
Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advances in Applied Science Research, 2011, 2 (3): 567-573

ISSN: 0976-8610

CODEN (USA): AASRFC

567
Pelagia Research Library

Performance Analysis of Montgomery Multiplication Algorithm for
Multi-core Systems Using Concurrent Java

Lavanya P and M Rajashekhara Babu

School of Computing Science and Engineering, VIT University Vellore, TamilNadu, India

__

ABSTRACT

The Requirement of information security on topology network has become more important.
Cryptography is a method to provide information confidentiality, authenticity and integrity.
There are so many challenges to implement a public key cryptography algorithm such as
execution time, time consuming, time cost, integrated methods, memory Requirement in public
key cryptography. In parallel computation to solve the formal algorithm in parallel by
partitioning method can scale over different number of cores given .A parallel computation can
be stable perform analysis of public key cryptography using concurrent java core
communication such as available time, request time, allowance time . In this paper, public key
cryptography algorithm can be implemented a parallel RSA with threads and to improve the
performance of the algorithm by execution time. Various public key cryptography algorithms can
be implemented using execution time.

Key Words: Cryptography, concurrent Java, RSA, DSA, ECC.
__

INTRODUCTION

One of the most important requirements of these networks is to provide secure transmission of
information from one place to another. One of the techniques ensuring privacy of files and
communications is Cryptography. Cryptography is the sciences of writing in secret code and is
an ancient art; with applications ranging from war time battle plans. Any application to
application communication there is some specific security requirements including:
Authentication, Privacy/Confidentiality, and Integrity, on-repudiation.

In all cases, the initial unencrypted data is referred to as plaintext. It is encrypted into cipher text,
which will in turn be decrypted into usable plaintext.

Lavanya P et al Adv. Appl. Sci. Res., 2011, 2 (3):567-573

568
Pelagia Research Library

Modular multiplication is a fundamental operation in many popular Public Key Cryptography
algorithms such as RSA and ECC. As the division operation in modular reduction is time-
consuming, Montgomery proposed a new algorithm where division is avoided.

An integer X is represented as X · R mod M, where M is the modulo and R = 2r is a radix which
is cop rime to M. This representation is called Montgomery residue. Multiplication is performed
in this residue, and division by M is replaced with division by R.

Most public key algorithms are based on modular arithmetic, e.g. RSA, DSA, and ECC. Public
key encryption and decryption are computationally heavy because a lot of modular
multiplications with very large numbers are needed to perform these tasks. The security of the
RSA cryptosystem is based on two mathematical problems: the problem of factoring large
numbers and the RSA problem. In cryptography, the RSA problem summarizes the task of
performing an RSA private-key operation given only the public key. Full decryption of an RSA
cipher text is thought to be infeasible on the assumption that both of these problems are hard, i.e.,
no efficient algorithm exists for solving them1. Providing security against partial decryption may
require the addition of a secure padding.

In this paper, we investigate how to parallelize the public key cryptography. In a practice, the
world length of such key sizes larger than the text .In a RSA, ECC, DSA algorithm we use only
encrypt and decrypt a text.Several implementation of a sequential have been presented before,
through we believe that none of these meet all requirements we enumerated above.

We have to build in threads in java i.e. executor time, process time, synchronization, block
queue. This paper is the extension of the previous work [1], Compared to the earlier work, the
paper provides additional motivation on the execution time used for Asymmetric algorithms, it
provides a analysis and demonstrate in designed.

II Related work
Types of Asymmetric algorithms (public key Cryptography) are available for hiding the
information are RSA algorithm, Elliptic Curve Cryptography, Digital Signature Algorithm,
ElGamal , ECDSA, Diffie-Hellman .These algorithms have many performance limitation such as
memory requirement, time consuming, time cost and integrated methods. All of the above
cryptographic algorithms perform arithmetic operations like byte, bit, modular multiplication,
addition, subtraction. All these algorithms require more execution time. The efficient
implementation of this long-word length modular multiplication is crucial for the performance of
public-key cryptography. [1]

Modular multiplication and RSA From [2] we can find that the work of modular arithmetic is
very old. Original works on modular arithmetic are very old. The Chinese Remainder Theorem
was first proposed around the fifth century by Sun Tsu [3] But the use of this arithmetic to
represent numbers was introduced only in 1959 by H.L. Garner [4].

Many others have built on this algorithm to produce a smaller and faster way of doing modular
multiplication. A Residue Number System (RNS) represents a large integer using a set of smaller

Lavanya P et al Adv. Appl. Sci. Res., 2011, 2 (3):567-573

569
Pelagia Research Library

integers, so that computation may be performed more efficiently. It relies on the Chinese
remainder theorem of modular arithmetic.

Thus, the overall the computational time is to be investigated in detail. A single chip, 1024-bit
RSA implementation is shown in. The multiplication part is implemented as an array multiplier.
It is noted that this approach for multiplication requires multiple clock cycles to complete. An
implementation of a 12x12 bits modular multiplier based on Montgomery multiplication
algorithm is presented in the time and area results presented in this thesis work will be compared
with the results presented. However, the comparison can be only an approximation of the
technologies, architectures and bit sizes used in both case.

These algorithm have many performance limitations such as memory requirement , execution
time and consumption power. Memory requirement for some of the algorithms are as follows in
bits.

Table 1 Code size for different algorithms

Symmetric key size in bits RSA/DSA key size of n in bits ECC size of n in bits
56 112 512
80 160 1024
112 224 2048
128 256 3072
92 384 7680

One of the solutions to reduce the execution time for the time for these cryptography algorithms is
by using parallel computation. It is a method in which servile computation can be carried out
microprocessors. Concurrent Java is a application programming interface which provides various
packages and library routines for parallel implementation. So by making use of Concurrent java
we can parallelize the execution of any specified cryptography algorithm in order to reduce the
time execution time of the algorithm. [8]

This paper aims at proving the performance of Multi-core which gives better scalability,
performance than the single core.

The paper is organized in 5 sections. Section 3 gives the Design and Implementation details.
Section 4 discusses the Results obtained.

III .Implementation
The important part of the project is the implementation where the design gets converted into
corresponding coding. Screenshots will clearly bring a picture about how to parallelize execution
of program between cores to improve the execution time of the code.

In the RSA algorithm are modular exponentiation, and arithmetic operations .DSA algorithm
signature must be a bit pattern and it should depend on the message begin signed.ECC is the
difference in the way to grouped both the numbers in the set and the arithmetic operations used
more rapid increase in security a key length increases. This algorithm is directly supported by
JAVA. Java application programming interface provide various directives, runtime routines and

Lavanya P et al Adv. Appl. Sci. Res., 2011, 2 (3):567-573

570
Pelagia Research Library

environment variables which provide capability to parallelize a serial program. So by using Java
Application we can parallelize execution of program to improve the execution time of the code.
In an algorithm implementation we can use generate key, encrypt and decrypt a text message. In
input message size will given in different KB.

The implementation language the algorithms should not matter in theory. In practice does a
matter. That is because some algorithms are more compilers friendly. This means that some
algorithms optimized during compilations time, others do not. Therefore those with that
optimization will be faster and we should consider this during our algorithm study. In a
implementation we use sequential and parallel implementation.

3.1 Sequential Schemes
In conventional cryptography, a sender and a recipient insecure communication share the sane
key. The sender uses the key to encrypt a pieace of information into an illegible form and
transmit the cipher text into the over public network .Only the recipient, who shares the same key
is able to read the message by decrypt the cipher text.[7]

Algorithm 1 Rivest Adi Shamir Aldeman
Require: An p ,q are the two prime numbers (Private , chosen) with n =p.q (public , calculated)
with e is chosen s.t gcd(0(n),e) = 1; 1< e< (n) are (public, chosen).d=e1 mod (n)

1. Generate a key-pair expansion function for both encryption and decryption algorithm has
been test for 1024 bit key size.
2. Store string NumDigits to prevent race conditions.
3. Retrieve the stored strNumDigits and call the original method. Processing is now done in the
background.
4. Encrypt function has been checked for various sizes, this function generate properly
encrypted.

Encrypt <input filename> <public key= e> <public key = n>

5. Decrypt function has been checked for encrypt, this function generate the original text after
the decryption.

Decrypt <ciphertext filename> <private key = d> <public key = n>

6. The Sequential and parallel implementation Time required for RSA algorithm process has
been checked its generating correct results.

After profiling algorithm 1, we implement the DSA Algorithm similar to RSA algorithm. In
DSA algorithm we can use the message authentication protocol protect the two parties who
exchange the message. But it does not protect each other. The digital signature can be
implemented by encrypt the message with sender’s private key , and encrypt the hash code of the
message with the sender’s private key.It can be encrpt the message + signature with the
receiver’s public key.Disadvantages: If the sender wants to deny sending a particular message
the sender its private key was lost. And < T.

Lavanya P et al Adv. Appl. Sci. Res., 2011, 2 (3):567-573

571
Pelagia Research Library

ECC is the difference in the way to grouped both the numbers in the set and the arithmetic
operations used more rapid increase in security a key length increases.[8] In ECC algorithm we
can use a key mode ,parameters, i.e x ,y size. It will use Boolean operations [10]

In [7] the author analyzed several sequential implementation schemes of asymmetric key. The
differences among those methods comes from the sequence to calculate the execution time.

3.2 Parallel Schemes
In this paper I describe an efficient implementation of public key cryptography algorithms for a
highly parallel to concurrency Java.

The Public-key cryptography are implemented with parallel as less execution time .A fully
decryption therefore requires about 15000 cycles with 100 MHz clock. So these algorithms can
be implemented using java language .Concurrent Java application programming interface
provides various compiler directives ,runtime routines, executor time , processing time, blocking
queue and environment variables which provide capability to parallelize a serial program. Its
same as sequential implementation but in parallelize its show less execution time.

Figure 4.1 Data flow diagram

1V Analysis And Design
These sections analyze based on overall performances of RSA, DSA, ECC. In our practical
work, we have measured the time consumption during the encryption and decryption .In this
particular study we had to less repetitions because the algorithm spends much more time during
the encryption / decryption. The main problem with DSA is the fixed subgroup size (the order of
the generator element), which limits the security to around only 80 bits. Hardware attacks can be

Lavanya P et al Adv. Appl. Sci. Res., 2011, 2 (3):567-573

572
Pelagia Research Library

menacing to some implementations of DSS. However, it is widely used and accepted as a good
algorithm.

RESULTS

Results were built on a java platform , we implemented public key cryptography are connected
in a ring network. The following algorithm takes file size of v kb as ainput and it will calculate
the execution time as the output. Here input message will be construct into the encrypt and
decrypt. If it’s not excepted its output its failed. After this calculate the execution time if the
text file is less than or equal to 99 kb. While its calculate the execution time for a file if the file
size is greater than or equal to 100 kb.

In a table 2 the algorithms its depend on the process or speed. The execution time for different
algorithms is as follows.

Table 2 Improvements of various algorithms.

Performance improvement of various algorithms Reduction time in %
RSA 45
DSA 55
ECC 60

Figure 5.1 Performances improvements of various algorithms

In the fig 5.1 Results shows that the proposed system for implementation of various
cryptography algorithms using java application programming interface has been reduced the
execution time for algorithm from 40-60% for different algorithms.

From the implementation results above three algorithms. It is taking very less time for execution
time process compared to other algorithms.

CONCLUSION

This project has described the concept of parallel programming by using concurrent java
processor. Here it is shown how to efficiently and effectively implement the various
cryptography algorithms by using java application, extraction as much parallelism as possible

0

20

40

60

80

RSA DSA ECC

Reduction time in %

Reduction time

in %

Lavanya P et al Adv. Appl. Sci. Res., 2011, 2 (3):567-573

573
Pelagia Research Library

from the algorithm in parallel implementation approach. It also includes the extensive
quantitative evaluation of execution time for both sequential and parallel implementation.
Implementation results shows that, parallel computation of public key cryptography algorithms
provides highly efficient and reliable way to perform encryption and decryption. After evaluation
of execution time for RSA.DSA,ECC algorithm it I reported that parallel implementation of
processor takes very less time for performing the encryption and decryption than the other
algorithms. Overall, it can be concluded processor provide efficient and reliable way to
implement public key cryptography algorithm.

In future the project can be extended for multi-core processor machines. This project can also be
executed to reduce the power consumption for each core.

Acknowledgement
Authors express sincere thanks to the Director of SCSE, VIT UNIVERSITY & VELLORE, for
extending his support.

REFERENCES

[1] C.K. Koc¸,T. Acar, and B. S. Kaliski Jr., IEEE Micro, vol. 16, no. 3, pp. 26–33, 1996.
[2] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C.Shantz, LNCS, vol. 3156,pp. 119–132,
2004.
[3] R. Rivets, A. Shamir, and L. Adleman, Communications of the ACM vol. 21, pp. 120–126,
1978.
[4] Wei Liu; Rong Luo;Yang; ”Cryptography Overhaed Evalutation and Analysis for
Algorithms”, WRI International Conference on Mobile, Pages: 496-501.
[5] W.Diffie and M.E.Hellman. IEEE Transactions on Information Theroy, 22: 644-690,Nov
1989.
[6] Andrew Matthew Lines, IEEE Computer Society, June 1998.
[7] Parikh c.;Patel.p; IEEE International Symposium on Electronics,Pages:1-7.
[8] Behrouz Foruazan-Cryptography And Network Security 4th edition.
[9] Willa Stallings-Cryprography concepts in 3rd edition.
[10] http://java.org/wp.html

