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ABSTRACT

Globally, thin-walled steel sections have been extensively employed as prime load-bearing members, such as wall
studs, floor joints, columns and beams, in low to mediumrise buildings such as offices, hotels, flat blocks and
houses. In spite of the accessibility of steel sections, there are still vital barriers that restrain its recognition and
execution in the construction industry. Perhaps one of the major barriersis that the building industry is in general
disinclined to execute alternative building methods and materials unless it demonstrates obvious and
comprehensible quality or performance benefits. It can be found that the behaviour of thin-walled steel sections,
including local buckling, distortional buckling, global buckling and shear buckling have been well understood and
appropriate design methods existed. The theoretical and mathematical equations presented in this paper will aid
future researchers in designing satisfactory thin-walled steel structures holistically.

Keywords:. thin-walled, steel section, lightweight framingcéd buckling, distortional, mathematical model, ligb
buckling, shear buckling

INTRODUCTION

During the last years, thin-walled steel sectionstauction has been a serious rival to the morditiomal wood

frame system and has gained ground all over thédwparticularly in Europe countries, Australia,r@da, United
States and some Asian countries for applicatidownrise residential and commercial constructidrtge reason for
this growing application of thin-walled steel igmarily based on several advantages deriving frigh ktrength to
weight ratio, high stiffness, easy erection andtaifetion compared to thicker hot-rolled steel mensh
homogeneous quality, termite proof and non-combilifi. The main structural components utilized tawusing
are roof rafters, decks, wall studs, slab jois&sling joists, and roof trusses. In spite of thaiability of cold-

formed steel system, there are still crucial basrithat hold back its acceptance and implementatiothe

construction industry. Perhaps one of the primeamess is that the building industry is in genatainclined to
implement alternative building methods and matenalless it demonstrates apparent and understandaality or
performance benefits.

Given that thin-walled sections are slender; thii§ increase the behavioural occurrences, whichraxeregularly
found in the hot-rolled sections system. Firstlofvahen thin-walled sections are exposed underpression, local
buckling will take place because the plate widththiwkness ratio is very high. This local bucklieffect will

diminish the member stiffness against overall flexand torsion. Fig. 1 demonstrates the effecocdll buckling in
column. Flat elements in compression that have bdties parallel to the direction of stress stiftebg a web,
flange, lip or stiffener are referred to as stiffdnelements. Secondly, distortional buckling atesnoccurs in
compressed lipped channel sections of intermedétgth. Distortional buckling of a lipped channgpitally
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involves rotation of the flanges and the lips amuhe flange-web junctions. Figure 2 illustrates tiypical
distortional buckling mode of a lipped channel at.
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Figure 2. Distortional buckling mode of a lipped channel section

Thirdly, thin-walled steel columns are more simpdy fail in flexural buckling as they always havelaager

slenderness compared to the same length of hedrablumns. Fourthly, given that several thin-wdlctions
have either no, or only one, axis of symmetry (@ in Fig. 3), this means that these section® leawnatural
inclination to twist under load. Thus they will neosimply to fail in torsional buckling or flexurédssional

buckling. Finally, a thin-walled steel section nfajyl in shear buckling owing its small thicknes®@ 3um up, when
compared to hot-rolled steel sections, cold-fornteid-walled steel sections are more possible tb ifailocal

buckling, distortional buckling, various global iag and shear buckling.
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Figure 3: Typical cold-formed steel sections

2. THEORETICAL AND MATHEMATICAL CONSIDERATIONS FOR THIN-WALLED STEEL
SECTIONS

2.1 Local buckling
Local buckling is predominantly common in thin-veall sections and is characterised by the fairly tstackling

wavelength of individual plate elements. For ealettiep the local buckling capability depends on ¢ffective area
of the plate, which is equivalent to the effectividth of the plate multiplied by its thickness. eTéffective width of
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a plate depends on the stress distribution in thte pthe supporting state and the width to thiskneatio of the
plate. Fig. 4 shows the form of stress distributimygularly encountered across the decisive seatibra
homogeneously compressed plate. The utmost stEsssoat the supported plate edges whilst strassas the
profoundly buckled plate centre are comparativetall such that it can be considered that the &fegess of the
plate in enduring loading is confined to the supgdrplate edges. The effective width concept assuimat the
portions of a plate element (e.g«2 in Fig. 4) near the supports are completelyotiife in resisting load and the
remainder of the element is completely ineffecageshown in Fig. 4.

Simplified equivalent stres

7 dx
i /
7 B

AN I ¥

Figure 4: Effective width b of a plane element stiffened along both edges.

Winter’'s equation [1] is typically adopted by difémt design methods. It gives:

Dert _ o if A < 0.673 1)
Doy _ 1 (1—%) if A >0.673 @)
b A A
in which the plate slendernekss defined by:
A= |Ys = 10522 | Y ®)
o, t\ Ek,

where, b is the plate widthybis the effective width of the platey, is the critical buckling stress of the plate, and
Y. is the maximum edge stress of the plate and magken as the design yield stress of the plats.tke Young's
modulus; kg is a buckling factor, which is a function of th&ate supporting conditiorkg = 4.0 for a simply
supported plate in uniform compression and 0.4&fooutstand plate element with one edge free.

The expression for effective width in BS5950 Paf1898) is:
beff

= [L+14( | = - 035 @
GCT

2.2 Distortional buckling

Distortional buckling has only newly received thancentration of researchers and a number of analytiethods

have been developed for determining the elastitodisnal buckling stress of individually symmetrazoss-

sections.

Xo | Shear centre of flange and lip unit

L LRSS 7 T

L Centroid of flange and lip unit

E—

Figure5. Cross-section of alipped channel
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With reference to Fig. 5, since distortional buecgliprimarily involves the rotation and lateral biewgdof the
flanges, estimated expressions can be derived bgidering the flanges in isolation, assuming thetytare
undistorted. [2] have given an analytical expressimd a straightforward method to calculate theodisnal
buckling stress of thin-walled lipped channel sattiolumns. The design formulas are shown below:

E
Pcr:E{(O(1+0(2)i\/[(0(1+0(2)2‘40(3]} (5
where, R is the distortional buckling load.
_n 2 Ko
o =— (B2 + 003UN\°) + —— (6)
' B1 ? BinE
o =n(ly ~2yo 2 ©
B1
_ _N a2
az=n(aily ——pB3) (8)
B1
[y +1
B, =h? +% ©
82:|w+|x(xo_hx)2 (10)
B3 :|xy(X0_hx) (11)
Ba =B2+(yo —hy)[ly(yo —hy)—2Bs] (12)
EB4bW 0.25 4bw 025
A=T(——— =4.80 13
(=) =) (13
T2
=(— 14
n ()\) (14)
Et® 111P , biA
Ko = 1-— (5" (15)
546(b,, + 006)) EAt® by +A
P isobtainedrom Eqn.2.5with o, =Bi([32 + 00390\?) (16)
1
The distortional stress @®ge =% a7)
Et

In equations 5-17, E is the Young’s modulus oflstees the lipped flange flexural rigidityD = m ;Wis
-V
the Poisson’s ratioy land |, are the second moments of area of the lipped dlabgut x, y axes, respectively; is
the product second moment of area of the lippathftaabout the x, y axes; is the warping constant of the lipped
flange; J is the torsion constant of the lippeddie; A is the cross-sectional area of the lippedde; t is the
thickness of the flange;,[ds the depth of the web; land ly are the x, y coordinates of the flange/web jumctig
and y are the x, y coordinates of the shear centrehawrs in Fig. 5. In Fig. 5, the origin of the x-yexxis at the
centroid of the flange and lip unit.

Kwon and Hancock (1992) reported a series of cosgiwe test results on lipped channel sections fidtd ends
and proposed two design equations, which may bd tseexplicitly consider distortional buckling inesign
calculations. The first is an extension of the iearkquations given by Lau and Hancock (1988) bamedhe
column-buckling philosophy. The formulations are:

f
Opmax = fy(1-——)  if Oy (18)

oy
404, 2
f 2 f f
Omax = fy 005 Y- 36 + 0237 |f ¥ < Gde < Y (19)
40¢e 13 2
whereogeis the elastic distortional buckling stress, givsrogein equation 17,,fis the yield stress.
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The second is a modification of plate-strength eusmd is based mainly on the plate-strength desgigmoach as
used for distortional buckling in the AISI specé#tmon when the lip is not adequate to fully suppgbe flange [1].
The formulation is given by:

bt — 1, A<0.561 (20)
Pert _ (Oaeyosq _ oo Teey0sy ) >0561 (21)
b f, f,

The distortional buckling slenderness is defined as

A= f—y (22)
Oge
These two proposed design equations are consigtean predicting distortional buckling load, but tecond one
is easier to combine with current code design nmisho predict the failure load for mixed local adidtortional
buckling model including the case where local buntkbccurs before distortional buckling.

The generalized Beam Theory (GBT) has become aulusedl to study distortional buckling of thin-wed
columns. Davies and Leach [3,4] gave more det8ié&parate and combined individual buckling modes lman
associated with load components in GBT.

The basic equation of GBT is
EkCkv™ - GKD*v +kBkVv=Kq (23)
in which the second-order effects are excludedotigig the shear effect, the equation for modesk’ i

EXC'V" -G* D'V +*BFV + > S Kk (wWiV) =g (24)
i

where k denotes mode 'C is the generalized warping constdiit;is the generalized torsional constant 5Bvuds
the transverse bending stiffness. The generaligetiom properties depend only on the cross-segemmetry *k
is a three dimensional array of second-order tewirish takes account of the interactions betweeplame stresses
in the faces and out-of-plane deformatidivsand“W are the generalized deformation and warping stresultants
in the " mode, respectively. E and G are the modulus stielty and shear moduluy is the uniformly distributed
load and n is the number of modes in the anal¥sis.critical stres&V, can be obtained ff; is zero.

If assuming that the member will buckle in a halfeswave of wavelength, the critical stress for single-mode
buckling, which is valid for buckling in any inddial mode, is [4]:

ey =..i(Ekc:[E]2 +GkD+kB[A]2J (25)
ijk k )\ T
As the wavelength is varied, the minimum criticaéss result is:
i'kw=ﬁ(2\/EkckB +G*D) (26)
and the corresponding half-wavelength is
Ky — 1 E“Cyoz
A= Tr(k—B) (27)

From equations 25, 26 and 27 it can be seen thatithortional critical stress resultant for modis knly dependant
on the second-order coupling tefffk when the load is applied in a different mode @ ahe half wavelength
depends only on the cross-section propef@ieand B which are independent of the load.

[5,6] have carried out a detailed calibration faatartional buckling prediction against more actenahole-section
analysis offered by GBT. They pointed that thetiotal restraint stiffnessgin equation (15) may become negative
with increasing depth of the web from equation &8 & the web buckles earlier than the flange, thisy result in a
low prediction of the distortional buckling streseherefore, for this case, a simple buckling modékere the
rotational restraint between the flange and the wab be treated as zero can be established anbuthding
stresses in the flange and web can be analysedaselya As the buckling load P’ of the flange alocen be
obtained with | taken as zero in equation 15, the buckling stoéfise web plate is:
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(28)

w

2
_TPD( bE +?
thy, A
When the buckling stress in the web is smaller tteat in the flange, there is some buckling intdcscand the
mean buckling stress can be calculated approxignbtel

Oy = (P +0,b,t)/ A, (29)

where, A is the area of whole cross-section.

In the AISI Specification [7], the failure of thalge stiffener to prevent distortional buckling iensidered by
reducing the local buckling coefficient of the glatlement supported by the stiffener to a valuewbd.O. In this
method, the buckling coefficient{kcan be chosen from Table 1.

Table 1. Buckling coefficient k to consider distortional buckling effect

Buckling coefficient k
0.25 <w/h<0.8 | w/h < 0.25

w S

— <= 4

t 3
ScW gk, = (a82-2uys)05 4 ga3< 525- P |1 = 357()5)05 4 0a3< 40
3t w ol w la

s<W |k = @s2-Puysyus 4 gaz< 525- Pk = 357()s)¥3 4 043< 40

t w ol w I,

o

Figure 6. Elementswith edge stiffener

In ENV1993-1-3 [9], distortional buckling is takénto account by assuming that the edges of thendiate
stiffeners where distortional buckling may occuehlve as compressed struts on elastic foundafidres elastic
foundation is represented by a spring whose stffrdepends upon the bending stiffness of the atdjpeets to the
plate element of the cross-section under consideraind on the boundary condition of the elemetie Spring
stiffness of the stiffener may be determined bylgipg a unit load per unit length to the cross-gecttat the
location of the stiffener, as illustrated in Fig.The spring stiffness K per unit length may beedained form:

K=u/d 130
whered is the deflection of the stiffener due to a uwiad u acting in the centroid of band Q.. For an edge
stiffener, the deflection can be obtained from;

b3 VYA
5=ob, +Hor 120 A ) (31)
3 Et
with 6 = pbs /Cq
Therefore, the spring stiffness k can be stated as:
2852
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3
K = Et . O . g 1
4(1-V ) brb,, + b7 + 0.5b:b,by, Ks

(32)

where, h, b, are the distance from the web-to-flange junctmthe centre of the effective area of the edgéesir
of flange 1 and 2, respectively, as shown in Figy s the flange width, pis the web depth;;k=0 for a beam in

Aeff2

bending, ks = for a beam in axial compressiorpzk for a symmetric beam.
effl
The critical buckling stress can be derived as:
_ 2J/KEl;
Oc =— (33)
As

in which, A and | are the effective cross-sectional area and thensemoment of area of the stiffener, as shown in

Fig. 8.
by
Co { i
u

b

e

(c) Calculation oB in
(b) Equivalent system compression case

Figure 7. Determination of the spring stiffness K according to ENV1993-1-3 [9]

bi/t< 60 AN -

Figure 8.Effective cross-sectional area of an edge stiffener

The rotational stiffness may be expressed as themsion of the elastic and stress-dependent gemntififness
terms with contributions from the flange and thebwerhich will be zero if distortional buckling apgrs. The
rotational stiffness may be expressed as:

Ko =(Kg +Kgn)e =(Kg *Kov)g = (Kg +Kow)e - f(kqf +|qu): 0 (34)

Therefore, the critical buckling stress{) is

2853
Pelagia Research Library



CarineLouise Nilsen et al Adv. Appl. Sci. Res., 2012, 3(5):2847-2859

Kge + K
Ocr:M (35)
(Kg +K

ou )

where, K and K¢, are the elastic rotational stiffness of the flarmgel the geometric rotational stiffness of the
flange, repectivelyK-andK-,4 are the elastic rotational stiffness of the web dnredgeometric rotational stiffness
of the web, respectively.

Analytical models are needed for determining thational stiffness contributions from the flangelahe web. For
the flange, cross-sectional distortion is not int@ot; hence the flange is modelled as a column ngadey
torsional-flexural buckling. For the web, crossigetal distortion must be considered, so the wetmaslelled as a
single finite strip. Therefore, the transverse ghymction is a cubic polynomial. The longitudirsilape functions
of the flange and web are matched by using a singliesine wave for each. The final rotationalfatiss term for
the flange and the web are presented as:

4 2 2
K gt =([[} {Ele (Xof —hys)? +ECu ‘Ellxyf (Xof _hxf)zJ"'(C} G (36)
yf
~ 2 Lot ) |
Kig :(n] At | (Xof _hxf)z( ny] =2Yo(Xot —hxs )( ny]+h§f +yhr [+ +ly 37)
L Iyt Ly
Et®
K([ANe :—2 (38)
6b, 1-V*°)
2 3
~ M) th
k =| — w 39
o (L) 60 )

The critical length can also be found and it isiaction of the geometric terms. It can be calculdtg

_y2 |2
Le = {(STIAbthlv){le (Xor = Dyt )’ + Ly _Ixiyf(XOf —hy )2} (40)
yf
where, E is elastic modulus; G is shear modulus;poisson’s ratio; t is the plate thicknesg;idthe web width; L
is the distance between restraints which limit tiota of the flange/web junction; ;Ais the gross area of the
compression flange;slandly; are the second moments of area of the flange aladl y direction, respectively; |
is warping constant of the flangey is x-distance from the flange/web junction to tlemtroid of the flange;,his x-
distance from the centriod of the flange to theashentre of flange, as shown in Fig. 2.9.

kxf
W Yot % F'yf )
Ky lc
Kot

y
Figure 2.9.Flange model (Schafer and Pek)z 1999)

Each method for predicting the elastic distortiobatkling stress has been compared [9,10]. The adegfiven in
ENV 1993-1-3 is quite rough and sometimes givesdueate results for C-sections and plates withrimngeliate
stiffness while the method developed by Lau and ddak [2] correlates better with the results obtdine
numerically.

2.3 Global buckling
For a thin-walled steel column under compressibe, dcolumn may undergo different forms of global iung,
including flexural buckling, torsional buckling ammbmbined flexural-torsional buckling. The localckling and
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distortional buckling cause reduction in the effeetstiffness of the member and thus affect theall/éexural and
torsional-flexural buckling strength of the columand lateral buckling strength of the beams. Tiheesfthe
ultimate failure of a thin-walled column under cagsion may be a combination of local and ovenadkbng or
distortional and overall buckling. In design cahtidns, local and distortional bucking modes amsatered first by
evaluating the effective cross-section of the stmad member. Global buckling is then checked ugingperties of
the effective cross-section, which are obtainedhftacal or distortional buckling behaviour.

Due to local and distortional buckling, the cerdrof the effective cross-section and the grosssesestion may not
coincide. In this situation, the effect of a shifthe centroid should be included, which can nda Fig. 10. This
shift in neutral axis is to introduce a bending neminin an axially loaded member.

N

HERENEEE I

Figure 10.Neutral axis shift

.
-+

In BS5950 [11], for sections symmetrical about botimcipal axes or closed cross-sections whichnatesubject to
torsional flexural buckling, or are braced agaihwsisting or columns with fixed end conditions, tfiexural
buckling load may be calculated as:

P, = 0.5({Pes + (L+N)Pe} = [{Ps + (1+ N)Pc}* - 4P, Pe)) & (41)

p = TCEI 142
L%

n = 0002(L,/i - 20) (43)

In which, Rsis the cross-sectional capacity for local bucklihgs the second moment of area of the crossa®cti
L. is the effective length of the member; i is thdiua of gyration of the gross cross-section comwadng to R.

For cross-sections with a single symmetry axis gfifilects of movement of the effective neutral ashisuld be taken
into account. The ultimate load carrying capaaityffexural buckling should be calculated as:

'_ MR

=_ Ve (44)
(M Cc + PCeS)

Pc

where M is the elastic bending moment capacity of the sssEsction, Pis the flexural buckling capacity in which
the neutral axis shit has not been considered aiddtlee distance between the geometric neutral @ixie gross
cross-section and that of the effective cross-secti

In 1993-1-3 [8], different buckling curves, whichaald be chosen in accordance with the type ofsesestion and
axis of buckling, should be used to determine tiveufal buckling capacity.

I:)c = XAefffy /yMl (45)
Agy = theﬁ = thb = BAA (46)
1
X= S (47)
(p+[(p2 _)\2]0.5

A =(\/AD)IBAT* (48)

A=L,/i 149

AL =T(E/fy]%° (50)

In AISI, the basic equation (51) can be used temigine the various global buckling load.

Pe = Aert Fy 151
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where, Fis determined asF, =f, (1-f, /4R) fork > {, /2andR, = R forF. <f, /2 (52)

For flexural buckling, Fis
°E °E
Fe= 2 \2
(L /D)2 (KL/i)
where, Ay is the effective area of the cross-section ands khe effective length factor, which is relatedthe
boundary condition.

(53)

If the cross-section of a column has only one atisymmetry and without lateral bracing againststimg, the
column may fail into torsional or torsional buckjirmode. The load carrying capacity for torsionalttansional-
flexural buckling in BS5950 Part 5 (BSI 1998) candalculated as:

P, =05({P, + +/)Py} ~[{Py+ A+/)Pyc} ~4RLP ] 2 (54)

Pre = 05({Pex + Pr} — [{Pex + Pr}? — 4BPexPr] 2 /B (55)
2El

PEX = T[L%X 156

1 mEC,,

P =E(GJ+2 : 57)

B=1-(2) 55
lo

i0=(i§+i§+X§)0'5 (59)

n= 0002aL,./i-20) (60)

for Pey > Prg, o= (h)l/Z 61)

Pre
forPey <Prg a =1 62)

In which, L is the second moment of area about the x axiss h@ shear modulus; J is the St Venant torsion
constant for the cross-section which may be talseth@ summation of #8 for all element, where b is the element
flat width and t is the thickness;,@s the warping constant for the cross-sectignisxhe distance from the shear
centre to the centroid measured along the x axideand | are the gyration about the x and y axes, respagtiv

In ENV1993-1-3 [8], buckling curve b is used to etetine the torional or torsional-flexural buckliegpacities.
The basic equation is the same as Eqn. 45, prowidefficienty is decided as:

1
X= = (63)
(p+[(p2 _)\2]0.5
A =(fy/0) Bl (64)
Oc =O0cr e, DUtOG SOt (65)
For torsimal buckling,o, 1 = 1_2 [GJ+ T[zEZCW] (66)
’ A L
g'o e
in which, the calculation ofican be seen in equation 58.
For torsional-flexural buckling,g ., ¢ = i[(ocrx +07) _\/(Gcrx +001)2 — B0 xOcrt] (67)
: 23 , : , : xOcr,
Ogry = TCE/(1 /1y )? (68)

In AISI (1996), the basic equation 51 is also besed to determine the ultimate torsional-flexuratiding
capacity. Ecan be calculated as:
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1 2
Fe = 2_8[(Ocr,x +0¢rt) ~ \/(Ocr,x +0cr7)” —4B0crxOcrt] (69)
where,O¢rx and O¢, 7 can be calculated by using equations 2.66 and B=6fectively.

Some compression members are also subjected tanigeadd the lateral buckling capacity should beckkd.
Equations 70-71 have been used to check the ldtaeciling capacity in BS5950 Part 5 (BSI 2000).

N, M+aM, | MyAM, (70)

Fe CoxM et (1 FI,:CX) CoyMy e @~ F':EI:()

No My vaMy | MY+AMyN 1 (71)
¢ T CoyMyer @5 0)

in which, M, is the elastic lateral buckling resistance mom®hts« is the elastic bending moment capacity of the
cross-section about the x axis in the absence.aird M; M, is the bending moment capacity of the cross-
section about y axis in the absence gilNd M. Cy,C,y are the coefficient defining the variation of mortgalong

x and y axis; Nis the axial compression loadnd M, are the bending moment about x, y axis, respdgfidd,
andAM, are the additional bending moments about the rekyay axes due to neutral axis shifts.

When using ENV1993-1-3 (2001), a beam-column sheatfy the following equations 72-73.

N¢ LKy (Mg +8M,) - ky(M, +AM,) g 72
XminfyAeff /yMl nyeff,xpom/yMl nyeff,y,com/yMl
Nc L Kr(My ++AM,) Kz(M, +AM,) <1 (73)

XlatfyAeff /yMl XLTnyeff,x,com/yMl nyeff,y,com/yMl -

in which, Xmin is the less ok, andxx, wherex, andx, are the reduction factors of buckling about y arakis; Xja is
the reduction factor for lateral torsional bucklifkg and k are modification factors to account for bendingnmeat
distributions in the column about the x-x and yxest Wi x comand Wy com are the elastic modulus of the effective
section.

3. THIN-WALLED STEEL WALL-STUDS

The diaphragm bracing of steel wall-studs usingsgyp boards and other materials was investigate®ifngan and
Pekz [12]. They used an energy approach includiegshear rigidity and rotational restraint of thapthragm to
develop a design procedure and approximate solédiothhe buckling of diaphragm-braced wall-studee AISI [7]
Specification is based on this research. The maxidoad that can be carried by wall-studs is govetme column
buckling between fasteners in the plane of the, lakural and/or torsional overall column bucklingt-of-plane,
and shear failure of the sheathing. According IBIA7], it can be found that increased stud spgéntreases the
overall shear rigidity and results in increaseergjth prediction for both the overall diaphragmeedh buckling
modes and shear failure of the sheathing itselfvéi@r, buckling between fasteners is independestuf spacing.
Miller et al (1994b) studied the behaviour of gypsum-sheatloddtformed steel wall studs based on experimental
analysis. They found that increasing wallboardkhé&ss and the edge distance to the fastener woaldase the
failure load per fastener and the failure mode @ailange from wallboard cracking and tearing taashg of the
screws. They also pointed out that the test resoittradicted with the shear-diaphragm model, #ferghations of
gypsum wallboard panels (in tension) were localiaethe fasteners and not distributed throughogitpimel. This
research led to the imposition of some limitati¢eg. maximum stud spacing) by AISI [7].

[10] studied the behaviour of gypsum-sheathed patéd steel wall studs based on the stud colunis te&l wall
stud assembly tests. They found that the gypsumdbaannection improved the in-plane buckling resise but it
could not fully restrain the rotation of the flangmd the lip. Their calculated strength values etiog to
ENV1993-1-3 [8] are about 20% conservative forititeraction of compression and bending momentefstud is
assumed laterally braced and rotational supportheffasteners is ignored. They concluded that ttsesgort
conditions may be used in design and would be ersdfe side.
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[13] presented details of tests of a total of @lb-dcale wall frames, four being unlined, eightrgelined on one
side while the remaining eight being lined on beitles. Each panel consisted of three studs spacé@0aor
300mm. The height of the frames was set at 2.4mthelined frames, 10mm plasterboard was usecey Ttund
that the plasterboard lining should be fastenethé&studs at smaller spacing to be able to gainaalujtional
strength. The AISI method is unable to predict fdikire mode of some cases and is inadequate blighireg the
failure loads of studs lined on one side.

[14] used differential equations of equilibrium derive a mathematical method to calculate the asti@ngth
(flexural and flexural-torsional buckling loads) fgypsum-sheathed cold-formed steel wall stud caitpganels.
In their analysis, axial load was assumed to bdiegpo the centroid of the gross cross-sectioeafh C-shaped
stud with bracing action of the wallboard and camiom of screws were presented by elastic spriddgeir
formulations predicted that the panel strength imdspendent of stud spacing but reflected the ipedInature of
the wallboard deformation.

[15] reported 30 panels tests, in which 20 panatsdnly one stud and 10 panels with two studs.sEnew spacing
was 300mm, 400mm and 600mm in the studs. The be@dsoriented strand board (OSB), cement partiokerd

(CPB) and calcium silicate board (CSB). The nundfdyoards used in their tests had no sheathingsimeeor two

side sheathing. One point, two point or four pdodads were applied on the top of the panel. Afestg, all

specimens without board sheathing failed in ovdiekiural buckling. For the panels with one-sideating, nearly
all of the studs failed as a result of torsionakfiral buckling and the side studs failed due e¢aiftal buckling and
heavy local buckling. For the panels with two-sgifeeathing, the studs failed by overall torsionakitiral buckling
and local crushing near their ends. They also fahatl the board type and number and screw spaéfegted the
panel load carrying capacities. The failure loafipanels sheathed with OSB were about 20% higtear ganels
sheathed with CPB and 70% higher than CSB. Thertailoads of panels with both side sheathing panwel®

significantly higher than one-side sheathing par&le load carrying capacity of studs increase$ wécreasing
screw spacing.

CONCLUSION

This paper has presented thoroughly the theoretiodlmathematical considerations for thin-wallezeksections
including the studies of the behaviour of thin-wdllsteel structures at room temperature. It cafolned that the
behaviour of thin-walled steel structures at roemperature, including local buckling, distortiobalckling, global
buckling and shear buckling have been well undestand suitable design methods existed. The thealetnd
mathematical equations presented in this paperassist future researchers in designing acceptabiewalled
steel structures holistically.
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