

The volume flux g through each cross-section irnvthge frame is given by
h
q = [udy
0

(1-N) p‘n{D{cosh mh_ mﬁ}_ D, sinh mq__:j} Deh}— h (14

172N m 2 m
where D, = (mh-sinh mh)‘
(2coshmh- N
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D, = [sinhmh- mh]

2142
D, :[coshmh—m h )
-2ND
D, = oy 1
N
S
D,=D,.D,-DD,
The pressure gradient is obtained from equatioh (14
+h)(2- N
3_5 - (1)—(N) ) coshmh  mh : sinhmh °h o (19)
D, - -D, +—+Dgh
i m 2 3 |
The time averaged flow rate is
Q=q+1 (16)

2.3. The pumping characteristics
Integrating the equation (15) with respect to xramee wavelength, we get the pressure rise
(drop) over one cycle of the wave as

1 O-— —
) (1-N) D4[cos hmh_ mﬁ} _p, SN hmh h D
m 2 3

The pressure rise required to produce zero avdtagerate is denoted byAP, . Hence
AP, is given by

ao, =f | (132N 1 il @8)
° . (1-N) b [coshmh_ mﬁ}_D sinhmh _“h
4 m 2 5 E 6

The dimensionless frictional force F at the walloss one wavelength in the inclined channel
is given by

1
F:jh—d—p dx
dx

0

:j_h (Q-1+h)(2- N 1 +n lax (19)
o (1-N) D{cosn: mh_ nzﬁ}_Ds S|rr1n h mt;;h+ Db
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RESULT AND DISCUSSION

From equation (17), we have calculated the presdifference as a function of(_Q for
different values of coupling number N with=1, m=4,b= 0.6andn =2 and is shown

in Figure (2). It is observed that for chosenapagters the pumping curves intersect at a
point in the first quadrant closure ®=0.5. For Q < 0.5 we observed that the pressure

rise increases with the coupling number N. Bbéleavior is otherwise whe@ >0.5. For
free pumping the(_Q decreases with the increasing N.

The variation of pressure rise with time agesd flow rate is calculated from equation
(17) for different values of micropolar paraerem’, and is shown in Figures (3) for

fixed a=1,b=0.6 n=0.8,n=2 . Itis observed that the pumping curves that
pumping curves meet at a point betwd@s 0.4 and Q = 0.6. This value is estimated as
Q=0.44. WhenQ <0.44 the pressure rise decreases with increasing The opposite
behavior is noticed foiQ > 0.44.

From equation (17), we have calculated pressueeassa function of_Q for different values
of n and is shown in Figure (4) for fixed =0.2, m=2 and a=1b= 0.t We

observed that with a give, the valueAp is increases with an increasing in the parameter

n.
The variation of frictional force with time averabBow rate is calculated from equation (19)
for different values of N, my; for a fixed a = 0.1, b = 0.6 and is shown in Fegu(5) to (7).

It is observed that the frictional force F has dpg@osite behavior compared to pressure rise.
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Figure 2: Thevariation of AP with Q for different valuesof N with a=1, b=0.6, m=4 and n=2
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Figure 3: Thevariation of AP with (_) for different values of m with a=1, b=0.6, n=0.8 and n=2
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Figure 4: Thevariation of AP with (_) for different valuesof n with a=1, b=0.6, n=0.2 and m=2
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Q
Figure5: Thevariation of F with (_Q for different valuesof N with a=1, b=0.6, m=4 and n=2
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Figure 6: Thevariation of F with (_Q for different values of m with a=1, b=0.6, N=0.8 and n=2
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Figure7: Thevariation of F with (_) for different values of nwith a=1, b=0.6, m=2 and N=0.2
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