
 www.pubicon.in

American Journal of Computer
Science and Engineering Survey

==Review Article

American Journal of Computer Science and Engineering Survey

A B S T R A C T

Feature selection in high-dimensional datasets is con-sidered to be a complex and time-consuming
problem. To enhance the accuracy of classification and reduce the execution time, Parallel Evolutionary
Algorithms (PEAs) can be used. In this paper, we make a review for the most recent works which
handle the use of PEAs for feature selection in large datasets. We have classified the algorithms in
these papers into four main classes (Genetic Algorithms (GA), Particle Swarm Optimization (PSO),
Scattered Search (SS), and Ant Colony Optimization (ACO)). The accuracy is adopted as a measure
to compare the e ciency of these PEAs. It is noticeable that the Parallel Genetic Algorithms (PGAs)
are the most suitable algorithms for feature selection in large datasets; since they achieve the highest
accuracy. On the other hand, we found that the Parallel ACO is time-consuming and less accurate
comparing with other PEA.

Keywords: Evolutionary algorithms, Parallel computing, Classification, Feature selection, High
dimensional dataset.

*Corresponding author e-mail: safa_adi@ppu.edu

Parallel Evolutionary Algorithms for Feature
Selection in High Dimensional Datasets

SAFA IBRAHIM ADI* AND MOHAMMED ALDASHT
Department of Computer, Palestine Polytechnic University, Palestine

INTRODUCTION
Now-a-days many disciplines have to deal with
high dimensional datasets which involve a huge
number of features. So we need data pre-processing
methods and data reduction models In order to
simplify input data. There are two main types of
data reduction models [1]. The first is: instance
selection and instance generation processes
are focused on the instance level. (i.e., select a
representative portion of data that can fulfil a data
mining task as if the whole data is used) [2]. the
second is: feature selection and feature extraction
models which work at the level of characteristics.
These models attempt to reduce a dataset by
removing noisy, irrelevant, or redundant features.
Feature selection is a necessary pre-processing
step in analyzing big datasets. It often leads to

smaller data that will make the classifier training
better and faster [3].

Feature selection is a problem with big datasets.
In order to make classification faster and more
accurate, we need to select the subset of features
that are discriminative. Evolutionary algorithms
like Genetic algorithms, Swarm intelligence
optimization, Ant colony optimization, etc. These
methods can be e ective for this problem, but
they require a huge amount of computation (long
execution time), also memory consumption. In
order to overcome these weaknesses, parallel
computing can be used. In this survey, we will
review a set of papers about parallel evolutionary
algorithms that used for feature selection in
large datasets. Furthermore, we will compare
the performance of di erent algorithms and

ALDASHT and ADI ___

AJCSES[6][01][2018]013-021

environment. The rest of the paper is organized
as follow: Section 2 is Background about feature
selection approaches and parallel architecture in
general. Section 3 talk about parallel evolutionary
algorithms. Section 4 will discuss and review
many papers which talk about the feature selection
problem by using parallel computing. Section
5 contains the summary of the survey; the last
section is the conclusion and future work.
BACKGROUND
In general, there are three classes of feature
selection: filter-based, wrapper, and embedded.
The filter approach analyses the features
statistically and ignores the classifier. Most of
filter-based methods perform two operations,
ranking and subset selection. In some cases, these
two operations are performed sequentially, first
the ranking, then the selection, in other cases only
the selection is carried out. These methods are e
ective in terms of execution time. However, filter
methods sometimes select redundant variables;
since they don’t consider the relationships between
variables. Therefore, they are mainly used as a
pre-processing method. In the wrapper model
[4], the process of feature selection is depending
on the performance of a specific classifier. But
its disadvantages are time-consuming and over
fitting. The last method for feature selection is the
embedded. In this method, the feature selection
process and the learning algorithm (tuning the
parameters) are combined to each other [5,6].

Parallel Evolutionary Algorithms for Feature
Selection in High Dimensional Datasets

The selection of optimal feature subset is an
optimization problem that proved to be NP-hard,
complex, and time-consuming problem [7]. Two
major approaches are traditionally used to tackle
NP-hard problems, as seen in Figure 1, exact
methods and met heuristics. Exact methods allow
exact solution to be found, but this approach is
impractical since it is extremely time consuming
for real world problems. On the other hand,
metaheuristics are used for solving complex and
real world problems. Because metaheuristics
provide suboptimal (sometimes optimal) solution
in reasonable time [8-10]. Trajectory-based
(exploitation-oriented methods): the well-known
metaheuristics families based on the manipulation
of a single solution. Include Simulated An-
nealing (SA), Tabu Search (TS), Iterated Local
Search (ILS), Variable Local Search (VNS), and

Greedy Ran-domized Adaptive Search Procedures
(GRASP). Population-based (exploration-oriented
methods): the well-known metaheuristics families
based on the manipulation of a population of
solutions. Include PSO, ACO, SS, Evolutionary
Algorithms (EAs), Di erential Evolution (DE),
Evolutionary Strategies (ES), and Estimation
Distribution Algorithms (EDA). Met heuristics
algorithms have proved to be suitable tools for
solving the feature selection accurately and
efficiently for large dimensions in big datasets
[2]. The main problems when dealing with big
datasets are: The first is execution time because
the complexity of the met heuristics methods for
feature selection is at least O (n2 D), where n is
the number of instances and D is the number of
features. The second is memory consumption
since most methods for feature selection need to
store the whole dataset in memory. Therefore,
the researchers try to parallelize the sequential.
Metaheuristics to improve their e ciency for
feature selec-tion on large datasets. There are
many programming models and paradigms, such
as Map Reduce (Hadoop, spark), MPI, Open
MP, and CUDA [1,6,11]. Parallel computing can
be process interaction (shared memory, message
passing) or problem decomposition (task or data
parallelization) [6].

Parallel computing is a good solution for these
problems since many calculations are carried
out simultaneously in the task and/or data [6].
Population-based metaheuristics are naturally
prone to parallelize since most of their variation
operators can be easily undertaken in parallel
[2,11].

Figure 1: Approaches for handling NP-hard problems

ALDASHT and ADI ___

AJCSES[6][01][2018]013-021

Parallel implementations of metaheuristics are
an effective alternative to speed up sequential
metaheuristics; by reducing the search time for
solutions of optimization problems. Furthermore,
they lead to the more precise random algorithm
and improve the quality of solutions [11].

As seen in Figure 2, the implementation of parallel
metaheuristics is divided into two categories [12].

Parallel evolutionary algorithms are used in
many works rather than feature selection, such as
inferring phylogenies, tra c prediction. Santander
et al., [9] used MPI/Open MP with a hybrid
multiobjective evolutionary algorithm (fast non-
dominated sorting genetic algorithms and firefly
algorithm); for phylogenetic reconstruction
(Inferring evolutionary trees). Jiri at al., [10]
used parallel multiobjective GA with OpenMP.
In order to make tra c prediction more accurate.
Master-Slave scheme of GA was implemented
on multi-core parallel architecture. They reduced
the computational time, but it was successful for
short-term tra c prediction.

Overview of Parallel Evolutionary Algorithms
for Feature Selection

Feature selection algorithms are used to find an
optimal subset of relevant features in the data. In
this section we will talk about parallel evolutionary
algorithms that are used for feature selection
problem in large datasets. We will illustrate the
steps of six algorithms (PGA, PCHC, PPSO,
PGPSO, PSS, and PACO).

Parallel Genetic algorithm (PGA)

In order to increase the efficiency and reduce the
execution time of the genetic algorithm (GA);

the researchers used parallel GA. Algorithm 1
presents the parallel GA methodology, with the
master-slave model of parallel GA.

Algorithm 1 Parallel genetic algorithm [10]:

A. Create initial population

B. Create slaves

C. while not done do

a Start slave

b Wait for slave to finish

c Run mutation operator

d End while for i=1 to slave iterations do
Select individuals Run crossover operator
Evaluate offspring’ if solution found then set
done=True.

Parallel CHC algorithm (PCHC)

A CHC is a non-traditional GA, which combines
a conservative selection strategy (that always
preserves the best individuals found so far),
that produces o springs that are at the maximum
ham-ming distance from their parent. The main
processes of CHC algorithm are [1]:

a Half-Uniform Crossover (HUX): This will
produce two o springs, which are maximally
di erent from their two parents.

b Elitist selection: this will keep the best
solutions in each generation.

c Incest prevention: this step prevents two
individuals to mate if the similarity between
them greater than a threshold.

d The Restarting process: if the specified
population stagnated, then this step generated
a new population by choosing the best
individuals.

Particle Swarm Optimization (PSO)

This sub-section handles the geometric particle
swarm optimization (GPSO) and shows the
algorithm that used to parallelize PSO or GPSO.

Geometric Particle Swarm Optimization
(GPSO)

GPSO is a recent version of PSO. The key issue in
GPSO is the using a multi-parental recombination
of solutions (particles). In the first phase, a random
initial-ization of particles created. Then the
algorithm evaluates these particles to update the
historical and social positions. Finally, the three

Figure 2. Parallel implementation of metaheuristics

ALDASHT and ADI ___

AJCSES[6][01][2018]013-021

parents (3PMBCX) move the particles, as shown
in Algorithm 2:

Algorithm 2 GPSO algorithm [2]

S: Swarm Initialization () while not stop
condition do do for each particle i of the swarm
S do do

Evaluate (solution (xi))

Update (velocity equation (hi))

Update (global best solution (gi))

End for

For each particle i of the swarm S do do

Xi: 3PMBCX ((xi, wa), (gi, wb), (hi, wc))

Mutate (xi)

End for

End while

Output: best solution found

Parallel Multi Swarm Optimization (PMSO)

Parallel multi swarm optimization presented in
[2], it was defined in analogy with parallel GA as
a pair of (S, M), where S is a collection swarm and
M is a migration policy. Algorithm 3 depicts the
parallel PSO methodology.

Algorithm 3 Multi swarm optimization [2]

Do In Parallel for each i â´L´L 1,..., m

Initialize (Si)

While not stop condition do do

Iterate Si for n steps /* PSO evolution */

For each Sj â´L´L Ï ˇ D (Si) do do

Send ÏA˛ particles in ÏE˛s (Si) to Sj

End for

For each Sj such that Si â´L´L Ï ˇ D(Sj) do do

Receive ÏA˛ particles from Sj

Replace ÏA˛ particles in Si according to ÏE˛r

End for

End while

Output: best solution ever found in the multi-
swarm

Parallel Scatter Search (PSS)

Scatter search is an evolutionary method that

was successfully applied to hard optimization
problems. It uses strategies for search diver-
sification and intensification that have proved
effective in a variety of optimization problems,
see Algorithm 4.

Algorithm 4 Parallel scatter search methodology
[11]:

Create Population (Pop, Pop Size)

Generate Reference Set (RefSet, RefSetSize)

While Stopping Criterion 1 do

While Stopping Criterion 2 do

Select Subset (Subset, Subset Size)

For each processor r=1 to n do in parallel do

Combine Solutions (Subset, Cur Sol)

Improve Solution (Cur Sol, Imp Sol)

End for

End while

Update Reference Set (RefSet)

End while

Parallel Ant Colony Optimization (PACO)

When dealing with huge search space, parallel
computing techniques usually applied to improve
the e ciency. Parallel ACO algorithms can achieve
high-quality solutions in reasonable execution
times comparing with sequential ACO [13].
In Algorithm 5, the methodology of PACO is
presented.

In Algorithm 5 Parallel ant colony optimization
methodology [14-18]

Generate Ants

Initialize N processors

Multicast to all slaves’ processors N and the task
ids of all slaves for each slave do do

Send a number between 0 and N that identifies the
task inside the program

End for

While not all slaves have sent back solution do

Wait for solution

If a slave returns a solution that is better than any
solution

Received then

ALDASHT and ADI ___

AJCSES[6][01][2018]013-021

Multicast this solution to all slaves

End if

End while

Return the best solution

Algorithm 5 Parallel ant colony optimization
methodol-ogy [14]

Parallel evolutionary algorithms for feature
selection

We reviewed a set of research papers, which were
dealing with feature selection problem for high
dimensional datasets in a parallel environment
and using parallel evolutionary algorithms. Let us
discuss these studies in the following subsections.

Parallel GA

Liu et al. [10] used parallel GA for selecting
informative genes (features) in tissue classification,
using wrapper approach. The main purpose was
to find the subset of features with fewer elements
and higher accuracy. The parallelization of GA
performed by dividing the population into sub-
populations, and then the GA run on each sub-
population. Therefore, the searching for the
optimal subset of genes can be on several CPUs/
computers at the same time.

For evaluation, the Golub classifier was used. This
classifier introduced by the authors and it depend
on the sign of the results for classification; if the
sign is positive the sample x belongs to class 1;
else if it negative the sample x belongs to class 2.
This classifier used only if the datasets have two
classes. The accuracy of the classifier tested by
using the LOOCV (leave one out cross validation)
method. The results showed that using the parallel
GA increased the accuracy, and reduced the number
of genes that used for classification. Zheng et al.,
[15] analysed the execution speed and solution
quality of many parallel GA schemes theoretically.
Furthermore, they pointed to the best scheme of
parallel GA that used on multi-core architecture.
This paper considered the relationship between
speed and parallel architecture along with solution
quality.

Zheng et al., [8] analysed the execution speed and
solution quality of many parallel GA schemes
theoretically. Furthermore, they pointed to the
best scheme of parallel GA that used on multi-core
architecture. This paper considered the relationship
between speed and parallel architecture along

with solution quality. They analysed (Master-
Slave, Synchronous Island, Asynchronous Island,
Cellular, and hybrid scheme of Master-Slave and
Island) schemes of parallel GA, with Pthread
library on multi-core parallel architecture.

To validate their theoretical analyzing experiments
performed. The hybrid scheme of (Master-Slave
and Asynchronous Island) was the best scheme in
performance using multi-core architecture. The
Island scheme has the best execution time, but the
worst solution quality. To improve the solution
quality when using Island models it is better to
decrease the number of islands. The Asynchronous
Island is faster than the Synchronous. The Master-
Slave scheme has the best solution quality and the
worst execution time.

Soufan et al., [16] developed a web-based tool
called DWFS, which used for feature selection
for di erent problems. This tool followed a hybrid
approach of wrapper and filter. First, the filter used
as pre-processing and select the top ranked features
based on tunable and a predefined threshold. In the
next step, parallel GA based on wrapper approach
applied to the selected features to search for subset
features that increase the classifier accuracy. The
scheme of parallel GA was Master-Slave; the
master node used to create initial population and
GA steps. While the slave (worker) nodes used
for fitness evaluation of each chromosome, this
implementation is performed on 64 cores.

For evaluation, they used three di erent classifiers
(Bayesian classifier, K-nearest neighbour, and
a combination of them). The results of the
experiments show that DWFS tool provided many
options to enhance the feature selection problem
in di erent biological and biomedical problems.

Pinho et al., [7] presented a framework called
Par-JEColi (java-based library) for a parallel
evolutionary algorithm in bioinformatics
applications. The aim of this platform was to
make the parallel environment (multi-core,
cluster, and grid) easy and transparent to the
users. This library adapted itself to the problem
and the target parallel architecture. The user can
easily configure the parallel model and the target
architecture; since, ParJEColi encapsulated the
parallelization concerns as features. The explicit
steps implemented by a simple GUI.

The experiments for validation this framework
was done on 2 biological dataset and many

ALDASHT and ADI ___

AJCSES[6][01][2018]013-021

bioinformatics scenarios. The results indicate
that the proposed framework improves the
computational performance (decreases execution
time) also the solution quality.

Parallel CHC

Peralta et al., [1] presented a parallel evolutionary
algorithm called CHC algorithm by using the Map
Reduce paradigm for selecting features in high
dimensional datasets to improve the classification.
The parallelization of CHC algorithm is done
by using Map Reduce procedure (Hadoop
implementation).

A cluster of computers of 20 computing nodes
were used. Each dataset split into 512-map task.
For evaluating their work, three classifiers where
used SVM (support vector machine), logistic
regression, and Bayesian classifier.

The results showed that the run time for
classification increased as the number of features
decreased, except for Bayesian classifier. They
explained this result as follow: if the number
of blocks less than the number of computing
machines; this leads to have some machines
remain idle. In addition, if the number of blocks
greater than the number of computing machines,
the blocks maybe will not distributed in efficient
way.

They compared parallel CHC with the serial
version, and they concluded that the accuracy of
classification increased by using parallel CHC.
Furthermore, the parallel version of CHC reduced
the run time when the datasets is high
dimensional.

Parallel PSO

PSO is an efficient optimization technique; it
used to solve the problem of feature selection in
high dimensional datasets. In [4] Chen et al.
used the parallel PSO algorithm for solving two
problems at the same time. By creating an
objective function that takes into account three
variables at the same time (the selected features,
the number of support vectors, and average
accuracy of SVM) in order to maximize the
capability of SVM classifier in generalization.

The proposed method called PTVPSO-SVM
(parallel time variant particle swarm optimization
support vector machine), it had two phases: 1) The
parameter settings of SVM and feature selection
work together. 2) The accuracy of SVM evaluated
using the set of features and the optimal parameters
from the first phase.

They used parallel virtual machine (PVM) with 8
machines; and 10-fold cross validation. The results
showed that they could achieve the following aims:
increasing the accuracy classification, reducing the
execution time comparing with sequential PSO,
producing an appropriate model of parameters,
and selecting the most discriminative subset of
features.

Feature selection can be carried out based on
rough set theory with searching algorithm as
reported in [3,6]. Qian et al., [6] proposed three
parallel attribute reduction (feature selection)
algorithms based on Map Reduce on Hadoop. The
first algorithm was built by constructing the proper
(key, value) by rough set theory and implementing
Map Reduce functions. The second algorithms
were done by realizing the parallel computation
of equivalence classes and attribute significances.
The last parallel algorithm was designed to acquire
the core attributes and reduces in both data and
parallel task.

The experiments are performed on a cluster of
computers (17 computing node). They considered
the performance of the parallel algorithms, but they
did not focus on the classification accuracy; since
the sequential and parallel algorithms gave the
same results. The results showed that the proposed
parallel attribute reduction algorithms could deal
with high dimensional datasets in an efficient way
and better than the sequential algorithms.

Adamczyk [3] used rough set theory for attribute
reduction, to increase the e ciency he implemented
parallel Asynchronous PSO for this problem. The
parallelization was done by assigning the complex
function computations in slave cores and the main
core make the updating particle and checking the
convergence of the algorithm.

Parallel evolutionary algorithms for feature
selection in high dimensional datasets

From their experiments it was noticeable that the
e - ciency and speedup of parallel PSO algorithm
were raising as the size of dataset increased. The
achievable accuracy was not astonishing, but it
was better than the classical algorithms.

ALDASHT and ADI ___

AJCSES[6][01][2018]013-021

Parallel GPSO

Garcia-Nieto et al., [2] parallelized a version of
PSO called GPSO which is suitable for feature
selection problem in high dimensional datasets.
The proposed method was called PMOS (Parallel
multi-swarm optimizer) which was done by
running a set of parallel sub PSOs algorithms,
which forming an island model. Migration
operation exchanged solutions between islands
based on a certain frequency. The aim of the fitness
function increasing the classification accuracy and
reduce the number of selected genes (features).

They used the SVM classifier (Support Vector
Machine) to prove the accuracy of the selected
subset of features. In their experiments, they used
a cluster of computers as a parallel architecture.
They found that 8-swarm PMSO was the best
choice for parallelization. The results pointed out
that this algorithm was better than the sequential
version and other methods in term of performance
and accuracy while it selected few genes for each
subset.

Parallel SS

Lopez et al., [11] present a parallel SS
metaheuristics for solving feature selection
problem in classification. They proposed two
methods for combining solutions in SS. The first
method is called GC (greedy combination): in this
strategy, the common features of the combined
solutions are added, and then at each iteration,
one of the remaining features is added to any
new solution. The second strategy is called RGC
(reduced greedy combination), it has the same
start as GC, but in the next step, it considers only
the features that appear in solutions with good
quality. Then the parallelization of SS is obtained
by running these two methods (GC, RGC) at
the same time on two processors using different
combination methods and parameters settings at
each processor.

They compared the proposed parallel SS with
sequential SS and GA. The results show that the
quality of solution in parallel SS is better than
solutions which were obtained from the sequential
SS and GA. Also, the parallel SS use a smaller set
of features for classification. The run time is the
same for parallel and sequential SS.

Parallel ACO

This subsection shows how the parallel ACO

is used to solve feature selection problem for
classification in high dimensional datasets. Meena
et al., [18] implemented a parallel ACO to solve
the feature selection problem for long documents.
The parallelization was done using Map Reduce
programming model (Hadoop) that automatically
parallelize the code and data then run them
on a cluster of computing nodes. The wrapper
approachis used as evaluation criteria that used
Bayesian classifier. Furthermore, the accuracy
of the classifier was based on these metrics:
precision, recall, accuracy and F-measure. The
enhanced algorithm (parallel ACO) was compared
with ACO, enhanced ACO, and two feature
selection methods, CHI (Statistical technique)
and IG (Information Gain). They used Bayesian
classifier in evaluation process. The results showed
that for a given fixed quality of the solutions the
proposed algorithm could reduce the execution
time but without considered the solution quality.
On the other hand, the accuracy of the classifier
was increased using parallel ACO comparing with
sequential ACO and feature selection methods.

Cano et al., [12] parallelized an existing multi-
objective ant programming model that used as the
classifier. This algorithm was used for rule mining
in high dimensional datasets. The parallelization
was done on data and each ant encoded a rule.
This was achieved by let each processor perform
the same task on a di erent subset of the data at
the same time. In the implementation, they used
GPUs, which are multi-core and parallel processor
units architecture. This parallel model Followed
CUDA method.

For evaluation they used these metrics: true
positive, false positive, true negative, false
negative, sensitivity, and specificity. The results
indicate that the e ciency of this model was
increased as the size of datasets increased.
RESULTS AND DISCUSSION
The summary of the papers that implemented the
parallel EA for solving the classification problem
in high dimensional datasets is reported in Table
1 and Table 2.

Many research papers [2,3,7-12], stated that
we can reduce the execution time and achieve
acceptable speed ups, when applying parallel
evolutionary algorithms on multiple processors.
We noticed that they achieved a reasonable speed
up in many cases.

ALDASHT and ADI ___

AJCSES[6][01][2018]013-021

Paper Used evolutionary algorithm Parallel Programming model

Peralta et al. [1] CHC
(Type of GA) Map Reduce

Garcia-Nieto et al. [2] GPSO MALLBA
Adamczyk [3] PSO Unknown
Chen et al. [4] PSO PVM
Liu et al. [5] GA Unknown

Lopez et al. [11] SS Unknown
Meena et al. [17] ACO Map Reduce

Table 1: Summary of algorithms and programming models

Paper dataset Classifiers Metrics for
classification Accuracy

Peralta et al. [1]

Epsilon

Bayesian

AUC=
(TPR+TNR)/2

0.71
SVM 0.68

0.70Logistic
Regression 0.67

ECBDL
14-ROS

Bayesian
0.63SVM

Logistic
Regression 0.63

Garcia-Nietoet al. [2]

Colon

SVM Success
Rate

0.85
Lymp 0.97
Leuk 0.98
Lung 0.97

Adamczyk [3] 15 Data
Set

Success
Rate

0.70
(Avg)

Chen et al. [4] 30 Data
Set

Success
Rate

0.87
(Avg)

Liuet al. [5]
Leukemia

Golub Success
rate

0.88
Colon N/A

Lopez et al. [11] 12 Data
Set

Nearest
Neighbor

Success
rate

0.86
(Avg)
0.87

(Avg)
Bayesian 0.86

(Avg)

Soufan et al. [15] 9 Data
Set

K- Nearest
Neighbor F1, PPV,

GMean

0.81(Avg)
(GMean)

Bayesian 0.79(Avg)
(GMean)

Meena
et al. [17]

2 Data
Sets Bayesian F-measure,

recall
0.64

(Avg)

Table 2: Summary of datasets, classifiers, and accuracy results

In the next table (Table 2), when comparing the
accuracy of parallel EA it is important to notice
how many classifiers were used to measure the
accuracy. Furthermore, we should consider the
metrics that were used to evaluate the classifier.
For example, the parallel PSO and its variants
have the higher accuracy; but they used only one
metric which is the success rate. This means that
the parallel PSO is not the most accurate parallel
EA based on Table 2.

On the other hand, the parallel GA and its variant
has the least accuracy, but they used from two

to five metrics for evaluation purpose. Based on
these metrics, we can say that the parallel GA is
the best parallel EA for feature selection in high
dimensional datasets
CONCLUSION
After the review of different parallel EA that are
used to solve the feature selection problem in high
dimensional datasets. We adopted the accuracy as
a measure to compare the algorithms performance.

The following points show our conclusion about
the per-formance of the mentioned algorithms in

ALDASHT and ADI ___

AJCSES[6][01][2018]013-021

this chapter for feature selection:

GA and its variants: based on the papers we
reviewed, the parallel GA has the higher accuracy.

a.	PSO and its variants: the parallel PSO has
the same accuracy as sequential PSO.

b.	SS: parallel SS gives better results in case
of accuracy than GA and sequential SS.

c.	ACO: parallel ACO has the less accurate
results than the other parallel EA.

It is noticeable that PGAs are the most suitable
algorithms for feature selection in large datasets;
since they achieved the highest accuracy. On the
other hand, the PACO is time-consuming and less
accurate comparing with other PEA.
REFERENCES
1. Peralta D, Rao S, Rama Rez Gallego S,

Triguero I, Benitez J, et al. (2015) Evolutionary
feature selection for big data classification: A
map reduce approach. Math Pro Eng 11: 1-11.

2. Garca Nieto J, Alba E (2012) Parallel multi-
swarm optimizer for gene selection in DNA
microarrays. Appl Intell 37: 255-266.

3. M Adamczy k (2014) Parallel feature selection
algorithm based on rough sets and particle
swarm optimization.

4. Ling Chen H, Yang B, Wang S, Wang G, Liu D
et al. (2014) Towards an optimal support vector
machine classifier using a parallel particle
swarm optimization startegy. App Math Comp
239: 180-197.

5. Liu J, Iba H (2001) Selecting informative
genes with parallel genetic algorithms in tissue
classification. Gen Info 12: 14-23.

6. Qian J, Miao D, Zhang Z, Yue X (2014)
Parallel attribute reduction algorithms using
map reduce. Info Sci.

7. Pinho J, Sobral L, Rocha M (2013) Parallel
evolutionary computation in bio info
appl. Computer methods and programs in
biomedicine 110: 183-191.

8. Zheng L, Lu Y, Ding M, Shen Y, Guo M, et
al. (2013) Architecture-based performance
evaluation of genetic algorithms on multi/
many core systems.

9. Santander-JimÂt’enez S, Vega-Rodrsguez M
(2014) Parallel Multiobjective Metaheuristics
for Inferring Phylogenies on Multicore
Clusters.

10. Petrlik J, Sekanina L (2015) Towards robust
and accurate traffic prediction using parallel
multiobjective genetic algorithms and support
vector regression.

11. Lopez F, Torres M, Batista B, Perez J, Vega
J (2006) Solving feature selection problem by
a parallel Scatter Search”. Elsevier, European
Journal of Operational Research 169: 477-489.

12. Cano A, Olmo J, Ventura S (2012) Parallel
multi-objective ant programming for
classification using GPUs. J Parallel Distrib
Comput 73: 713-728.

13. Albaa E, Luquea G (2012) Nesmachnowb S
parallel metaheuristics: recent advances and
new trends. Intl Trans in Op Res 20: 1-48.

14. H Liu, Hiroshi M (2001) Instance selection and
construction for data mining.

15. Soufan O, Kleftogiannis D, Kalnis P, Bajic V
(2015) DWFS A wrapper feature selection tool
based on a parallel genetic algorithm highly
parallel computing. Benjamin-Cummings.

16. Meena M, Chandran KR, Kathik A, Samuel
A (2001) A parallel ACO algorithm to select
terms to categorise longer documents. Int J
Comput Sci Eng 6: 238-248.

17. Sameh A, Ayman A, Hasan N (2010) Parallel
ant colony optimization. Int J Res Review
Comp Sci.

18. Zheng L, Lu Y, Ding M, Shen Y, Guo M, et
al. (2013) Architecture-based performance
evaluation of genetic algorithms on multi/
many core systems.

