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A B S T R A C T

Feature selection in high-dimensional datasets is con-sidered to be a complex and time-consuming 
problem. To enhance the accuracy of classification and reduce the execution time, Parallel Evolutionary 
Algorithms (PEAs) can be used. In this paper, we make a review for the most recent works which 
handle the use of PEAs for feature selection in large datasets. We have classified the algorithms in 
these papers into four main classes (Genetic Algorithms (GA), Particle Swarm Optimization (PSO), 
Scattered Search (SS), and Ant Colony Optimization (ACO)). The accuracy is adopted as a measure 
to compare the e ciency of these PEAs. It is noticeable that the Parallel Genetic Algorithms (PGAs) 
are the most suitable algorithms for feature selection in large datasets; since they achieve the highest 
accuracy. On the other hand, we found that the Parallel ACO is time-consuming and less accurate 
comparing with other PEA.
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INTRODUCTION
Now-a-days many disciplines have to deal with 
high dimensional datasets which involve a huge 
number of features. So we need data pre-processing 
methods and data reduction models In order to 
simplify input data. There are two main types of 
data reduction models [1]. The first is: instance 
selection and instance generation processes 
are focused on the instance level. (i.e., select a 
representative portion of data that can fulfil a data 
mining task as if the whole data is used) [2]. the 
second is: feature selection and feature extraction 
models which work at the level of characteristics. 
These models attempt to reduce a dataset by 
removing noisy, irrelevant, or redundant features. 
Feature selection is a necessary pre-processing 
step in analyzing big datasets. It often leads to 

smaller data that will make the classifier training 
better and faster [3].

Feature selection is a problem with big datasets. 
In order to make classification faster and more 
accurate, we need to select the subset of features 
that are discriminative. Evolutionary algorithms 
like Genetic algorithms, Swarm intelligence 
optimization, Ant colony optimization, etc. These 
methods can be e ective for this problem, but 
they require a huge amount of computation (long 
execution time), also memory consumption. In 
order to overcome these weaknesses, parallel 
computing can be used. In this survey, we will 
review a set of papers about parallel evolutionary 
algorithms that used for feature selection in 
large datasets. Furthermore, we will compare 
the performance of di erent algorithms and 
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environment. The rest of the paper is organized 
as follow: Section 2 is Background about feature 
selection approaches and parallel architecture in 
general. Section 3 talk about parallel evolutionary 
algorithms. Section 4 will discuss and review 
many papers which talk about the feature selection 
problem by using parallel computing. Section 
5 contains the summary of the survey; the last 
section is the conclusion and future work.
BACKGROUND
In general, there are three classes of feature 
selection: filter-based, wrapper, and embedded. 
The filter approach analyses the features 
statistically and ignores the classifier.  Most of 
filter-based methods perform two operations, 
ranking and subset selection. In some cases, these 
two operations are performed sequentially, first 
the ranking, then the selection, in other cases only 
the selection is carried out. These methods are e 
ective in terms of execution time. However, filter 
methods sometimes select redundant variables; 
since they don’t consider the relationships between 
variables. Therefore, they are mainly used as a 
pre-processing method. In the wrapper model 
[4], the process of feature selection is depending 
on the performance of a specific classifier. But 
its disadvantages are time-consuming and over 
fitting. The last method for feature selection is the 
embedded. In this method, the feature selection 
process and the learning algorithm (tuning the 
parameters) are combined to each other [5,6].

Parallel Evolutionary Algorithms for Feature 
Selection in High Dimensional Datasets

The selection of optimal feature subset is an 
optimization problem that proved to be NP-hard, 
complex, and time-consuming problem [7]. Two 
major approaches are traditionally used to tackle 
NP-hard problems, as seen in Figure 1, exact 
methods and met heuristics. Exact methods allow 
exact solution to be found, but this approach is 
impractical since it is extremely time consuming 
for real world problems. On the other hand, 
metaheuristics are used for solving complex and 
real world problems. Because metaheuristics 
provide suboptimal (sometimes optimal) solution 
in reasonable time [8-10]. Trajectory-based 
(exploitation-oriented methods): the well-known 
metaheuristics families based on the manipulation 
of a single solution. Include Simulated An-
nealing (SA), Tabu Search (TS), Iterated Local 
Search (ILS), Variable Local Search (VNS), and 

Greedy Ran-domized Adaptive Search Procedures 
(GRASP). Population-based (exploration-oriented 
methods): the well-known metaheuristics families 
based on the manipulation of a population of 
solutions. Include PSO, ACO, SS, Evolutionary 
Algorithms (EAs), Di erential Evolution (DE), 
Evolutionary Strategies (ES), and Estimation 
Distribution Algorithms (EDA). Met heuristics 
algorithms have proved to be suitable tools for 
solving the feature selection accurately and 
efficiently for large dimensions in big datasets 
[2]. The main problems when dealing with big 
datasets are: The first is execution time because 
the complexity of the met heuristics methods for 
feature selection is at least O (n2 D), where n is 
the number of instances and D is the number of 
features. The second is memory consumption 
since most methods for feature selection need to 
store the whole dataset in memory. Therefore, 
the researchers try to parallelize the sequential. 
Metaheuristics to improve their e ciency for 
feature selec-tion on large datasets. There are 
many programming models and paradigms, such 
as Map Reduce (Hadoop, spark), MPI, Open 
MP, and CUDA [1,6,11]. Parallel computing can 
be process interaction (shared memory, message 
passing) or problem decomposition (task or data 
parallelization) [6].

Parallel computing is a good solution for these 
problems since many calculations are carried 
out simultaneously in the task and/or data [6]. 
Population-based metaheuristics are naturally 
prone to parallelize since most of their variation 
operators can be easily undertaken in parallel 
[2,11].

Figure 1: Approaches for handling NP-hard problems
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Parallel implementations of metaheuristics are 
an effective alternative to speed up sequential 
metaheuristics; by reducing the search time for 
solutions of optimization problems. Furthermore, 
they lead to the more precise random algorithm 
and improve the quality of solutions [11].

As seen in Figure 2, the implementation of parallel 
metaheuristics is divided into two categories [12].

Parallel evolutionary algorithms are used in 
many works rather than feature selection, such as 
inferring phylogenies, tra c prediction. Santander 
et al., [9] used MPI/Open MP with a hybrid 
multiobjective evolutionary algorithm (fast non-
dominated sorting genetic algorithms and firefly 
algorithm); for phylogenetic reconstruction 
(Inferring evolutionary trees). Jiri at al., [10] 
used parallel multiobjective GA with OpenMP. 
In order to make tra c prediction more accurate. 
Master-Slave scheme of GA was implemented 
on multi-core parallel architecture. They reduced 
the computational time, but it was successful for 
short-term tra c prediction.

Overview of Parallel Evolutionary Algorithms 
for Feature Selection

Feature selection algorithms are used to find an 
optimal subset of relevant features in the data. In 
this section we will talk about parallel evolutionary 
algorithms that are used for feature selection 
problem in large datasets. We will illustrate the 
steps of six algorithms (PGA, PCHC, PPSO, 
PGPSO, PSS, and PACO).

Parallel Genetic algorithm (PGA)

In order to increase the efficiency and reduce the 
execution time of the genetic algorithm (GA); 

the researchers used parallel GA. Algorithm 1 
presents the parallel GA methodology, with the 
master-slave model of parallel GA.

Algorithm 1 Parallel genetic algorithm [10]:

A. Create initial population

B. Create slaves

C. while not done do

a Start slave

b Wait for slave to finish

c Run mutation operator

d End while for i=1 to slave iterations do 
Select individuals Run crossover operator 
Evaluate offspring’ if solution found then set 
done=True.

Parallel CHC algorithm (PCHC) 

A CHC is a non-traditional GA, which combines 
a conservative selection strategy (that always 
preserves the best individuals found so far), 
that produces o springs that are at the maximum 
ham-ming distance from their parent. The main 
processes of CHC algorithm are [1]:

a Half-Uniform Crossover (HUX): This will 
produce two o springs, which are maximally 
di erent from their two parents.

b Elitist selection: this will keep the best 
solutions in each generation.

c Incest prevention: this step prevents two 
individuals to mate if the similarity between 
them greater than a threshold.

d The Restarting process: if the specified 
population stagnated, then this step generated 
a new population by choosing the best 
individuals.

Particle Swarm Optimization (PSO)

This sub-section handles the geometric particle 
swarm optimization (GPSO) and shows the 
algorithm that used to parallelize PSO or GPSO.

Geometric Particle Swarm Optimization 
(GPSO) 

GPSO is a recent version of PSO. The key issue in 
GPSO is the using a multi-parental recombination 
of solutions (particles). In the first phase, a random 
initial-ization of particles created. Then the 
algorithm evaluates these particles to update the 
historical and social positions. Finally, the three 

Figure 2. Parallel implementation of metaheuristics
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parents (3PMBCX) move the particles, as shown 
in Algorithm 2:

Algorithm 2 GPSO algorithm [2]

S: Swarm Initialization () while not stop 
condition do do for each particle i of the swarm 
S do do

Evaluate (solution (xi))

Update (velocity equation (hi))

Update (global best solution (gi))

End for

For each particle i of the swarm S do do

Xi: 3PMBCX ((xi, wa), (gi, wb), (hi, wc))

Mutate (xi)

End for

End while

Output: best solution found

Parallel Multi Swarm Optimization (PMSO) 

Parallel multi swarm optimization presented in 
[2], it was defined in analogy with parallel GA as 
a pair of (S, M), where S is a collection swarm and 
M is a migration policy. Algorithm 3 depicts the 
parallel PSO methodology.

Algorithm 3 Multi swarm optimization [2]

Do In Parallel for each i â´L´L 1,..., m

Initialize (Si)

While not stop condition do do

Iterate Si for n steps /* PSO evolution */

For each Sj â´L´L Ï ˇ D (Si) do do

Send ÏA˛ particles in ÏE˛s (Si) to Sj

End for

For each Sj such that Si â´L´L Ï ˇ D(Sj ) do do

Receive ÏA˛ particles from Sj

Replace ÏA˛ particles in Si according to ÏE˛r

End for

End while

Output: best solution ever found in the multi-
swarm

Parallel Scatter Search (PSS)

Scatter search is an evolutionary method that 

was successfully applied to hard optimization 
problems. It uses strategies for search diver-
sification and intensification that have proved 
effective in a variety of optimization problems, 
see Algorithm 4.

Algorithm 4 Parallel scatter search methodology 
[11]:

Create Population (Pop, Pop Size)

Generate Reference Set (RefSet, RefSetSize)

While Stopping Criterion 1 do

While Stopping Criterion 2 do

Select Subset (Subset, Subset Size)

For each processor r=1 to n do in parallel do

Combine Solutions (Subset, Cur Sol)

Improve Solution (Cur Sol, Imp Sol)

End for

End while

Update Reference Set (RefSet)

End while

Parallel Ant Colony Optimization (PACO) 

When dealing with huge search space, parallel 
computing techniques usually applied to improve 
the e ciency. Parallel ACO algorithms can achieve 
high-quality solutions in reasonable execution 
times comparing with sequential ACO [13]. 
In Algorithm 5, the methodology of PACO is 
presented.

In Algorithm 5 Parallel ant colony optimization 
methodology [14-18]

Generate Ants

Initialize N processors

Multicast to all slaves’ processors N and the task 
ids of all slaves for each slave do do

Send a number between 0 and N that identifies the 
task inside the program

End for

While not all slaves have sent back solution do

Wait for solution

If a slave returns a solution that is better than any 
solution

Received then
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Multicast this solution to all slaves

End if

End while

Return the best solution

Algorithm 5 Parallel ant colony optimization 
methodol-ogy [14]

Parallel evolutionary algorithms for feature 
selection

We reviewed a set of research papers, which were 
dealing with feature selection problem for high 
dimensional datasets in a parallel environment 
and using parallel evolutionary algorithms. Let us 
discuss these studies in the following subsections.

Parallel GA

Liu et al. [10] used parallel GA for selecting 
informative genes (features) in tissue classification, 
using wrapper approach. The main purpose was 
to find the subset of features with fewer elements 
and higher accuracy. The parallelization of GA 
performed by dividing the population into sub-
populations, and then the GA run on each sub-
population. Therefore, the searching for the 
optimal subset of genes can be on several CPUs/
computers at the same time.

For evaluation, the Golub classifier was used. This 
classifier introduced by the authors and it depend 
on the sign of the results for classification; if the 
sign is positive the sample x belongs to class 1; 
else if it negative the sample x belongs to class 2. 
This classifier used only if the datasets have two 
classes. The accuracy of the classifier tested by 
using the LOOCV (leave one out cross validation) 
method. The results showed that using the parallel 
GA increased the accuracy, and reduced the number 
of genes that used for classification. Zheng et al., 
[15] analysed the execution speed and solution 
quality of many parallel GA schemes theoretically. 
Furthermore, they pointed to the best scheme of 
parallel GA that used on multi-core architecture. 
This paper considered the relationship between 
speed and parallel architecture along with solution 
quality.

Zheng et al., [8] analysed the execution speed and 
solution quality of many parallel GA schemes 
theoretically. Furthermore, they pointed to the 
best scheme of parallel GA that used on multi-core 
architecture. This paper considered the relationship 
between speed and parallel architecture along 

with solution quality. They analysed (Master-
Slave, Synchronous Island, Asynchronous Island, 
Cellular, and hybrid scheme of Master-Slave and 
Island) schemes of parallel GA, with Pthread 
library on multi-core parallel architecture.

To validate their theoretical analyzing experiments 
performed. The hybrid scheme of (Master-Slave 
and Asynchronous Island) was the best scheme in 
performance using multi-core architecture. The 
Island scheme has the best execution time, but the 
worst solution quality. To improve the solution 
quality when using Island models it is better to 
decrease the number of islands. The Asynchronous 
Island is faster than the Synchronous. The Master-
Slave scheme has the best solution quality and the 
worst execution time.

Soufan et al., [16] developed a web-based tool 
called DWFS, which used for feature selection 
for di erent problems. This tool followed a hybrid 
approach of wrapper and filter. First, the filter used 
as pre-processing and select the top ranked features 
based on tunable and a predefined threshold. In the 
next step, parallel GA based on wrapper approach 
applied to the selected features to search for subset 
features that increase the classifier accuracy. The 
scheme of parallel GA was Master-Slave; the 
master node used to create initial population and 
GA steps. While the slave (worker) nodes used 
for fitness evaluation of each chromosome, this 
implementation is performed on 64 cores.

For evaluation, they used three di erent classifiers 
(Bayesian classifier, K-nearest neighbour, and 
a combination of them). The results of the 
experiments show that DWFS tool provided many 
options to enhance the feature selection problem 
in di erent biological and biomedical problems.

Pinho et al., [7] presented a framework called 
Par-JEColi (java-based library) for a parallel 
evolutionary algorithm in bioinformatics 
applications. The aim of this platform was to 
make the parallel environment (multi-core, 
cluster, and grid) easy and transparent to the 
users. This library adapted itself to the problem 
and the target parallel architecture. The user can 
easily configure the parallel model and the target 
architecture; since, ParJEColi encapsulated the 
parallelization concerns as features. The explicit 
steps implemented by a simple GUI.

The experiments for validation this framework 
was done on 2 biological dataset and many 
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bioinformatics scenarios. The results indicate 
that the proposed framework improves the 
computational performance (decreases execution 
time) also the solution quality.

Parallel CHC 

Peralta et al., [1] presented a parallel evolutionary 
algorithm called CHC algorithm by using the Map 
Reduce paradigm for selecting features in high 
dimensional datasets to improve the classification. 
The parallelization of CHC algorithm is done 
by using Map Reduce procedure (Hadoop 
implementation).

A cluster of computers of 20 computing nodes 
were used. Each dataset split into 512-map task. 
For evaluating their work, three classifiers where 
used SVM (support vector machine), logistic 
regression, and Bayesian classifier.

The results showed that the run time for 
classification increased as the number of features 
decreased, except for Bayesian classifier. They 
explained this result as follow: if the number 
of blocks less than the number of computing 
machines; this leads to have some machines 
remain idle. In addition, if the number of blocks 
greater than the number of computing machines, 
the blocks maybe will not distributed in efficient 
way. 

They compared parallel CHC with the serial 
version, and they concluded that the accuracy of 
classification increased by using parallel CHC. 
Furthermore, the parallel version of CHC reduced 
the run time when the datasets is high 
dimensional.

Parallel PSO 

PSO is an efficient optimization technique; it 
used to solve the problem of feature selection in 
high dimensional datasets. In [4] Chen et al. 
used the parallel PSO algorithm for solving two 
problems at the same time. By creating an 
objective function that takes into account three 
variables at the same time (the selected features, 
the number of support vectors, and average 
accuracy of SVM) in order to maximize the 
capability of SVM classifier in generalization.

The proposed method called PTVPSO-SVM 
(parallel time variant particle swarm optimization 
support vector machine), it had two phases: 1) The 
parameter settings of SVM and feature selection 
work together. 2) The accuracy of SVM evaluated 
using the set of features and the optimal parameters 
from the first phase.

They used parallel virtual machine (PVM) with 8 
machines; and 10-fold cross validation. The results 
showed that they could achieve the following aims: 
increasing the accuracy classification, reducing the 
execution time comparing with sequential PSO, 
producing an appropriate model of parameters, 
and selecting the most discriminative subset of 
features.

Feature selection can be carried out based on 
rough set theory with searching algorithm as 
reported in [3,6]. Qian et al., [6] proposed three 
parallel attribute reduction (feature selection) 
algorithms based on Map Reduce on Hadoop. The 
first algorithm was built by constructing the proper 
(key, value) by rough set theory and implementing 
Map Reduce functions. The second algorithms 
were done by realizing the parallel computation 
of equivalence classes and attribute significances. 
The last parallel algorithm was designed to acquire 
the core attributes and reduces in both data and 
parallel task.

The experiments are performed on a cluster of 
computers (17 computing node). They considered 
the performance of the parallel algorithms, but they 
did not focus on the classification accuracy; since 
the sequential and parallel algorithms gave the 
same results. The results showed that the proposed 
parallel attribute reduction algorithms could deal 
with high dimensional datasets in an efficient way 
and better than the sequential algorithms.

Adamczyk [3] used rough set theory for attribute 
reduction, to increase the e ciency he implemented 
parallel Asynchronous PSO for this problem. The 
parallelization was done by assigning the complex 
function computations in slave cores and the main 
core make the updating particle and checking the 
convergence of the algorithm.

Parallel evolutionary algorithms for feature 
selection in high dimensional datasets

From their experiments it was noticeable that the 
e - ciency and speedup of parallel PSO algorithm 
were raising as the size of dataset increased. The 
achievable accuracy was not astonishing, but it 
was better than the classical algorithms.
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Parallel GPSO 

Garcia-Nieto et al., [2] parallelized a version of 
PSO called GPSO which is suitable for feature 
selection problem in high dimensional datasets. 
The proposed method was called PMOS (Parallel 
multi-swarm optimizer) which was done by 
running a set of parallel sub PSOs algorithms, 
which forming an island model. Migration 
operation exchanged solutions between islands 
based on a certain frequency. The aim of the fitness 
function increasing the classification accuracy and 
reduce the number of selected genes (features).

They used the SVM classifier (Support Vector 
Machine) to prove the accuracy of the selected 
subset of features. In their experiments, they used 
a cluster of computers as a parallel architecture. 
They found that 8-swarm PMSO was the best 
choice for parallelization. The results pointed out 
that this algorithm was better than the sequential 
version and other methods in term of performance 
and accuracy while it selected few genes for each 
subset.

Parallel SS 

Lopez et al., [11] present a parallel SS 
metaheuristics for solving feature selection 
problem in classification. They proposed two 
methods for combining solutions in SS. The first 
method is called GC (greedy combination): in this 
strategy, the common features of the combined 
solutions are added, and then at each iteration, 
one of the remaining features is added to any 
new solution. The second strategy is called RGC 
(reduced greedy combination), it has the same 
start as GC, but in the next step, it considers only 
the features that appear in solutions with good 
quality. Then the parallelization of SS is obtained 
by running these two methods (GC, RGC) at 
the same time on two processors using different 
combination methods and parameters settings at 
each processor.

They compared the proposed parallel SS with 
sequential SS and GA. The results show that the 
quality of solution in parallel SS is better than 
solutions which were obtained from the sequential 
SS and GA. Also, the parallel SS use a smaller set 
of features for classification. The run time is the 
same for parallel and sequential SS.

Parallel ACO

This subsection shows how the parallel ACO 

is used to solve feature selection problem for 
classification in high dimensional datasets. Meena 
et al., [18] implemented a parallel ACO to solve 
the feature selection problem for long documents. 
The parallelization was done using Map Reduce 
programming model (Hadoop) that automatically 
parallelize the code and data then run them 
on a cluster of computing nodes. The wrapper 
approachis used as evaluation criteria that used 
Bayesian classifier. Furthermore, the accuracy 
of the classifier was based on these metrics: 
precision, recall, accuracy and F-measure. The 
enhanced algorithm (parallel ACO) was compared 
with ACO, enhanced ACO, and two feature 
selection methods, CHI (Statistical technique) 
and IG (Information Gain). They used Bayesian 
classifier in evaluation process. The results showed 
that for a given fixed quality of the solutions the 
proposed algorithm could reduce the execution 
time but without considered the solution quality. 
On the other hand, the accuracy of the classifier 
was increased using parallel ACO comparing with 
sequential ACO and feature selection methods.

Cano et al., [12] parallelized an existing multi-
objective ant programming model that used as the 
classifier. This algorithm was used for rule mining 
in high dimensional datasets. The parallelization 
was done on data and each ant encoded a rule. 
This was achieved by let each processor perform 
the same task on a di erent subset of the data at 
the same time. In the implementation, they used 
GPUs, which are multi-core and parallel processor 
units architecture. This parallel model Followed 
CUDA method.

For evaluation they used these metrics: true 
positive, false positive, true negative, false 
negative, sensitivity, and specificity. The results 
indicate that the e ciency of this model was 
increased as the size of datasets increased.
RESULTS AND DISCUSSION
The summary of the papers that implemented the 
parallel EA for solving the classification problem 
in high dimensional datasets is reported in Table 
1 and Table 2.

Many research papers [2,3,7-12], stated that 
we can reduce the execution time and achieve 
acceptable speed ups, when applying parallel 
evolutionary algorithms on multiple processors. 
We noticed that they achieved a reasonable speed 
up in many cases.
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Paper Used evolutionary algorithm Parallel Programming model

Peralta et al. [1] CHC
(Type of GA) Map Reduce

Garcia-Nieto et al. [2] GPSO MALLBA
Adamczyk [3] PSO Unknown
Chen et al. [4] PSO PVM
Liu et al. [5] GA Unknown

Lopez et al. [11] SS Unknown
Meena et al. [17] ACO Map Reduce

Table 1: Summary of algorithms and programming models

Paper dataset Classifiers Metrics for
classification Accuracy

Peralta et al. [1]

Epsilon

Bayesian

AUC=
(TPR+TNR)/2

0.71
SVM 0.68

0.70Logistic
Regression 0.67

ECBDL
14-ROS

Bayesian
0.63SVM

Logistic
Regression 0.63

Garcia-Nietoet al. [2]

Colon

SVM Success
Rate

0.85
Lymp 0.97
Leuk 0.98
Lung 0.97

Adamczyk [3] 15 Data
Set

Success
Rate

0.70
(Avg)

Chen et al. [4] 30 Data
Set

Success
Rate

0.87
(Avg)

Liuet al. [5]
Leukemia

Golub Success
rate

0.88
Colon N/A

Lopez et al. [11] 12 Data
Set

Nearest
Neighbor

Success
rate

0.86
(Avg)
0.87

(Avg)
Bayesian 0.86

(Avg)

Soufan et al. [15] 9 Data
Set

K- Nearest
Neighbor F1, PPV,

GMean

0.81(Avg)
(GMean)

Bayesian 0.79(Avg)
(GMean)

Meena
et al. [17]

2 Data
Sets Bayesian F-measure,

recall
0.64

(Avg)

Table 2: Summary of datasets, classifiers, and accuracy results

In the next table (Table 2), when comparing the 
accuracy of parallel EA it is important to notice 
how many classifiers were used to measure the 
accuracy. Furthermore, we should consider the 
metrics that were used to evaluate the classifier. 
For example, the parallel PSO and its variants 
have the higher accuracy; but they used only one 
metric which is the success rate. This means that 
the parallel PSO is not the most accurate parallel 
EA based on Table 2.

On the other hand, the parallel GA and its variant 
has the least accuracy, but they used from two 

to five metrics for evaluation purpose. Based on 
these metrics, we can say that the parallel GA is 
the best parallel EA for feature selection in high 
dimensional datasets
CONCLUSION
After the review of different parallel EA that are 
used to solve the feature selection problem in high 
dimensional datasets. We adopted the accuracy as 
a measure to compare the algorithms performance.

The following points show our conclusion about 
the per-formance of the mentioned algorithms in 
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this chapter for feature selection:

GA and its variants: based on the papers we 
reviewed, the parallel GA has the higher accuracy.

a.	PSO and its variants: the parallel PSO has 
the same accuracy as sequential PSO.

b.	SS: parallel SS gives better results in case 
of accuracy than GA and sequential SS.

c.	ACO: parallel ACO has the less accurate 
results than the other parallel EA.

It is noticeable that PGAs are the most suitable 
algorithms for feature selection in large datasets; 
since they achieved the highest accuracy. On the 
other hand, the PACO is time-consuming and less 
accurate comparing with other PEA.
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